
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2955687, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Comparative Analysis of Constraint Handling
Techniques for Constrained Combinatorial

Testing
Huayao Wu, Changhai Nie, Justyna Petke, Yue Jia, and Mark Harman

Abstract—Constraints depict the dependency relationships between parameters in a software system under test. Because almost all
systems are constrained in some way, techniques that adequately cater for constraints have become a crucial factor for adoption,
deployment and exploitation of Combinatorial Testing (CT). Currently, despite a variety of different constraint handling techniques
available, the relationship between these techniques and the generation algorithms that use them remains unknown, yielding an
important gap and pressing concern in the literature of constrained combination testing. In this paper, we present a comparative
empirical study to investigate the impact of four common constraint handling techniques on the performance of six representative
(greedy and search-based) test suite generation algorithms. The results reveal that the Verify technique implemented with the Minimal
Forbidden Tuple (MFT) approach is the fastest, while the Replace technique is promising for producing the smallest constrained
covering arrays, especially for algorithms that construct test cases one-at-a-time. The results also show that there is an interplay
between effectiveness of the constraint handler and the test suite generation algorithm into which it is developed.

Index Terms—combinatorial testing, constraint, survey, comparative study

F

1 INTRODUCTION

COMBINATORIAL TESTING (CT), or combinatorial inter-
action testing (CIT), is a potentially powerful testing

technique for revealing failures triggered by interactions
of parameters that govern software system execution be-
haviour [1]. Since the initial idea of CT was sketched in
1985 [2], it has been an active research area with over
760 scientific publications1, contributing to the develop-
ment of theory, techniques and applications. CT is also
gradually finding its way into industrial practice, and has
been included into testing standards such as ISO/IEC/IEEE
29119 [3].

Traditionally, CT assumes that the parameters of soft-
ware under test are independent from each other. The τ -
way covering array, in which each input combination of τ
parameters must appear at least once, can thus be directly
used as the test suite. However, in real-world programs,
there usually exist dependency relationships between pa-
rameters. Such relationships can be described as constraints
in CT, indicating that some particular input combinations
are infeasible or undesirable. Any application of a τ -way
covering array that fails to take constraints into account will
lead to many ‘invalid’ test cases. As a result, CT could be

• H. Wu and C. Nie are with Department of Computer Science and
Technology, Nanjing University, Nanjing, China, 210023.
E-mail: {hywu, changhainie}@nju.edu.cn

• J. Petke is with CREST, Computer Science, University College London,
London, UK, WC1E 6BT.
E-mail: j.petke@ucl.ac.uk

• Y. Jia and M. Harman are with Facebook Inc., London, UK, W1T 1FB
and CREST, Computer Science, University College London, London, UK,
WC1E 6BT.
E-mail: {yue.jia, mark.harman}@ucl.ac.uk

Manuscript received April XX, XXXX; revised August XX, XXXX.
1. The data to support this claim was obtained from Combinatorial

Testing Repository (http://gist.nju.edu.cn/ct repository).

less effective than people would otherwise expect.
For example, a constraint may indicate that the Linux

operating system cannot be combined with the IE browser:
if a testing strategy requests this combination, then no test
case can realise it. Of course, we could simply dismiss such
invalid combinations, but there is a computational cost in
doing so and the result may also affect the size of the test
suites; perhaps other valid sets of combinations could be
reduced if the constraint was handled earlier.

Constraints typically denote tests that simply cannot be
achieved. While these may be an irritation, more pernicious
are hidden constraints. For example, sometimes a test case
that violates constraints may still be executed, but will
yield results that are difficult to distinguish from a software
failure. Where such constraints are merely implicit, they can
lead to considerable wasted effort generating and analysing
results from tests that should have been avoided from the
outset.

The concept of a constraint was introduced early in the
development of CT. In 1987, Tatsumi et al. were already
aware that “not all of the combinations of the factors and
states entered in the test factor table actually exist” and
“these conditions deserve special consideration” [4], [5]. The
early CT tools of 1990s, such as CATS [6] and AETG [7],
were also able to deal with constraints. In 2006, Grindal
et al. [8] presented the first review of constraint handling
techniques. In their study, constraints are assumed to be
few and simple in practice, so the techniques to modify test
models to remove constraints played an important role at
that time.

However, in 2007, the study by Cohen et al. revealed that
constraints are large and complex in real-world applications,
especially for highly configurable software systems [9]. They
found that the previous constraint handling techniques were

http://gist.nju.edu.cn/ct_repository


This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2955687, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

unsatisfactory in terms of both generality and scalability,
and proposed to use a satisfiability (SAT) solver as a general
solution to resolve constraints during test suite generation.
Since then, a variety of automated constraint handling tech-
niques have been developed and successfully applied [10],
[11]. New research directions, such as automatically infer-
ring [12], validating [13], [14], and repairing constraints [15],
have also started to attract attention.

Even though the topic of constraints has been discussed
in many studies since 1987, the importance of constraints,
and the need for constrained combinatorial testing, remains
a fundamental barrier to the wider update of CT. In 2014,
Khalsa and Labiche [16] analysed the applicability of 75 test
suite generation algorithms and tools in CT. They found
that more than half of these studies simply do not im-
plement any constraint handling technique. More recently,
Wu et al. [11] further examined the test suite generation
publications between 2015 and 2018. They found that the
influence of constraints is only accounted in 30% of them,
which makes a large proportion of the proposed techniques
inapplicable to many real-world programs.

Moreover, since recent studies [10], [11] have revealed
a diverse set of different constraint handling techniques,
a subsequent natural question is the extent to which these
techniques make a difference in the performance of different
test suite generation algorithms. This is important because
test suite generation studies of CT usually follow (arbitrary
choices of) one of the previous practices to determine the
constraint handler to be used (for example, many recent
studies directly use the SAT solver approach without further
examination [17], [18], [19], [20], [21]), which may poten-
tially restrict the performance of the proposed algorithms.
Unfortunately, except one early comparative study [8] that
is based on unrealistic settings (few and simple constraints),
none of the studies has presented results on the relationship
between the more recently developed constraint handling
techniques and test suite generation algorithms.

In this study, we present the first comparative analysis
to investigate the impact of choices concerning constraint
handling techniques and test suite generation algorithms
that use them. To establish a uniform (level playing field)
empirical comparison, we first developed a framework of
constrained covering array generation as the reference im-
plementation, which includes the four common constraint
handling techniques (including Verify, Solver, Tolerate, and
Replace) as configurable options. A total number of six
representative greedy and search-based test suite genera-
tion algorithms (including AETG [22], DDA [23], IPO [24],
PSO [25], SA [26], and TS [27]) were then implemented
based on this framework, and the experiments were con-
ducted on a well-known benchmark [22] of constrained
covering array generation. Finally, the sizes of test suites,
computational costs, and failure revelation abilities obtained
from different combinations of test suite generation algo-
rithms and constraint handlers are recorded and analysed.

Our experimental results reveal that the constraint han-
dlers denote a key decision point when designing new test
suite generation algorithms, instead of simply treating the
solver as an afterthought or a detachable independent com-
ponent. It is important to take both generation algorithms
and test goals into consideration to determine the ‘best’

constraint handler that should be used.

This study seeks to address the important gap of ad-
equately handling constraints in test suite generation for
CT, and thereby extends current knowledge on constrained
combinatorial testing. We hope and believe that this work
may be helpful to facilitate future research and practice
in constrained combinatorial testing, as well as to suggest
potentially promising constraint handling techniques for the
design of test suite generation algorithms.

Summing up, the primary findings of this study are as
follows:

1) We observe statistically significant difference in per-
formance in not only test suite size (86% of cases)
and computational cost (99% of cases), but also failure
revelation ability (52% of cases), when different con-
straint handling techniques are used in the test suite
generation algorithm.

2) The technique that resolves constraints after test suite
generation, i.e., Replace, performs surprisingly well,
confounding the ‘conventional wisdom’ that prefers
techniques that avoid constraints during test suite
generation. Especially for generation algorithms that
construct test cases one-at-a-time, Replace can produce
significantly smaller test suites and the Â12 effect
size is higher than 0.9 in 70% of cases, indicating a
very high probability that Replace is highly effective.
Whereas, when the whole test suite is directly con-
structed by search-based algorithms, Tolerate could be
a more promising choice, as large effect sizes (higher
than 0.8 or lower than 0.2) are observed in 71% of cases
for which Tolerate is significantly better.

3) The Verify technique implemented with the Minimal
Forbidden Tuple (MFT) approach tends to be the fastest
technique, while the technique that relies on a con-
straint satisfaction solver, i.e., Solver, is usually the
slowest. In particular, for the greedy algorithms (AETG,
DDA and IPO), the average Â12 effect size between
Verify and the other techniques is only 0.07; there is
little, or no chance that Verify could perform worse than
its competitors.

