On the activity – or lack thereof – of RuO$_2$ based electrodes in the electrocatalytic reduction of CO$_2$

Stefano Mezzavilla §,*, Yu Katayama †, Reshma Rao ‡, Jonathan Hwang †, Anna Regoutz, Yang Shao-Horn §,*, Ib Chorkendorff §, Ifan E.L. Stephens §,*

§ SurfCat, Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

† Department of Materials, Imperial College London, Royal School of Mines London SW72AZ, England

‡ Department of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Tokiwadai, Ube, 755-8611, Japan

† Current Address: Department of Materials, Imperial College London, Royal School of Mines London SW72AZ, England

KEYWORDS

CO$_2$ electrocatalytic reduction • Ruthenium dioxide • in situ spectroscopy • methanol
ABSTRACT

RuO₂-based electrodes have been extensively studied for several electrochemical reactions. Earlier literature works claim RuO₂-based catalysts to be active also for the electrocatalytic conversion of CO₂ to methanol with high selectivity at very low overpotentials. Here we report a thorough investigation of RuO₂ films and particles for the electrocatalytic reduction of CO₂. The different experimental configurations explored in our work showed that H₂ is basically the only reaction product under CO₂ reduction conditions in contrast to earlier reports. In situ surface enhanced infrared absorption spectroscopy (SEIRAS) measurements revealed that CO bound to the RuO₂ surface, albeit acting solely as spectator species. Our experiments indicated that adsorbed CO cannot be reduced further to methanol or other CO₂ reduction products.

INTRODUCTION

The electrocatalytic reduction of CO₂ is a promising strategy to synthesize commodity chemicals and fuels exploiting renewable energy resources. Major breakthroughs are necessary to discover efficient catalysts capable to maximize the production of high-value products.¹–³ Copper is the most efficient known, monometallic catalyst capable to reduce CO₂ and CO to multi-carbon hydrocarbons and oxygenates like ethylene and ethanol.⁴–⁶ The electrochemical synthesis of methanol from CO₂ is more difficult and, to the best our knowledge, with monometallic catalysts, this product has been observed only in minute amounts at high overpotentials.⁷ While the activity of mono and (bi)metallic transition metals have been largely mapped out,⁴,⁸ stable conductive oxides remain largely unexplored catalysts.

RuOₓ-based materials have been extensively studied as electrodes for supercapacitors⁹ and as catalysts for the hydrogen evolution reaction,¹⁰ chlorine evolution reaction¹¹ and oxygen evolution
reaction.\(^\text{12}\) Several earlier literature works claim RuO\(_2\)-based oxides to be active catalysts for the electrocatalytic reduction of CO\(_2\) to methanol with high selectivity at very low overpotentials. To our knowledge, Bandi and co-workers are the first to explore this class of materials. They studied binary RuO\(_2\)/TiO\(_2\) and multi-components RuO\(_2\)/TiO\(_2\)/SnO\(_2\)/MoO\(_2\) mixtures reporting Faradaic efficiency for CH\(_3\)OH up to 24% at \(-0.15\) V\(_{\text{RHE}}\) in 0.05 M H\(_2\)SO\(_4\) (pH 1.2). They reported a Faradaic efficiency of 74% by operating the RuO\(_2\)/TiO\(_2\) catalysts in a phosphate buffer (pH 4) at an undefined potential labelled as “near water reduction potential”.\(^\text{13,14}\) They found that the performance of RuO\(_2\)/TiO\(_2\) mixed oxides can be further improved by adding Cu species on the surface (up to \(\sim 30\)% Faradaic efficiency for a Cu-doped 75:25 Ru:Ti electrode).\(^\text{14}\) Faradaic efficiency towards CH\(_3\)OH up to 30% at \(-0.15\) V\(_{\text{RHE}}\) were reported also with Cd and Cu modified RuO\(_2\) electrodes in 0.5 M KHCO\(_3\).\(^\text{15}\) Qu et al. studied RuO\(_2\) particles supported on TiO\(_2\) nanotubes and registered a selectivity towards CH\(_3\)OH up to 60% at \(-0.15\) V\(_{\text{RHE}}\).\(^\text{16}\) By comparing the performance of RuO\(_2\) particles deposited on boron-doped diamond and TiO\(_2\) substrates, Spataru et al. later postulated that the interaction between RuO\(_2\) and the TiO\(_2\) substrate is instrumental to achieve high yield of CH\(_3\)OH.\(^\text{16}\) More recently, Ullah et al. investigated Ir\(_{0.8}\)Ru\(_{0.2}\) films and reported the formation of a variety of oxygenates at \(-0.7\) V\(_{\text{RHE}}\) in an organic buffer solution.\(^\text{17}\) Ab initio calculations have rationalized the aforementioned experimental findings by identifying possible reaction paths for the production of CH\(_3\)OH and CHOO\(^-\) with RuO\(_2\), deped-RuO\(_2\) and Ru-Ir catalysts.\(^\text{18-21}\)