4) The constraint handling technique that minimises the
size of τ -way covering arrays tends to result in a
lower chance of detecting failures triggered by k > τ
parameters, but the observed difference is not as large
as that in the size of test suites. Especially, the large
difference (with Â12 higher than 0.8 or lower than 0.2)
in test suite size can be observed in 42% of cases, while
this proportion is, on average, only 10% in terms of
failure revelation ability.

The rest of this paper is organised as follows. Section 2
sets out the background on constrained combinatorial test-
ing, and presents a brief review of currently available con-
straint handling techniques. Section 3 explains the experi-
ment methodology of our comparative analysis of constraint
handling techniques. Section 4 presents experimental find-
ings and discussions. Section 5 analyses threats to validity,
and finally, Section 6 concludes this work.



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2955687, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

TABLE 1
A test model for ‘font effect’.

Style Underline
Underline

Superscript Subscript
Colour

Regular On Red On On
Italic Off Blue Off Off
Bold Green

Constraint: Superscript and Subscript cannot both be enabled

2 CONSTRAINED COMBINATORIAL TESTING

We begin this study with background on constrained combi-
natorial testing, and also a brief review of currently available
constraint handling techniques.

2.1 Background

Combinatorial testing (also known as combinatorial interac-
tion testing) is a systematic technique that selects combina-
tions of program inputs or features for testing [28]. It models
the input space of the Software Under Test (SUT) by a set
of n parameters (such as system configurations, internal or
external events, and user inputs) and their associated value
domains (a finite set of discrete values). A test case of the SUT
is then produced by assigning to each parameter a specific
value [1].

Table 1, for example, shows a test model for testing font
effects in a word processor (this example is adapted from
previous work [29]). This test model has five parameters:
Style and Underline Colour can take three values, and each of
the others can take two values.

Software failure in such systems is usually triggered by
interactions of parameters, which can be represented using
a τ -way combination (i.e., a combination of τ parameter
values). Here, we refer to a failure as the inability of a
system to perform its required functions; while a fault is
a manifestation of an error, which is a human action that
produces an incorrect result [30].

Exhaustive testing covers all n-way combinations by def-
inition. Such test suites, however, are usually prohibitively
large. Instead, CT provides a systematic approach to select-
ing a subset of all possible inputs by using a a mathematical
object named a τ -way covering array. Its concept comes
from the fact that if no more than τ parameters are involved
in any failure, then covering all k-way combinations (k ≤ τ )
is effectively equivalent to exhaustive testing.

Definition 1 (Covering Array [1]). A τ -way covering array
of a SUT is a set of test cases, in which every τ -way
combination is covered at least once. Such a covering
array can be denoted byCA(N ; τ, vk1

1 v
k2
2 . . . vkm

m ), where
vki
i stands for ki parameters with the same number of vi

values,
∑
ki = n.

The value of τ is referred to as the strength of a covering
array. Determining this value is a key issue in CT. The
empirical observations of Kuhn et al. have demonstrated
that most software failures can be triggered by interactions
of one or two parameters, and the value of τ is not likely to
exceed six [31]. Hence, τ = 2, or pairwise, is the most widely

TABLE 2
A 2-way constrained covering array CA(9; 2, 31213122).

Style Underline
Underline

Superscript Subscript
Colour

t1 Regular On Red Off On
t2 Regular Off Blue On Off
t3 Regular On Green Off Off
t4 Italic Off Red On Off
t5 Italic On Blue Off Off
t6 Italic Off Green Off On
t7 Bold Off Red Off On
t8 Bold Off Blue Off On
t9 Bold On Green On Off

used choice in practice, which can achieve a good balance
between test suite size and failure finding effectiveness.

The conventional definition of a covering array assumes
that every possible τ -way combination is feasible and has
the potential to trigger a failure. However, this may be
unrealistic due to the constraints between parameter values.
Constraints may be introduced because of inconsistencies
between hardware components, limitations on possible con-
figurations, or simply design choices [9]. For example, one
constraint for the model in Table 1 is that “Superscript and
Subscript cannot both be enabled for the same character”. A
test case that violates this constraint is considered invalid.

In order to incorporate constraints into CT, the definition
of a covering array needs to be extended to that of a
constrained covering array, which can be defined as follows:

Definition 2 (Constrained Covering Array [22]). A τ -way
constrained covering array of a SUT with respect to a
set of constraints C is a set of test cases, in which (1)
each test case is C-satisfying; and (2) every C-satisfying
τ -way combination is covered at least once.

Table 2 gives a 2-way constrained covering array of the
test model in Table 1, where each row is a valid test case
of the SUT (the invalid combination, Superscript = On ∧
Subscript = On, does not appear in this table). Here, instead
of exhaustively examining all 54 constraint satisfying test
cases, CT only requires 9 test cases to cover every valid 2-
way combination at least once.

Constraints in CT can be either hard or soft. A hard con-
straint requires that certain parameter combinations cannot
appear in any test case, because their existence will prevent
the test case from execution. The constraint in Table 1 is an
example of a hard constraint. A soft constraint, on the other
hand, is the combination that does not need to be tested,
based on the knowledge and experience of testers [32]. It
is possible to include test cases that violate soft constraints,
but these are undesirable and bring no benefit to test effec-
tiveness.

Intuitively, all constraints are explicitly specified in the
test model. Sometimes the interactions of a set of constraints
may give rise to new constraints. Such a newly introduced
constraint is named an implicit constraint, because usually
such implicit constraints are unknown to the tester. For
example, for the test model in Table 1, we already have one
invalid combination (−, −, −, On, On). If we add another



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2955687, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Sub-model
1994

1996

2000 20051995 2010 2015 2017

Remodel

Constraint
Handling

Avoid

Post

Transfer

Abstract Parameter

Verify

Solver

Weight

Tolerate
2017

1997

2006

2007

Replace
2004

Constraint Satisfaction Problem

Extend
2007

Graph Model
2005

2008

Fig. 1. The chronological development of constraint handling techniques [11].

invalid combination (Bold, −, −, Off, −) as a constraint,
then a new invalid 2-way combination (Bold, −, −, −, On)
is introduced, because we cannot find a test case that covers
both this combination and does not cover the two explicitly
given invalid combinations.

The impact of constraints may vary with different prob-
lems, but in general, constraints increase the complexity and
difficulty of effectively applying combinatorial testing [11].
Nevertheless, testers can build more accurate and flexible
test models for the SUT with the help of constraints. A
large number of constraints can also greatly reduce the size
of the search space, which makes the generation of high
strength covering arrays feasible at a reasonable computa-
tional cost [33], [34].

2.2 Constraint Handling Techniques

Given a test model with constraints, one key challenge in CT
is to generate a constrained covering array of the minimum
size to cover all valid τ -way combinations. Constraint han-
dling focuses on this process to ensure that the final solution
only contains valid test cases. Currently, there are four main
categories of constraint handling techniques that can be
used [10], [11]: Remodel, Avoid, Post-Process, and Transfer.
Figure 1 additionally gives an overview of the chronological
development of these techniques [11].

2.2.1 Remodel

The ‘remodel’ technique focuses on eliminating constraints
from test models before test suite generation, so that conven-
tional covering arrays can be used directly. The Sub-model
and Abstract Parameter techniques are two representative
choices in this category, which remove constraints by con-
structing conflict-free sub-models [6], and combine conflict-
ing parameters into abstract parameters [35], respectively.
These techniques are typically less competitive in the size

of generated test suite, and rely on manual efforts for the
model modification [8], [36].

2.2.2 Avoid
The ‘avoid’ technique focuses on constructing conflict-free
solutions during test suite generation. It typically integrates
particular strategies as extensions into greedy or search-
based generation algorithms (for example, to ensure that
each parameter value assignment is constraint satisfying).
There are four representative choices in this category:

1) Verify. The ‘verify’ technique is probably the most basic
technique to handle constraints in the more general
case. Its idea is to maintain a list of forbidden tuples, so
that each partial or complete solution during the gen-
eration process can be verified against them to prevent
the appearance of constraint violation [7]. Recently, Yu
et al. [37] improved this technique by introducing the
concept of Minimum Forbidden Tuple (MFT). A MFT is a
forbidden tuple of minimum size that covers no other
forbidden tuples. Once all MFTs are found, validity
verification can be quickly performed by only checking
whether a solution contains any MFT.

2) Solver. The idea of ‘solver’ technique is similar to
Verify, but it encodes constraints and solutions into a
formula and applies an existing constraint satisfaction
solver (usually, a SAT solver) to check the formula’s
validity [22]. This technique can be integrated into any
generation algorithm, but it may lead to inefficient
implementations due to the large number of solver calls
required. To address this issue, several improvements
have been proposed, such as using the solvers only
when necessary [9], [38], as well as exploiting the
solving result and history [19], [22], [38].

3) Weight. The ‘weight’ technique was initially developed
to cater for soft constraints, where combinations were
weighted as either important with positive values, or



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2955687, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

undesirable with negative values [32]. This technique
only avoids the undesirable combinations where pos-
sible, and does not guarantee the exclusion of such
constraints [32].

4) Tolerate. When using search-based algorithms to gener-
ate constrained covering arrays, one choice is to exclude
all invalid solutions from the search space, so that all
intermediate and final solutions are constraint satis-
fying. However, sometimes some elements of invalid
intermediate solutions may help to find the optimal
solution, so it maybe desirable to ‘tolerate’ such invalid
solutions in the search space, but penalise them in
favour of valid solutions [25], [27]. For example, one
choice to implement this technique is to incorporate a
penalty term into the fitness function, which evaluates
the number of constraint violations (such a value can
be calculated using the the minimal forbidden tuple
approach or a constraint solver) [27].

2.2.3 Post-Process

The ‘post-process’ technique focuses on repairing constraint
violations after test suite generation. Its aim is to resolve
conflicts in covering arrays that are generated without con-
sidering constraints, while at the same time retaining combi-
nation coverage. This process usually starts from the iden-
tification of all invalid test cases, which can be efficiently
achieved by using the minimal forbidden tuple approach or
a constraint solver.

Currently, there are two representative techniques in this
category. The Replace technique tries to replace invalid test
cases by a set of valid ones [8], [39], which is general enough
to be combined with any test suite generation algorithm.
While the Extend technique is specifically designed for
event sequence testing, which inserts new events to create
executable test sequences to remove conflicts [40].

2.2.4 Transfer

The ‘transfer’ technique focuses on reformulating the prob-
lem of covering array generation into other problems, or
using other structures to model the constrained input space,
so that final solutions can be directly obtained by applying
existing algorithms or tools. One choice of this technique
is to reduce the covering array generation problem into the
Constraint Satisfaction Problem (CSP), and then constraint
solvers can be used to produce satisfiable test cases or test
suites [41], [42]. Such CSP-based techniques can generate the
covering array of minimum size and prove its optimality,
but they usually have high computational cost, and are only
practicable for pairwise testing [42], [43], [44].

Another choice is to use a Graph Model to represent
and manipulate the search space. This allows graph-related
operations and theories to be used directly to construct test
cases or test suites. Exemplary applications include naviga-
tion graph [45], binary decision diagram [46], edge clique
covering problem [47], and graph colouring problem [48].

3 EXPERIMENTAL DESIGN

In this section, we describe the research questions we seek
to investigate, and explain our experimental methodology.

3.1 Research Question

Constraint handling is the most prominent research field in
constrained combinatorial testing [11]. With the rich collec-
tion of currently available constraint handling techniques
(as reviewed in Section 2.2), there is clearly a need to
understand how these techniques will make a difference
in different test suite generation algorithms. This thereby
motivates our main research question:

Given a particular test suite generation algorithm, is
there a significant difference in performance between
constraint handling techniques?

Especially, we are interested in the test suite size (RQ1) and
computational cost (RQ2) that can be achieved when using
different constraint handlers. These are the conventional
performance indicators for evaluating a test suite generation
algorithm in CT. In addition, test practitioners might also
be interested in the failure revelation ability (RQ3) of the τ -
way covering arrays generated, in particular when a failure
is triggered by combinations of more than τ parameters.
We will investigate the performance of different constraint
handlers in terms of these three aspects.

3.2 The CCAG Framework

In order to answer our research questions, we need to
execute and compare a particular test suite generation al-
gorithm with different choices of constraint handlers. Al-
though there are available tools for test suite generation,
for example, PICT2, ACTS3 and CASA4, the selection of
different constraint handlers is not supported in these tools.
Moreover, these tools are implemented by different devel-
opers with different programming languages, which might
otherwise introduce additional sources of bias into our
evaluation. Therefore, in this study, we chose to develop
a reference implementation, which we imagine to have been
realised in any greedy or search-based constrained covering
array generation algorithm (there is already an exemplary
study in the fuzzing literature [49]).

Algorithm 1 The CCAG Framework
1: PreProcess()
2: S ← an initial solution
3: while S is not a covering array do
4: S ← Next (S, isValid(), PenaltyTerm())
5: end while
6: PostProcess()
7: return S

Algorithm 1 shows our Constrained Covering Array
Generation (CCAG) framework. It is general enough to ac-
commodate the three widely used frameworks for covering
array generation [50]: (1) iteratively constructing a single
test case that maximises combination coverage (one-test-at-a-
time); (2) firstly constructing a test set for τ parameters and
then extending it horizontally and vertically (in-parameter-
order); and (3) directly constructing a covering array for

2. https://github.com/Microsoft/pict
3. https://csrc.nist.gov/Projects/Automated-Combinatorial-Testin

g-for-Software
4. http://cse.unl.edu/∼citportal/

https://github.com/Microsoft/pict
https://csrc.nist.gov/Projects/Automated-Combinatorial-Testing-for-Software
https://csrc.nist.gov/Projects/Automated-Combinatorial-Testing-for-Software
http://cse.unl.edu/~citportal/


This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2955687, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

TABLE 3
The detailed implementations of the constraint handler-related functions in the CCAG framework.

PreProcess isValid PenaltyTerm PostProcess

Verify Calculate MFTs Determine based on MFTs Return zero None
Solver Initialise a SAT solver Determine based on the solver Return zero None
Tolerate Calculate MFTs Return true Calculate based on MFTs None
Replace Calculate MFTs Return true Return zero Replace invalid test cases by valid ones

a given size (evolve-test-suite). These three frameworks can
be realised by both greedy and search-based strategies. In
either case, the generation algorithm will start from an initial
solution S, and then apply a step-by-step process (i.e., the
Next function) to improve S (typically, by assigning or
changing parameter values), in order to cover as many com-
binations as possible. Finally, a covering array is achieved
when all valid τ -way combinations are covered.

We then chose constraint handling techniques that can be
incorporated into the CCAG framework. This excludes tech-
niques in the Transfer category, because they use constraint
solvers and graph-related techniques to construct solutions
directly, which thus cannot be combined with algorithms
that construct covering arrays step-by-step. Moreover, we
want the techniques we consider to be automated and gen-
eral (not designed for a specific algorithm or test scenario)
to enable a fair comparison. This excludes techniques in
the Remodel category, because they usually require manual
effort to modify test models. This requirement also excludes
Weight and Extend techniques, because they can only be
used to deal with soft constraints, and test sequences in GUI
testing, respectively, while our focus is to handle the more
common hard constraints in general cases. Consequently,
Verify, Solver, Tolerate, and Replace are the only feasible
choices among all reviewed techniques in Section 2.2.

To incorporate the above four constraint handling tech-
niques, CCAG provides a uniform interface that consists of
the following four functions: PreProcess, PostProcess,
isValid, and PenaltyTerm. As long as a generation al-
gorithm is implemented under the CCAG framework with
these functions, it can be easily configured to work with any
of the four constraint handlers. Specifically,

• PreProcess is the process executed before execut-
ing the covering array generation algorithm, such
as configuring and initialising the constraint handler
based on the given test model.

• isValid takes a τ -way combination, a test case, or
a test suite as input, and returns a Boolean value
indicating whether the given candidate solution is
constraint satisfying.

• PenaltyTerm takes a test case, or a test suite as
input, and returns the value of the penalty term
for calculating the fitness function of the candidate
solution (in particular, for the Tolerate technique).

• PostProcess is the process executed once a cover-
ing array is generated.

Different constraint handling techniques typically perform
different tasks in these functions. We will explain the re-
spective implementations of the four constraint handling
techniques in the next section.

3.3 Constraint Handling Techniques
Table 3 shows the detailed implementations of the four
constraint handling techniques that the CCAG framework
includes.

The Verify technique uses the Minimal Forbidden Tuple
(MFT) approach to resolve constraints by definition. It thus
needs to calculate the set of MFTs in PreProcess. We
implemented the same approach, as reported in previous
work [37], to deduce the set of MFTs. The validity of a
candidate solution can then be determined by verifying
against MFTs in isValid. In addition, as Verify does not
allow invalid intermediate solutions, the PenaltyTerm will
always return zero (namely, there is no penalty term in
the fitness function). There is also no task to perform in
PostProcess.