Motivated by the preliminary studies presented above, we aimed at inspecting this class of materials for the electrocatalytic CO\(_2\) reduction more in depth. The interest towards RuO\(_2\) and other oxides is well motivated by their rich chemistry, which offers plenty of scope to tune their textural and electronic surface features.\(^\text{22-24}\) Indeed, this flexibility is potentially a strong asset for
tuning their electrocatalytic behavior, thus maximizing the production of desired compounds. Here we report a thorough investigation of RuO$_2$ films and particles for the electrocatalytic reduction of RuO$_2$. The electrochemical performance of this class of materials was thoroughly assessed, with particular attention to the formation of methanol or other oxygenates. We discuss the stark contrast between our results and prior literature reports.

RESULTS

Electrodes Characterization. Three different forms of RuO$_2$ electrodes were investigated: RuO$_2$ films prepared via thermal decomposition of RuCl$_3$ and Ru(NO)(NO)$_3$ as well as commercial RuO$_2$ particles. Figure 1b shows representative scanning electron microscopy (SEM) images of RuO$_2$ films prepared via thermal decomposition of RuCl$_3$. The Ti substrate is covered by a rough nanocrystalline RuO$_2$ layer, which forms a homogenous film for high catalyst loadings while it fragments in patches for lower loadings. Similar structures were observed with films prepared starting from Ru(NO)NO$_3$. The commercial RuO$_2$ particles (Figure 1c) display an agglomerated nanocrystalline structure with primary units of ~ 50-100 nm in size. The X-ray diffraction patterns (Figure 1a) confirm the catalysts have a rutile crystalline structure and the XPS spectra agree with a typical RuO$_2$ core-level profile (Figure S1).

The physical and electrochemical characterization of Ti supported RuO$_2$ films prepared via the thermal decomposition of metal precursors has been the subject of numerous studies, particularly in relation to supercapacitors9 and dimensionally stable anodes.$^{25-27}$ The initial electrochemical surface area was monitored via cyclic voltammetry (CV) in CO$_2$ saturated 0.1 M KHCO$_3$ (Figure S2 and S3 for detailed discussion). The charge derived from the integration of the CVs recorded with films and RuO$_2$ particles at increasing loadings is shown in Figure 2a. We note how the measured capacitance decreases with higher scan rates (Figure S 3). The concept of inner/outer
surfaces is recalled to explain this behavior. A scan rate of 20mVs\(^{-1}\) and an average surface specific charge of 100 µFcmRuO\(_2\)^{-2} was used for the calculations in this work. As expected for nanostructured electrodes having an increasing catalyst loading with fully accessible active surface area, a linear behavior is visible for RuO\(_2\) particles.

Figure 1. (a) X-ray diffraction patterns of commercial RuO\(_2\) particles and RuO\(_2\) film (from RuCl\(_3\)) deposited on etched Ti electrode. The expected reflections for rutile RuO\(_2\) (star symbol) and the Ti hcp (square symbol) phases are reported at the bottom of the plot and on top of the diffraction pattern for the RuO\(_2\) film. Rutile RuO\(_2\) Powder Diffraction File (PDF): 01-088-0285; hcp Ti PDF: 01-077-0447 41-1445. (b) and (c) Scanning Electron Microscopy images of RuO\(_2\) film and particles, respectively. The insets report magnified details of the structures.