The implementation of the Solver technique is similar
to that of Verify, but it uses a constraint solver to resolve
constraints, instead of using the MFT approach. Here, we
used SAT4J5, which is a widely used constraint solver for
JAVA, to implement Solver. Accordingly, it needs to initialise
the solver in PreProcess, and the validity of a candidate
solution is determined by solving a constraint satisfaction
problem in isValid.

For Tolerate and Replace, one key operation is to de-
termine whether a constraint is violated in a candidate
solution. This can be implemented by using either the
MFT approach or a constraint satisfaction solver. Here, we
choose to use the same MFT approach [37], as used in the
Verify technique. As a result, these two techniques need
to calculate the set of MFTs in PreProcess. Moreover,
because Tolerate allows invalid intermediate solutions, and
Replace simply ignores all constraints during the generation,
isValid will always return True in these two techniques.

The Tolerate technique incorporates a penalty term into
the fitness function to include invalid intermediate solutions
into the search space. The fitness function used in this study
is of the same form as proposed in previous work [27]:

fitness(s) = U(s) + ω × V (s)

where s is a candidate solution, U(s) measures the ability
of s in covering τ -way combinations, V (s) is the number of
constraint violations in s, and ω is the penalty weight. Here,
if s indicates a test suite (i.e., the evolve-test-suite framework),
we define U(s) as the number of uncovered combinations
in s (the goal is to minimise the fitness function); otherwise,
U(s) is the number of uncovered combinations that can be
covered by s (the goal is to maximise the fitness function). In
either case, the PenaltyTerm of Tolerate will calculate and
return the value of V (s).

5. http://www.sat4j.org

http://www.sat4j.org


This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2955687, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Algorithm 2 The Replace Algorithm
1: T = a τ -way covering array generated without taking

constraints into account
2: R = ∅
3: for each invalid test case t ∈ T do
4: X = the set of valid τ -way combinations that are only

covered by t
5: R = R ∪X
6: remove t from T
7: end for
8: E = ∅
9: for each τ -way combination x ∈ R do

10: C = the set of incomplete test cases in E that are both
compatible and constraint satisfying with x

11: if C 6= ∅ then
12: use x to update c ∈ C, such that c has the largest

number of overlapping fixed parameters with x
13: else
14: add x into E
15: end if
16: end for
17: for each incomplete test case e ∈ E do
18: assign unfixed parameters of e values chosen at ran-

dom from those that are constraint satisfying
19: end for
20: T = T ∪ E
21: return T

Unlike the above three constraint handling techniques,
Replace resolves constraints in PostProcess. A straight-
forward approach is to replace each invalid test case by a
specific set of valid test cases, selecting to retain combination
coverage. Because this approach tends to lead to unneces-
sarily large test suites, we used an alternative approach to
replace test cases, as shown in Algorithm 2. The key idea
of our approach is to combine as many ‘compatible’ tuples
as possible into each test case. Two tuples are compatible
if values from both tuples are the same or at least one of
them is unfixed (note that a τ -way combination is a n-tuple
with τ fixed parameters). For example, tuples (1, 1, 1,−)
and (1,−,−, 2) are compatible, but tuples (1, 1, 1,−) and
(1, 2,−,−) are not.

In Algorithm 2, we firstly determine R: the set of valid
τ -way combinations that are only covered by invalid test
cases, and remove all invalid test cases from T (Lines 2-
7). We then generate a set of test cases, E, to cover all
combinations in R (Lines 8-16).

For each valid τ -way combination x in R, we find all
incomplete test cases (n-tuples with unfixed parameters)
that can cover x from E, namely each of these test cases
should be compatible with x, and also constraint satisfying
if it is updated with x. If there are such test cases, we select
the one that has the largest number of overlapping fixed
parameters with x, and update it with x (we assign values
to as few unfixed parameters as possible); otherwise, as x
cannot be covered by any of the existing test cases in E, we
add x to E.

After that, if there remain unfixed parameters in E, these
parameters will be assigned to values chosen at random
from the set of those that are constraint satisfying, so that

each row of E is a complete and valid test case (Lines 17-19).
Note that each incomplete test case in E is always constraint
satisfying in this algorithm, so that we can find at least one
valid value assignment. Finally, we combine test cases in T
and E as the final constrained τ -way covering array.

3.4 Test Suite Generation Algorithms
We implemented six well-known covering array generation
algorithms in this study: AETG [22], DDA [23], IPO [24],
PSO [25], SA [26] and TS [27].

We chose these algorithms because they are the most rep-
resentative implementations of the three available covering
array generation frameworks: one-test-at-a-time, in-parameter-
order and evolve-test-suite [50]. They also cover the widely
used computational search methods (greedy and heuristic
search-based) to generate covering arrays. We do not con-
sider mathematical methods, because they can only be used
in a restricted subset of cases, though they can yield the
optimal covering arrays [1].

Specifically, AETG [22], DDA [23] and PSO [25] are based
on the one-test-at-a-time framework, during which a test case
that covers the largest number of yet uncovered τ -way
combinations is generated and added into the test suite one-
at-a-time. AETG [22] and DDA [23] apply greedy strategies
to construct such a test case, while PSO [25] applies the
search-based particle swarm optimisation to achieve the
same purpose.

IPO [24] is an implementation of the in-parameter-order
framework. It first constructs a test set for τ parameters
that have the largest number of values, and then conducts
horizontal and vertical extensions for each of the remaining
unfixed parameters. A greedy strategy is used to determine
the best value assignment for each parameter.

SA [26] and TS [27] are based on the evolve-test-suite
framework. They directly construct a covering array of size
N , while the value of N is determined by a binary-search-
like method [26]. For each choice of N , a random array A of
sizeN×n is first initialised. This array is then evolved by the
simulated annealing and tabu search strategies, guided by
the fitness function that calculates the number of uncovered
τ -way combinations in A.

Note that the performance of these test suite generation
algorithms is usually impacted by their parameter settings.
Here, we used the same settings as reported in their respec-
tive previous work [22], [23], [24], [25], [26], [27]. However,
when the Tolerate constraint handler is used, our preliminary
experiments reveal that SA and PSO usually need different
settings for the number of iterations and penalty weight (ω),
respectively. In order to ensure the quality of solutions, we
set the maximum number of iterations in SA to 200000, and
set the penalty weight in PSO to −0.05.

In addition, as our goal is to compare different constraint
handling techniques, not to design the most effective gener-
ation algorithms, we only implemented the basic versions
of the above six algorithms. As a result, the covering arrays
generated in this study may be slightly larger than those
reported in previous studies [22], [23], [24], [25], [26], [27].

3.5 Subjects and Process
We used a well-known benchmark of constrained covering
array generation [22] as our subject test models. This bench-



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2955687, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

mark consists of 35 test models; five of them are real-world
problem instances, and the others are synthetic instances
that are randomly generated to mimic the structures of
the five real-world models. This set of models is often
relied upon as a “standard benchmark set” to evaluate the
performance of test suite generation [17], [18], [22], [26], [27].

For each test model, we used a total of 21 algorithms
to generate 2-way constrained covering arrays, which are
the most widely used objects in practice. Each of these
algorithms is a combination of a test suite generation algo-
rithm and a constraint handling technique: three variants
(X+Verify, X+Solver, X+Replace) for each of AETG, DDA
and IPO, and four variants (X+Verify, X+Solver, X+Tolerate,
X+Replace) for each of PSO, SA and TS (note that Tolerate
can be used only with a search-based algorithm). For each
algorithm, the size of the test suite generated and its com-
putational cost are directly recorded.

Regarding the failure revealing ability, because there is
no available fault corpus of the subject test models used
in this study, we chose to conduct simulation experiments
to compare constraint handlers in terms of their failure
finding effectiveness. Specifically, it is known that using a
2-way covering array can always detect a failure that is
triggered by one or two parameters (in this case, a smaller
test suite is more computationally cost-effective). While the
remaining question is how different algorithms perform
when a failure is triggered by the combinations of more
than two parameters. To this end, for each test model, we
first generate 100 failure-causing combinations for each of
strengths 3, 4, 5, and 6 at random. The proportion of these
combinations that can be “hit” by each algorithm is then
recorded.

All variants of generation algorithms implemented in
this study involve some level of random selection among
candidate partial solutions6. Inferential statistical analysis
is thus required to cater for the randomness in these al-
gorithms [51], [52]. For each test model, each variant of
generation algorithms is repeated 30 times. We then per-
formed ANOVA (with significance level α set at 0.05) to
determine whether there is a significant difference in per-
formance of any pair of constraint handling techniques. We
also performed the non-parametric Mann-Whitney U-test
(α = 0.05) for each pair of constraint handling techniques
to further investigate their relationships.

Moreover, since performing only significance tests
would be insufficient to measure the effect size (and thereby
acceptability) of the findings, we also calculated the non-
parametric Vargha and Delaneys Â12 effect size assessment
for each pair of constraint handling techniques to investigate
the magnitude of difference. Here, Â12 indicates the prob-
ability that one algorithm outperforms another. Â12 = 0.5
denotes that algorithms 1 and 2 are equally likely to out-
perform one another, and the greater the Â12 the higher
probability that running Algorithm 1 yields higher perfor-
mance measure values (test suite size, computational cost,
proportion of failures detected) than running Algorithm 2.

6. The original version of IPO [24] is a deterministic algorithm, where
it assigns specific values to positions that have no impact on the
combination coverage. In this study, we assign random values to such
positions to introduce some level of randomness into this algorithm.

TABLE 4
Sizes of 2-way constrained covering arrays generated by different

combinations of covering array generation algorithms and constraint
handling techniques.

Verify Solver Tolerate Replace # Diff
AETG 1588.6 1590.6 − 1399.9 34
DDA 1384.1 1382.7 − 1350.5 24
IPO 1276.0 1276.0 − 1290.6 29
PSO 1599.1 1597.2 1582.8 1399.9 34
SA 1451.5 1449.2 1286.6 1277.2 28
TS 1241.9 1247.1 1152.7 1204.2 31

TABLE 5
Computational cost (seconds) of the covering array generation

algorithms with different constraint handling techniques for τ = 2.

Verify Solver Tolerate Replace # Diff
AETG 232.7 2522.8 − 350.7 35
DDA 85.0 482.8 − 229.4 35
IPO 12.2 21.1 − 163.9 35
PSO 1089.0 14732.2 580.2 652.9 35
SA 6126.8 10675.7 8124.8 5199.5 35
TS 20258.3 26146.8 19753.7 18395.5 33

Note that the aim of this study is to compare different
constraint handling techniques for each test suite generation
algorithm. We do not seek to compare the generation algo-
rithms, as search-based algorithms usually produce smaller
covering arrays than greedy algorithms [17], [18], [26], [27].

We implemented the CCAG framework as an open
source project in JAVA (JDK 1.8), which allows other re-
searchers to build on our reference implementation in subse-
quent comparisons, and to seek to replicate our results and
findings. We also implemented the six test suite generation
algorithms in CCAG for illustration and comparison. The
experiment is executed on a machine with Intel Xeon CPU
E5-2640 2.0GHz and 16GB RAM. The CCAG framework, all
algorithms, and detailed experimental data can be obtained
on this paper’s companion website: https://github.com/G
IST-NJU/CCAG.

4 RESULTS

This section presents the results of our experiments and
answers the research questions.

4.1 The Difference in Performance

Tables 4, 5 and 6 show the sizes of test suites, computational
costs, and average proportions of k-way failures detected
obtained from all 35 test models, for each combination of
test suite generation algorithms and constraint handling
techniques. Especially, the last column of these tables reports
the number of test models in which ANOVA produces a p-
value < 0.05, namely, we have no evidence to claim that
the different constraint handlers are drawn from the same
performance distribution (the Null Hypothesis).

From Tables 4 and 5, among all 210 cases studied (6
generation algorithms× 35 test models), there are 180 (86%)
cases where we have evidence that different constraint han-
dling techniques exhibit statistically significant difference in

https://github.com/GIST-NJU/CCAG
https://github.com/GIST-NJU/CCAG


This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2955687, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

TABLE 6
Average proportion of k-way failures detected by different combinations

of covering array generation algorithms and constraint handling
techniques.

Verify Solver Tolerate Replace # Diff

k
=

3

AETG 0.97 0.97 − 0.96 21
DDA 0.96 0.96 − 0.96 9
IPO 0.95 0.95 − 0.96 19
PSO 0.97 0.97 0.97 0.96 17
SA 0.95 0.95 0.95 0.95 11
TS 0.95 0.95 0.95 0.95 14

k
=

4

AETG 0.85 0.85 − 0.82 24
DDA 0.83 0.83 − 0.82 9
IPO 0.80 0.80 − 0.81 22
PSO 0.85 0.85 0.85 0.82 28
SA 0.81 0.81 0.80 0.80 13
TS 0.79 0.79 0.79 0.79 17

k
=

5

AETG 0.64 0.64 − 0.60 25
DDA 0.60 0.60 − 0.59 12
IPO 0.56 0.56 − 0.57 28
PSO 0.64 0.64 0.64 0.59 29
SA 0.59 0.59 0.57 0.57 16
TS 0.56 0.56 0.55 0.55 19

k
=

6

AETG 0.42 0.41 − 0.38 25
DDA 0.38 0.38 − 0.37 4
IPO 0.34 0.34 − 0.35 23
PSO 0.42 0.42 0.41 0.38 27
SA 0.37 0.37 0.36 0.35 13
TS 0.35 0.35 0.33 0.34 15

performance in terms of test suite size (i.e., p-value < 0.05).
In almost all of these cases (99%), we also have evidence to
support the claim that the different techniques will lead to
significantly different computational costs.

In addition, from Table 6, there is no surprise that the
proportion of failures detected decreases with the increase
in the number of parameters involved in the failure-causing
combinations (as the difficulty to cover such combinations
increases). Nevertheless, when a failure is triggered by 3, 4,
5, and 6 parameters (i.e., the value of k), there are 43%, 54%,
61%, and 51% of cases where we have evidence that different
constraint handling techniques exhibit significantly different
failure revelation abilities, respectively.

These finding indicates that the constraint handler is
indeed a crucial factor that impacts the performance of the
test suite generation algorithms that use it. Both effective-
ness and efficiency of an algorithm can be greatly improved
with an appropriate choice of the constraint handler. For
example, when AETG is used to generate 2-way covering
arrays for these 35 test models, we can see that using Replace
as the constraint handler will produce smaller test suites
(12% reduction) with much lower time cost (7.2 times faster)
than using Solver as in its original version [22].

Next, we determine which constraint handling technique
performs best for each of the six test suite generation algo-
rithms. For variants of each algorithm, we conducted Mann-
Whitney U-test for each pair of constraint handlers. Tables 7,
8 and 9 show the number of cases where constraint handler
A is significantly superior (+), significantly indistinguish-
able (=), or significantly inferior (−) to constraint handler B
across all 35 test models, in terms of test suite size, compu-

tational cost, and failure revelation ability, respectively.
Correspondingly, Figures 2, 3 and 4 show the distribu-

tions of Â12 statistics for each pair of constraint handlers
(namely, each box contains 35 effect sizes obtained from
35 test models). As we seek to generate smaller test suites
faster, a higher Â12 indicates that the second constraint
handler has a higher chance of outperforming the first one
in terms of test suite size, or computational cost; for failure
revelation, a higher Â12 indicates that the first constraint
handler has a higher chance of finding more failures.

4.2 Size of Test Suite (RQ1)

From Table 4, Table 7 and Figure 2, we can see that Verify
and Solver generate test suites of comparable sizes in almost
all cases. In particular, among all six generation algorithms,
their performance is significantly indistinguishable in at
least 94% (33/35) of cases, and the medians of effect sizes
are very close to 0.5. This is because these two techniques
are only responsible for the validity-checking of each value
assignment, while the value to be assigned is determined
by the greedy or search-based strategies embedded in the
generation algorithm.

By comparison with Verify and Solver, Replace removes
conflicts after test suite generation. From Table 4, Table 7
and Figure 2, we can see that this technique performs well in
terms of test suite size. Especially for AETG, DDA, and PSO
(the one-test-at-at-time based algorithms), it produces sig-
nificantly smaller covering arrays than Verify and Solver in
33, 21, and 34 out of 35 cases, respectively; among which its
chance of outperforming the other two techniques is higher
than 0.9 in 70% of cases. Regarding the other algorithms,
although the performance of Replace is not as good as that
of the one-test-at-a-time variants, it can still significantly
outperform Verify and Solver in at least five cases, in which
the effect sizes are all higher than 0.6.

This finding confounds the ‘conventional wisdom’ that
handling constraints as a post-processing phase is an in-
effective approach, since there is no strong evidence that
supports either computational cost-effectiveness or failure
revelation of such a technique [11]. In particular, there is
only one study in 2006 that examines the performance of
Replace [8]. The results suggest that this technique can be
a general choice, but it cannot produce smaller test suites
than the techniques that avoid constraints during test suite
generation. As a result, post-processing related techniques
are less studied in the literature, and also not the primary
choice for the design of new generation algorithms. For
example, a number of recently developed algorithms [17],
[18], [27] can produce very small test suites, while none
of them uses the Replace, or similar, technique to resolve
constraints.