In contrast, the charge measured with RuO\(_2\) films prepared from RuCl\(_3\) approaches a plateau at high loadings, indicating the formation of a thick film and resulting in a poor utilization of the catalyst. The extrapolated electrochemical active surface area (ECSA) corresponds to ca. 14 m\(^2\)g\(^{-1}\) for films with low loadings and to 2 m\(^2\)g\(^{-1}\) for thicker films (Figure 2b). For RuO\(_2\) particles, the
measured specific surface area (~10 m2g$^{-1}$) is independent of the loading. This value is in good agreement with the specific surface area measured via N$_2$ physisorption and with simple geometrical considerations (primary units of 50-100 nm in size). At identical loadings, the charge measured with RuO$_2$ films prepared from Ru(NO)NO$_3$ consistently showed higher capacitance. It is suggested that the lower decomposition temperature of RuCl$_3$ precursors leads to electrodes with a higher degree of crystallinity and, in turn, with a lower electrochemical surface area.27

Figure 2. (a) Charge derived from the integration of the cyclic voltammograms recorded with RuO$_2$ films and particles in CO$_2$ sat. 0.1M KHCO$_3$ (0.3-1 V$_{RHE}$, 20 mVs^{-1}) and varying catalyst loadings. See Figure S2 for an example of cyclic voltammogram (b) Corresponding electrochemical active surface area. An average surface specific charge of 100 μFcmRuO$_2$ was used for the calculations.28 The surface area measured for RuO$_2$ nanoparticles via N$_2$ physisorption (BET) is indicated.
CO₂ electrolysis with RuO₂ electrodes

CO₂ electrolysis experiments were carried out with the three types of RuO₂-based catalysts, always using fresh electrodes. The tests were performed in chronoamperometric mode at potentials ranging from -0.1 V_{RHE} to -0.9 V_{RHE}. A total charge of 15 C was passed in each experiment. The accumulated reaction products were quantified by gas and liquid chromatography at the end of each experiment. Figure 3 summarizes the Faradic efficiency measured with RuO₂ electrodes prepared via thermal decomposition of RuCl₃.

![Image](image-url)

Figure 3. Faradaic Efficiency (FE) measured during CO₂ electrolysis experiments with RuO₂ electrodes (prepared from thermal decomposition of RuCl₃) in CO₂ saturated 0.1 M KHCO₃. A total charge of 15C was passed through the electrode for each experiment. See the Experimental Methods and the Supporting Information for more details concerning the electrochemical and analytical procedures.
At potentials more anodic than -0.75 V_{RHE}, H_2 was the only product detected. We note that the charge balance is close to 100% in all the cases: this indicates that the totality of the electrons being transferred at the electrochemical interface was accounted for. At -0.1 V_{RHE}, because of the low current densities (typically below 0.5 mA cm^{-2}), long chronoamperometric measurements (>15 h) were required to transfer a total of 15 C. Consequently, a small fraction of the produced H_2 escaped the cell, causing the charge balance to drop below 95%. At potentials more cathodic than -0.75 V_{RHE} traces of CO and CHOO^- (Faradaic efficiencies of ~0.05% and ~0.2%, respectively) were detected. Similar results were obtained with RuO_2 films prepared from Ru(NO)(NO)_3 and with commercial RuO_2 particles (Figure S4). Methanol was not detected under any conditions. We note that the presence of oxygenates or other CO_2 reduction products was carefully monitored for each experiment via head space gas chromatography and HPLC. Based on the detection limit for CH_3OH (~10 µM, Figure S5), the volume of the electrolyte (12mL) and a total charge of 15 C, we were able to detect the formation of CH_3OH down to ~0.5% in Faradaic efficiency. The contribution of the substrates (Ti/TiO_2 for RuO_2 films and glassy carbon for RuO_2 particles) is negligible compared to the current registered with the RuO_2 catalysts (Figure S6).