Tolerate is a constraint handling technique for search-
based algorithms. From Table 4, Table 7 and Figure 2,
we can see that it is not significantly worse than either
Verify or Solver in at least 86% (30/35) of cases, and the
medians of effect sizes are close to 0.5 between Tolerate and
these two techniques. However, the performance of Tolerate
varies when comparing with Replace. For the one-test-at-
a-time based PSO, it is significantly worse than Replace in
34 cases; while for the evolve-test-suite based SA and TS,



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2955687, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

TABLE 7
The number of test models where constraint handler A is significantly superior (+), indistinguishable (=), or significantly inferior (−) to constraint

handler B in terms of test suite size.

A & B
Verify & Solver Verify & Tolerate Verify & Replace Solver & Tolerate Solver & Replace Tolerate & Replace
+ = − + = − + = − + = − + = − + = −

AETG 0 34 1 − − − 1 1 33 − − − 1 1 33 − − −
DDA 0 35 0 − − − 3 10 22 − − − 3 11 21 − − −
IPO 0 35 0 − − − 19 6 10 − − − 19 6 10 − − −
PSO 0 34 1 4 23 8 0 1 34 3 23 9 0 1 34 0 1 34
SA 0 33 2 2 22 11 14 9 12 5 19 11 14 8 13 18 8 9
TS 2 33 0 0 28 7 25 5 5 0 26 9 25 5 5 25 7 3

TABLE 8
The number of test models where constraint handler A is significantly superior (+), indistinguishable (=), or significantly inferior (−) to constraint

handler B in terms of computational cost.

A & B
Verify & Solver Verify & Tolerate Verify & Replace Solver & Tolerate Solver & Replace Tolerate & Replace
+ = − + = − + = − + = − + = − + = −

AETG 35 0 0 − − − 23 4 8 − − − 0 0 35 − − −
DDA 34 0 1 − − − 31 3 1 − − − 2 0 33 − − −
IPO 34 0 1 − − − 35 0 0 − − − 30 0 5 − − −
PSO 35 0 0 0 0 35 0 0 35 0 0 35 0 0 35 15 9 11
SA 35 0 0 27 8 0 5 16 14 6 3 26 0 2 33 2 3 30
TS 32 3 0 12 18 5 6 14 15 0 2 33 1 4 30 4 15 16

Fig. 2. The distribution of Â12 statistics for each pair of constraint handling techniques in terms of test suite size.

Fig. 3. The distribution of Â12 statistics for each pair of constraint handling techniques in terms of computational cost.

it outperforms in 18 and 25 cases, respectively. Moreover,
among the cases where Tolerate performs significantly better
for SA and TS, we observe large differences (with Â12 higher
than 0.8 or lower than 0.2) in 71% of cases. This indicates
that Tolerate has the potential to be an effective constraint
handling technique for the search-based algorithms that
directly construct the whole test suite.

Summing up, the experimental results in this section
(RQ1) reveal that the Replace technique is the best choice
to produce small test suites for generation algorithms of
the one-test-at-a-time framework. The Â12 effect size can
be higher than 0.9 in 70% of cases for AETG, DDA, and
PSO. Whereas, for search-based generation algorithms of
the evolve-test-suite framework, Tolerate could be a more



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2955687, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

promising choice, as large effect sizes (higher than 0.8 or
lower than 0.2) can be observed in 71% of cases for which
Tolerate is significantly better.

4.3 Computational Cost (RQ2)

As far as the computational cost is concerned, from Table 5,
Table 8 and Figure 3, we can see that Solver tends to be the
most time consuming technique. Specifically, for all gener-
ation algorithms except IPO, the probability that Solver is
slower than Verify, Replace and Tolerate is at least 0.8 in 93%,
94% and 77% of cases, respectively. While for IPO, although
Replace usually spends the most time, the difference between
any two techniques is nevertheless less than two seconds in
21 out of 35 cases.

By contrast, Verify tends to be the fastest constraint
handling technique. Especially for AETG, DDA and IPO,
the average Â12 effect size between Verify and the other
techniques is 0.07, indicating a very high probability that
Verify runs faster. However, for PSO, SA and TS, the compu-
tational cost of Verify can be significantly higher than that
of Replace in 35, 14 and 15 cases, respectively. Moreover,
for Tolerate, although it can produce smaller covering arrays
than Replace for SA and TS, it is slower than Replace with a
probability of higher than 0.63 in at least half of the cases.
This indicates that Replace could be a time efficient choice to
handle constraints for the search-based algorithms.

Note that the implementations of Verify, Replace and
Tolerate are all based on the Minimal Forbidden Tuple (MFT)
approach, namely, they use the set of MFTs to determine the
validity of a candidate solution (see Table 3). Our finding
thus indicates that using MFT for the validity-checking is
much more efficient than using a constraint solver: for the
MFT-based techniques, we only need to calculate MFT once,
and check whether a forbidden tuple is involved at each
value assignment; while for Solver, we need to solve a more
complex constraint satisfaction problem on each occasion.

Summing up, the experimental results in this section
(RQ2) reveal that the constraint handling technique that
relies on a constraint satisfaction solver (i.e., Solver) is usu-
ally the slowest technique. By contrast, the Verify technique
implemented with the Minimal Forbidden Tuple (MFT)
approach tends to be the fastest technique for greedy algo-
rithms (AETG, DDA, and IPO), as it has only a probability
of 7% that spends more time than the other techniques.
While for the search-based algorithms of the evolve-test-
suite framework, the Replace technique could be a more time
efficient choice.

4.4 Failure Revelation Ability (RQ3)

The last question concerns the failure revelation ability that
can be achieved by different combinations of test suite
generation algorithms and constraint handling techniques.
From Table 6, Table 9, and Figure 4, we can see that test
suites of comparable sizes usually exhibit similar perfor-
mance in terms of failure revelation. Specifically, Verify and
Solver are the two techniques that produce test suites of
comparable sizes, and their proportions of failures detected
are also significantly indistinguishable in at least 29 out of
35 cases (for any value of k).

The Replace technique is identified as the best choice to
produce small 2-way covering arrays, especially for AETG,
DDA, and PSO (the one-test-at-a-time based algorithms).
But for failures that are triggered by k > 2 parameters,
we find that there are only up to two cases where Replace
can lead to significantly higher failure revelation ability for
these three generation algorithms. Moreover, the number of
cases where Replace performs significantly worse increases
with the increase of k, achieving the maximal value when
k = 5. For example, for AETG, the proportion of failures
detected by Replace is significantly lower than that of Verify
in 19, 24, 26 and 23 cases for k = 3, 4, 5 and 6, respectively.
Similar findings can also be observed for other algorithms
and the Tolerate constraint handling technique.

However, despite the fact that constraint handling tech-
niques that produce smaller test suites tend to detect smaller
number of failures, the magnitude of difference in failure
revelation is not as big as that in the test suite size. Overall,
for all combinations of generation algorithms and constraint
handlers, we can observe large difference (Â12 effect size
higher than 0.8 or lower than 0.2) in test suite size in 41% of
cases. Whereas, the average chance that the larger test suite
detects more failures is only 0.68 among those cases; and
the large differences in detecting failures of strengths 3, 4, 5
and 6 are only observed in 5%, 11%, 14% and 11% of cases,
respectively.

Summing up, the experimental results in this section
(RQ3) reveal that the constraint handling technique that
minimises the size of τ -way covering arrays will also lower
its ability of detecting failures triggered by k > τ param-
eters, and this impact will increase with the increase of
k. But for the cases where one constraint handler has a
probability of higher than 0.8 to produce a smaller test suite,
its average chance of detecting a lower proportion of failures
is relatively low, only 0.68.

5 THREATS TO VALIDITY

As far as internal threats to validity are concerned, the
performance of test suite generation algorithms and con-
straint handling techniques depends on their particular
implementations and the constraint solver used. Although
there are available tools for some of the test suite genera-
tion algorithms studied, they are implemented by different
developers with different programming languages, and the
substitution of constraint handlers is not supported. In order
to avoid the potential bias, we developed a uniform CCAG
framework as the reference implementation. As such, all
algorithms used in this study are implemented from scratch
using the same framework (the same programming lan-
guage, tools, platform, and development environment). It
is possible that slightly different results, especially different
computational costs, might be observed by using different
programming languages, or constraint solvers. In particular,
we acknowledge that the Solver technique can run faster
with a more efficient constraint solver. Nevertheless, it will
not influence the obtained sizes of test suites, because the
constraint solver is only used to determine the validity of
each value assignment.

Another internal threat to validity derives from the
parameter settings of the algorithms (especially for the



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2955687, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

TABLE 9
The number of test models where constraint handler A is significantly superior (+), indistinguishable (=), or significantly inferior (−) to constraint

handler B in terms of k-way failure revelation ability.

A & B
Verify & Solver Verify & Tolerate Verify & Replace Solver & Tolerate Solver & Replace Tolerate & Replace
+ = − + = − + = − + = − + = − + = −

k
=

3

AETG 2 33 0 − − − 19 16 0 − − − 17 18 0 − − −
DDA 2 31 2 − − − 6 29 0 − − − 8 27 0 − − −
IPO 1 31 3 − − − 6 18 11 − − − 7 18 10 − − −
PSO 3 31 1 2 33 0 16 19 0 2 32 1 14 21 0 14 21 0
SA 0 35 0 9 24 2 4 28 3 7 27 1 5 26 4 1 27 7
TS 0 33 2 5 30 0 4 21 10 6 28 1 5 21 9 3 22 10

k
=

4

AETG 0 32 3 − − − 24 11 0 − − − 26 9 0 − − −
DDA 1 33 1 − − − 6 28 1 − − − 10 24 1 − − −
IPO 0 32 3 − − − 6 15 14 − − − 7 17 11 − − −
PSO 0 35 0 4 31 0 29 5 1 3 32 0 27 8 0 22 13 0
SA 1 34 0 9 25 1 6 26 3 7 27 1 11 19 5 2 25 8
TS 0 34 1 3 29 3 5 20 10 5 28 2 6 21 8 3 20 12

k
=

5

AETG 0 35 0 − − − 26 9 0 − − − 24 11 0 − − −
DDA 1 34 0 − − − 8 26 1 − − − 8 26 1 − − −
IPO 0 33 2 − − − 8 8 19 − − − 8 11 16 − − −
PSO 2 32 1 6 28 1 30 5 0 4 30 1 29 6 0 26 9 0
SA 1 34 0 12 23 0 12 21 2 8 26 1 9 22 4 2 28 5
TS 3 29 3 3 28 4 6 20 9 6 26 3 7 19 9 6 19 10

k
=

6

AETG 1 32 2 − − − 23 12 0 − − − 24 10 1 − − −
DDA 0 34 1 − − − 8 25 2 − − − 4 30 1 − − −
IPO 1 33 1 − − − 6 14 15 − − − 7 13 15 − − −
PSO 1 34 0 4 30 1 26 9 0 2 32 1 25 10 0 23 12 0
SA 0 35 0 9 25 1 8 25 2 8 24 3 8 23 4 2 29 4
TS 2 32 1 6 28 1 5 20 10 7 28 0 5 21 9 2 25 8

Fig. 4. The distribution of Â12 statistics for each pair of constraint handling techniques in terms of detecting failures triggered by k parameters.

search-based algorithms). Improved performance might be
achieved by exploring the most appropriate settings, but
the default values suggested in the literature might be also
good enough to assess search-based algorithms [53]. We

thus chose to follow the same settings of all algorithms,
as reported in their previous studies [22], [23], [24], [25],
[26], [27]. While there are two exceptions for SA (number of
iterations) and PSO (penalty weight), because their original



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2955687, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

settings tend to lead to poor performance when the Tolerate
technique is used.

As far as external threats to validity are concerned, in
this study, we only evaluated the performance of algorithms
under 35 test models. The algorithms thus may exhibit
different behaviours when different subject test models are
used. Nevertheless, we have used a well-known benchmark
of constrained covering array generation [22], which has
been widely used in CT literature [17], [18], [22], [26],
[27]. We believe that these test models are representative
to investigate the impact of different constraint handling
techniques.

6 CONCLUSION

In this study, we provide a comparative analysis that in-
vestigates the impact of four common constraint handling
techniques (Verify, Solver, Tolerate, and Replace) on six widely
used greedy and search-based combinatorial test suite (cov-
ering array) generation algorithms (AETG, DDA, IPO, PSO,
SA, and TS). Our experimental results reveal that the con-
straint handler is, indeed, a crucial factor that influences
the performance of the test suite generation algorithms into
which it is developed.

Specifically, we find that the Verify technique imple-
mented with the Minimal Forbidden Tuple (MFT) approach
is the fastest choice to handle constraints. The Replace tech-
nique that resolves constraints as a post-processing phase
tends to produce smaller constrained covering arrays than
the currently widely used Verify and Solver techniques,
especially for test suite generation algorithms of the one-
test-at-a-time framework. Our results also show that it is
important to choose a constraint handler that is specifically
well-suited to the algorithm and specific goal (test suite size,
computational cost, or failure revelation ability). For exam-
ple, in order to generate the smallest constrained covering
arrays, Replace is the best choice for AETG, DDA, and PSO;
while Tolerate could be more promising for SA and TS.

The study we report here could provide insights for
the choice of the ‘optimal’ constraint handler, so that the
performance of both existing and newly-designed test suite
generation algorithms can be improved. In particular, as a
simple implementation of the Replace technique is shown to
be promising for achieving small test suites, it is desirable to
explore that category to develop improved constraint han-
dling technique and generation algorithms. We hope and
believe that this paper can offer a better understanding of
strengths and weaknesses of constraint handling techniques
for CT, so that more studies can be conducted to further
improve the area of constrained combinatorial testing.

ACKNOWLEDGMENTS

The authors would like to thank Yan Wang and Lejin Wang
for their help in implementing the algorithms. This work
was partially supported by the National Key Research and
Development Plan (No. 2018YFB1003800). This work was
also partially supported by the DAASE EPSRC Grant (No.
EP/J017515/1) and EPSRC Fellowship (No. EP/P023991/1).

REFERENCES

[1] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM
Computing Surveys, vol. 43, no. 2, pp. 11:1–11:29, 2011.

[2] R. Mandl, “Orthogonal latin squares: An application of experi-
mental design to compiler testing,” Communications of the ACM,
vol. 28, no. 10, pp. 1054–1058, 1985.

[3] International Organization for Standardization, “ISO/IEC/IEEE
29119 software testing standard,” http://www.softwaretestingst
andard.org.

[4] K. Tatsumi, S. Watanabe, Y. Takeuchi, and H. Shimokawa, “Con-
ceptual support for test case design,” in International Computers,
Software & Applications Conference, 1987, pp. 285–290.

[5] K. Tatsumi, “Test case design support system,” in International
Conference on Quality Control, 1987, pp. 615–620.

[6] G. Sherwood, “Effective testing of factor combinations,” in Inter-
national Conference on Software Testing, Analysis & Review, 1994, pp.
1–16.

[7] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton, “The
AETG system: An approach to testing based on combinatorial
design,” IEEE Transactions on Software Engineering, vol. 23, no. 7,
pp. 437–444, 1997.

[8] M. Grindal, J. Offutt, and J. Mellin, “Handling constraints in
the input space when using combination strategies for software
testing,” School of Humanities and Informatics, Tech. Rep. HS-
IKI-TR-06-01, 2006.

[9] M. B. Cohen, M. B. Dwyer, and J. Shi, “Interaction testing of
highly-configurable systems in the presence of constraints,” in
International Symposium on Software Testing and Analysis, 2007, pp.
129–139.

[10] B. S. Ahmed, K. Z. Zamli, W. Afzal, and M. Bures, “Constrained
interaction testing: A systematic literature study,” IEEE Access,
vol. 5, pp. 25 706–25 730, 2017.

[11] H. Wu, C. Nie, J. Petke, Y. Jia, and M. Harman, “A survey of
constrained combinatorial testing,” CoRR, vol. abs/1908.02480,
2019. [Online]. Available: https://arxiv.org/abs/1908.02480

[12] H. Nakagawa and T. Tsuchiya, “Towards automatic constraint
elicitation in test design: Preliminary evaluation based on collec-
tive intelligence,” in International Conference on Automated Software
Engineering Workshop, 2015, pp. 58–61.

[13] R. Tzoref-Brill and S. Maoz, “Syntactic and semantic differencing
for combinatorial models of test designs,” in International Confer-
ence on Software Engineering, 2017, pp. 621–631.

[14] A. Gargantini, J. Petke, M. Radavelli, and P. Vavassori, “Validation
of constraints among configuration parameters using search-based
combinatorial interaction testing,” in International Symposium on
Search Based Software Engineering, 2016, pp. 49–63.

[15] A. Gargantini, J. Petke, and M. Radavelli, “Combinatorial inter-
action testing for automated constraint repair,” in International
Workshop on Combinatorial Testing, 2017, pp. 239–248.

[16] S. K. Khalsa and Y. Labiche, “An orchestrated survey of available
algorithms and tools for combinatorial testing,” in International
Symposium on Software Reliability Engineering, 2014, pp. 323–334.