Surface adsorbates under CO_2 reduction conditions

In order to understand whether CO_2 and CO interact with the RuO_2 surface, a series of chronoamperometry experiments were carried out with RuO_2 films in 0.1 M HClO_4. The electrolyte, initially saturated with Ar, was purged with CO_2 (or CO) after 300 s while keeping the electrode under potential control (Figure 4). The use of an acidic media allowed us switching from Ar to CO_2 (or CO) saturated electrolytes without changing the pH of the electrolyte. In parallel, we performed a series of *in situ* surface enhanced infrared absorption spectroscopy (SEIRAS) measurements on a RuO_2 nanofilm sputtered on a roughened Pt surface using a similar measuring
protocol (Figure S7). When the electrolyte was saturated with Ar, the registered current is completely ascribed to the hydrogen evolution reaction (HER) and no detectable adsorbates were observed in the SEIRA spectra. Immediately after the introduction of CO (or CO₂), the total current density decreased drastically. The current drop was more pronounced with CO at mild cathodic potentials (-0.2 to -0.5 \(V_{\text{RHE}} \)), while it was less severe at -0.75 \(V_{\text{RHE}} \). SEIRAS measurements at -0.5 \(V_{\text{RHE}} \) showed two distinct peaks at ca. 1870 cm\(^{-1}\) and ca. 1660 cm\(^{-1}\) appearing upon the introduction of CO, which correspond to linear-bound CO adsorbates\(^{30}\) and interfacial water,\(^{31}\) respectively.

Figure 4 Surface adsorbates under CO₂ reduction conditions. (a) CO₂/CO dosing experiments carried out in 0.1 M HClO₄ with a RuO₂ film prepared from RuCl₃ (100µg RuO₂). (b-c) Surface enhanced infrared absorption (SEIRA) spectra for a RuO₂ nanofilm deposited on a roughened Pt surface at (b) -0.5 \(V_{\text{RHE}} \), (c) -0.75 \(V_{\text{RHE}} \) and (d) SEIRAS in CO₂ saturated 0.1M KHCO₃. A cathodic potential sweep was applied to the electrode while recording the spectra. The SEIRAS experiment with Ar/CO₂ in 0.1 M HClO₄ is reported in figure S9.
In our previous experimental work we probed the interaction of CO with a Pt substrate in 0.1 M HClO₄. We observed a distinct couple of sharp peaks of CO species adsorbed in the linear (>2075 cm⁻¹) and bridged (>1850 cm⁻¹) configuration.³² The peaks observed on Pt are distinct from the 1870 cm⁻¹ peak observed in this study, confirming that the roughened Pt substrate is not responsible for the adsorbed CO signal in the current study. The relatively thick RuO₂ film (ca. 30 nm) ensures the absence of indirect electronic effects between the Pt substrate and RuO₂ film. No detectable peaks were observed when the same measurement was performed at more negative potentials (-0.75 Vₚₑₐₚ), suggesting a lower degree of interaction between CO and the RuO₂ surface, in agreement with the chronoamperometric test at -0.75 Vₚₑₐₚ. Furthermore, a similar CO stretching peak was detected when CO₂ was introduced at -0.5 Vₚₑₐₚ, indicating that CO₂ can be reduced to CO in an electrochemical environment (see Figure S8). The interaction of CO₂/CO with RuO₂ was also observed via SEIRAS experiments in CO₂ saturated 0.1 M KHCO₃ electrolyte (Figure 4d, potential is swept cathodically during the scan). However, since H₂ is the only product detected under cathodic potentials, and no other peaks were registered in the SEIRAS measurement, the CO adsorbate can be considered as a spectator species that does not get further reduced.

Mixed RuO₂ oxides

Our results show that RuO₂ electrodes are inactive for the CO₂ electrocatalytic reduction, irrespective of the preparation methods and the applied potential. We further explored the catalytic performance of mixed Ru-Ti and Ru-Sn oxides to elucidate whether the presence of heteroatoms in the lattice structure is key for the formation of CH₃OH or other oxygenates. The mixed oxides were prepared by thermal decomposition of precursors mixtures, exactly reproducing the preparation used by Bandi et al. in their works.¹³,¹⁴ It is established that mixed Ru-Sn oxides
monophasic solid solutions can be prepared over the whole composition range. In contrast, the crystal structure of mixed Ru-Ti oxide is subject of controversy. Several studies on Ru-Ti oxide prepared via thermal decomposition (same procedure used in our work) postulate the formation of a (meta)stable solid solution for a large compositional window. In contrast, oxides prepared via sol-gel routes tend to result in two separate phases. Our XRD results (Figure S11) showed the formation of a monophasic solid solution for Ru-Sn oxides and for Ru:Ti of 50:50 (at:at), while a biphasic structure was formed increasing the Ti content (Ru:Ti of 25:75).

Figure 5(a) shows the Faradaic efficiency measured with Ru-Ti oxides at -0.75 V_{RHE}. Overall, the behavior is comparable to that registered with pure RuO\(_2\) electrodes. The selectivity toward CO slightly increases (up to ~ 1%), especially for the Ti rich sample. CH\(_3\)OH or other CO\(_2\) reduction products were not detected. Noteworthy, the current densities were smaller than the ones measured with pure RuO\(_2\) films with comparable catalyst loadings, suggesting that the introduction of Ti atoms in the RuO\(_2\) lattice is detrimental for the HER kinetics. No evident reduction of the oxides was observed via electrochemical methods, indicating that the metastability known for RuO\(_2\) is likely to be retained also with Ru-Ti oxides. In their report, Bandi et al. observed an increase in the CH\(_3\)OH yield with Cu-decorated Ru-Ti oxides. In order to verify this possibility, we electrodeposited Cu species onto Ru:Ti electrode following the procedure described by Bandi et al. The electrodeposition resulted in the formation of large Cu particles (> 200nm) physically well dispersed on the Ru-Ti surface (Figure S12). At -0.75 V_{RHE}, the as-prepared Cu-decorated electrode showed a selectivity towards of CO and CHOO\(^-\) of ~11% and 5%, respectively. Hydrogen remains the most abundant product. Collectively, the electrode operated as a physical mixture of the two constituents (Cu particles and Ru-Ti oxide). Indeed, in this potential window Cu is expected to give small amounts CO and CHOO\(^-\). In support of this hypothesis, traces of
CH₄ (known product of CO₂ reduction with Cu catalysts) were detected when the electrode was tested at -1 V_RHE.

Figure 5 (a) Faradaic efficiency measured during CO₂ electrolysis experiments with Ru-Ti and Cu decorated Ru-Ti oxide films in CO₂ saturated 0.1 M KHCO₃ at -0.75 V_RHE. (b) Faradaic efficiency measured with Ru-Sn oxide films at different potentials in CO₂ saturated 0.1 M KHCO₃. See the Experimental Methods and the Supporting Information for more details concerning the electrochemical and analytical procedures.

Figure 5b shows the Faradaic efficiency measured with Ru-Sn oxides (Ru:Sn atomic ratio of 25:75 and 10:90) at -0.75 V_RHE and -1 V_RHE. Sn-rich oxides display a distinct behavior from the Ru-Ti electrodes. Even though H₂ remains the most abundant product and CH₃OH was not formed at any potential, appreciable amounts of CO and CHO⁻ were detected. With a Ru:Sn (10:90) composition, the total selectivity towards CO₂ reduction products reached ~ 25% at -1 V_RHE. At this point, we cannot ascertain the chemical state of the surface under reaction conditions. We cannot exclude a (partial) reduction involving the surface layers and/or the bulk of the oxide,
consistent with reports by others on pure SnO$_2$ catalysts.39,40 Overall, besides a purely scientific interest, Ru-Sn oxides do not seem to be promising catalysts for CO$_2$ reduction.

DISCUSSION

The evidence presented in the previous sections clearly shows that RuO$_2$ and mixed RuO$_2$ catalysts are not active for the conversion of CO$_2$ to methanol, which is in stark contrast with what highlighted in past literature. While reviewing previous works, we carefully examined the experimental procedures sifting for the decisive detail in the preparation of the electrodes or for the critical measuring conditions. We first hypothesized that the nature of the RuO$_2$ precursor (i.e. RuCl$_3$ or RuNO(NO)$_3$) could have been a decisive factor. However, the concurrent results obtained with different precursors and commercial catalysts clearly indicated that this variable affects the physical features of the catalysts, but not their electrochemical behavior. In addition, this argument rules out the possibility that residual Cl species (from decomposition of RuCl$_3$) might influence the catalytic events. The impact of the reaction temperature was briefly explored (results not shown). Some of the past works were carried out at temperature below 5°C.17,41 At 4°C, we did not observe the formation of CO$_2$ reduction products and H$_2$ remained the only gas evolved. Under these conditions we only observed changes in hydrogen evolution current densities, readily explained by intrinsically slower kinetics. We note that it is impossible to pinpoint the reason behind the discrepancy between our findings and past literature data: such a task would go beyond the scope of this manuscript. Moreover, we cannot exclude the notion that RuOx-containing catalysts could be engineered to yield a more favorable performance for CO$_2$ electroreduction. Nonetheless, it is important to provide some considerations relative to the controversial results reported for RuO$_2$ electrodes. In hindsight, on a qualitative basis, the reported formation of CH$_3$OH
at potential as low as -0.150 \text{V}_{\text{RHE}} is challenging to rationalize, especially considering that the thermodynamic potential for \text{CO}_2 protonation to \text{CH}_3\text{OH} is \sim 0 \text{V}_{\text{RHE}} and an overpotential above 1.0 \text{V} is required to produce traces amounts of \text{CH}_3\text{OH} with pure metal catalysts.7 The research effort put in place over the last decade has produced a solid code of practice for experimental work on the electrocatalytic conversion of \text{CO}_2, especially with respect to fundamental research. Several recent manuscripts have highlighted a comprehensive set of testing and analytical aspects that one must consider to avoid experimental artefacts caused by ill-defined experimental conditions, deficient analytical protocols or by the presence of adventitious (metallic) impurities.42–44 Many of the preliminary papers reporting the formation of \text{CH}_3\text{OH} used poorly defined experimental procedures and insufficient analytical methods. Popic et al, for instance relied entirely on infrared spectroscopy and cyclic voltammetry for the detection of reaction products.13 In addition, the description of the experimental methods often lacks details (e.g., applied potential defined as “near water reduction potential”).13,14 Moreover, a number of works highlighted in the introduction employed buffers containing organic species (i.e., acetic acid for Britton–Robinson buffer solutions) as electrolytes.17,41 The presence of organic species may introduce a number of artefacts. In all the past investigations the amount of evolved \text{H}_2 was never quantified. The quantification of this by-product is important not only for completeness sake, but also to ensure that the overall charge balance is met, and all the reaction products are accounted for.4

Although we could not detect the formation of \text{CH}_3\text{OH} under any circumstance, the electrochemical and SEIRAS results presented in Figure 4 clearly show that \text{CO} and \text{CO}_2 do bind to the RuO\textsubscript{2} surface, thus affecting the HER kinetics. The adsorption configurations of \text{CO} on RuO\textsubscript{2} in the gas phase have been studied over a wide temperature range and the main findings have been summarized by Over.22 To the best of our knowledge, the interaction between \text{CO} and RuO\textsubscript{2}
in an electrochemical environment has been investigated only at anodic potentials (electrochemical oxidation of CO).45,46 Our SEIRAS measurements confirm the presence of CO adsorbates (bands at ca. 1870 cm-1) also at cathodic potentials. This hypothesis is supported by the existence of the H-O stretching vibration (ca. 3600 cm-1, see Figure S8) and H-O-H bending vibration (ca. 1660 cm-1). These vibrations may be attributed to the isolated water at the interface formed because of the hydrophobic CO adsorbates.47 Prior vibrational spectroscopy studies suggest the coexistence of a number of adsorption and stretching configurations when a RuO\textsubscript{2} (110) surface is exposed to CO in the gas phase. Three different categories are identified: frequencies between 1850 and 1980 cm-1 and between 1980 and 2100 cm-1 are assigned to CO species binding to the Ru bridge site through a symmetric and linear (asymmetric) configuration, respectively. Frequencies between 2100 and 2155 cm-1 are associated to CO species binding to the Ru cus site in on-top configuration.30 Based on the absence of peaks in the 2100-2155 cm-1 region (Figure 4), the latter case (CO adsorbed at Ru cus site) can be excluded: we thus infer that under the electrochemical conditions used in our work CO is likely to adsorb on the Ru bridge site.

An atomic-scale elucidation of the impact of CO adsorbates on the HER kinetics would require a detailed analysis that goes beyond the scope of this work. The complexity arises because (i) the exact chemical state of the surface under reaction conditions remains elusive and (ii) the HER mechanisms on RuO\textsubscript{2} surfaces is not yet fully understood. Experimental evidence and theoretical calculations have demonstrated that RuO\textsubscript{2} is partially reduced (i.e. protonated to oxyhydroxide) under cathodic conditions,22,48–50 albeit the exact chemical state of the surface under reaction conditions remains experimentally undetermined. The extend and degree of crystallinity of the hydrated phase is still matter of debate, as suggested by the different observations reported by \textit{in situ} X-ray diffraction/reflectivity51 and XPS studies.48,52 Various plausible scenarios have also
been predicted by theoretical simulations.\cite{53} Overall, the heterogeneity of these findings suggests that the chemical and crystalline state of the RuO$_2$ films under cathodic conditions might depend on subtle experimental variables, such as the procedure used to synthesize the electrodes. The cyclic voltammetry curves we measured after CO$_2$ reduction (see Figure S13) suggest a partially irreversible hydration of the RuO$_2$ films (see discussion in the supplementary information). We did not observe evident electrochemical features of a metallic Ru over-layer. The absorption of H$^+$ species within the RuO$_2$ structure (defined as “catalyst activation”) has been observed in other studies.\cite{52,54}

With respect to HER mechanistic aspects, a series of works published across the 1990s postulate that on a partially reduced RuO(OH) surface the HER occurs through a Volmer-Heyrovsky rate determining step involving the hydroxyl group in oxygen bridge site.\cite{22,55} In contrast, a direct Ru-H (hydride) mechanism limited by a homolytic reaction (i.e., Tafel mechanism) has been recently proposed by Pastor et al. through a spectro-electrochemical analysis.\cite{56} On a theoretical basis, the hydride mechanism could occur either at Ru cus site or at Ru bridge site (via the complete reduction of the Ru-OH group). In view of these considerations, one can hypothesize that the presence of CO/CO$_2$ bound on the surface negatively affects the HER performance via (i) a direct site-blocking mechanism, most likely to occur on the Ru bridge site since we do not have SEIRAS evidence for CO adsorbed at Ru cus site, and/or (ii) via indirect electronic mechanism, where the CO bound at the bridge site affects the binding energy of H$^+$/H$_2$O at the adjacent Ru cus site. A more detailed investigation, ideally coupled with a computational analysis, should be undertaken to shed light onto these open questions.

It is established that transition metals that bind CO (and/or CO$_2$) too strongly, such as Pt, Fe and Ni,\cite{4,7,57} are very selective for the HER and inactive for CO$_2$ reduction. Consequently, at first sight
one could interpret the lack of CO₂ reduction activity and the detrimental impact of CO adsorbates for the HER kinetics as elements that affiliate RuO₂ electrodes to strongly CO-binding surfaces such as Pt or Fe. However, one should note that the latter are capable to give minor amounts of CH₄ and CH₃OH,⁷,⁵⁸ despite generally displaying high surface CO coverages under CO₂ reduction conditions.³²,⁵⁹,⁶⁰ In contrast, even though RuO₂ catalysts experience similar CO surface poisoning effects, they are unable to reduce CO further.

CONCLUSIONS

Several past literature reports postulate that RuO₂ catalysts are capable to electrochemically convert CO₂ to methanol with excellent selectivity at low overpotentials. We could not verify these results. All the catalysts tested, and the numerous experimental configurations explored in our work confirmed that H₂ is basically the only product detected under CO₂ reduction conditions. A series of combined electrochemical and SEIRAS experiments showed that CO and CO₂ bind to the RuO₂ surface. However, bound CO acts as spectator species and cannot be converted to methanol or other oxygenates.

EXPERIMENTAL METHODS

Electrodes Preparation

RuO₂ films were prepared by thermal decomposition of metal precursors (Ru(NO)NO₃ and RuCl₃) drop-casted onto etched Ti substrates. Ru-Ti and Ru-Sn mixed oxides were prepared starting from RuCl₃, TiCl₄ (attention, compounds reacts violently with water) and SnCl₂ solutions (0.15 M, 0.15 M and 0.5 M, respectively) using isopropanol as solvent. Once dried (room temperature), the electrodes were calcined at 450 °C (30 min at 90 °C, 3 °Cmin⁻¹ ramp to 450 °C, 1 h dwell time) in a tubular furnace under static air. Copper-doped Ru-Ti oxides were prepared following the procedure electrodeposition procedure reported by Bandi et al.¹⁴ RuO₂ particles
(99.9% trace metals basis) were purchased from Sigma Aldrich and used as received. More information about the electrodes preparation can be found in the Supporting Information.

Electrochemical Measurements

CO₂