[17] Y. Jia, M. B. Cohen, M. Harman, and J. Petke, “Learning combi-
natorial interaction test generation strategies using hyperheuristic
search,” in International Conference on Software Engineering, 2015,
pp. 540–550.

[18] J. Lin, C. Luo, S. Cai, K. Su, D. Hao, and L. Zhang, “TCA:
An efficient two-mode meta-heuristic algorithm for combinatorial
test generation,” in International Conference on Automated Software
Engineering, 2015, pp. 1–12.

[19] A. Yamada, A. Biere, C. Artho, T. Kitamura, and E.-H. Choi,
“Greedy combinatorial test case generation using unsatisfiable
cores,” in International Conference on Automated Software Engineer-
ing, 2016, pp. 614–624.

[20] M. Bazargani, J. H. Drake, and E. K. Burke, “Late acceptance
hill climbing for constrained covering arrays,” in International
Conference on Applications of Evolutionary Computation, 2018, pp.
778–793.

[21] K. Fogen and H. Lichter, “Combinatorial testing with constraints
for negative test cases,” in International Workshops on Combinatorial
Testing, 2018, pp. 328–331.

[22] M. B. Cohen, M. B. Dwyer, and J. Shi, “Constructing interaction
test suites for highly-configurable systems in the presence of
constraints: A greedy approach,” IEEE Transactions on Software
Engineering, vol. 34, no. 5, pp. 633–650, 2008.

http://www.softwaretestingstandard.org
http://www.softwaretestingstandard.org
https://arxiv.org/abs/1908.02480


This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2955687, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

[23] R. C. Bryce and C. J. Colbourn, “A density-based greedy algorithm
for higher strength covering arrays,” Software Testing, Verification
and Reliability, vol. 19, no. 1, pp. 37–53, 2009.

[24] Y. Lei, R. N. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence,
“IPOG/IPOG-D: efficient test generation for multi-way combina-
torial testing,” Software Testing, Verification and Reliability, vol. 18,
no. 3, pp. 125–148, 2008.

[25] B. S. Ahmed, L. M. Gambardella, W. Afzal, and K. Z. Zamli,
“Handling constraints in combinatorial interaction testing in the
presence of multi objective particle swarm and multithreading,”
Information and Software Technology, vol. 86, pp. 20–36, 2017.

[26] B. J. Garvin, M. B. Cohen, and M. B. Dwyer, “Evaluating im-
provements to a meta-heuristic search for constrained interaction
testing,” Empirical Software Engineering, vol. 16, no. 1, pp. 61–102,
2010.

[27] P. Galinier, S. Kpodjedo, and G. Antoniol, “A penalty-based tabu
search for constrained covering arrays,” in Genetic and Evolutionary
Computation Conference, 2017, pp. 1288–1294.

[28] M. B. Cohen and S. Ur, “Combinatorial test design in practice,” in
International Conference on Software Engineering, 2010, pp. 495–496.

[29] H. Wu, C. Nie, J. Petke, Y. Jia, and M. Harman, “An empirical
comparison of combinatorial testing, random testing and adaptive
random testing,” IEEE Transactions on Software Engineering, 2018, in
press, available online.

[30] IEEE Standard Classification for Software Anomalies, IEEE Std
1044-2009 (Revision of IEEE Std 1044-1993), pp. 1–23, 2010.

[31] D. R. Kuhn and D. R. Wallace, “Software fault interactions and
implications for software testing,” IEEE Transactions on Software
Engineering, vol. 30, no. 6, pp. 418–421, 2004.

[32] R. C. Bryce and C. J. Colbourn, “Prioritized interaction testing for
pair-wise coverage with seeding and constraints,” Information and
Software Technology, vol. 48, no. 10, pp. 960–970, 2006.

[33] J. Petke, S. Yoo, M. B. Cohen, and M. Harman, “Efficiency and
early fault detection with lower and higher strength combinatorial
interaction testing,” in International Symposium on the Foundations
of Software Engineering, 2013, pp. 26–36.

[34] J. Petke, M. B. Cohen, M. Harman, and S. Yoo, “Practical combi-
natorial interaction testing: Empirical findings on efficiency and
early fault detection,” IEEE Transactions on Software Engineering,
vol. 41, no. 9, pp. 901–924, 2015.

[35] A. W. Williams and R. L. Probert, “A practical strategy for testing
pair-wise coverage of network interfaces,” in International Confer-
ence on Software Reliability Engineering, 1996, pp. 246–254.

[36] M. Grindal, J. Offutt, and J. Mellin, “Managing conflicts when us-
ing combination strategies to test software,” in Australian Software
Engineering Conference, 2007, pp. 255–264.

[37] L. Yu, F. Duan, Y. Lei, R. N. Kacker, and D. R. Kuhn, “Constraint
handling in combinatorial test generation using forbidden tuples,”
in International Workshop on Combinatorial Testing, 2015, pp. 1–9.

[38] L. Yu, Y. Lei, M. N. Borazjany, R. N. Kacker, and D. R. Kuhn,
“An efficient algorithm for constraint handling in combinatorial
test generation,” in International Conference on Software Testing,
Verification and Validation, 2013, pp. 242–251.

[39] A. Hartman and L. Raskin, “Problems and algorithms for covering
arrays,” Discrete Mathematics, vol. 284, no. 1-3, pp. 149–156, 2004.

[40] X. Yuan, M. B. Cohen, and A. M. Memon, “GUI interaction
testing: Incorporating event context,” IEEE Transactions on Software
Engineering, vol. 37, no. 4, pp. 559–574, 2010.

[41] B. Hnich, S. D. Prestwich, and E. Selensky, “Constraint-based
approaches to the covering test problem,” in Joint Annual Work-
shop of ERCIM/CoLogNet on Constraint Solving and Constraint Logic
Programming, 2005, pp. 199–219.

[42] A. Yamada, T. Kitamura, C. Artho, E.-H. Choi, Y. Oiwa, and
A. Biere, “Optimization of combinatorial testing by incremental sat
solving,” in International Conference on Software Testing, Verification
and Validation, 2015, pp. 1–10.

[43] T. Nanba, T. Tsuchiya, and T. Kikuno, “Using satisfiability solving
for pairwise testing in the presence of constraints,” IEICE Transac-
tions on Fundamentals of Electronics, Communications and Computer
Sciences, vol. 95, no. 9, pp. 1501–1505, 2012.

[44] Z. Zhang, J. Yan, Y. Zhao, and J. Zhang, “Generating combinatorial
test suite using combinatorial optimization,” Journal of Systems and
Software, vol. 98, no. 0, pp. 191–207, 2014.

[45] W. Wang, S. Sampath, Y. Lei, and R. N. Kacker, “An interaction-
based test sequence generation approach for testing web ap-
plication,” in International Conference on High Assurance Systems
Engineerng, 2008, pp. 209–218.

[46] E. Salecker, R. Reicherdt, and S. Glesner, “Calculating prioritized
interaction test sets with constraints using binary decision dia-
grams,” in International Conference on Software Testing, Verification
and Validation Workshops, 2011, pp. 278–285.

[47] P. Danziger, E. Mendelsohn, L. Moura, and B. Stevens, “Covering
arrays avoiding forbidden edges,” Theoretical Computer Science,
vol. 410, no. 52, pp. 5403–5414, 2009.

[48] F. Duan, Y. Lei, L. Yu, R. N. Kacker, and D. R. Kuhn, “Optimizing
IPOG’s vertical growth with constraints based on hypergraph
coloring,” in International Workshop on Combinatorial Testing, 2017,
pp. 181–188.

[49] V. J. M. Manès, H. Han, C. Han, S. K. Cha, M. Egele, E. J.
Schwartz, and M. Woo, “The art, science, and engineering of
fuzzing: A survey,” CoRR, vol. abs/1812.00140, 2019. [Online].
Available: https://arxiv.org/abs/1812.00140

[50] H. Wu and C. Nie, “An overview of search based combinatorial
testing,” in International Workshop on Search-Based Software Testing,
2014, pp. 27–30.

[51] A. Arcuri and L. Briand, “A practical guide for using statistical
tests to assess randomized algorithms in software engineering,”
in International Conference on Software Engineering. IEEE, 2011, pp.
1–10.

[52] M. Harman, P. McMinn, J. T. De Souza, and S. Yoo, “Search
based software engineering: Techniques, taxonomy, tutorial,” in
Empirical software engineering and verification, 2012, pp. 1–59.

[53] A. Arcuri and G. Fraser, “Parameter tuning or default values?
an empirical investigation in search-based software engineering,”
Empirical Software Engineering, vol. 18, no. 3, pp. 594–623, 2013.

https://arxiv.org/abs/1812.00140

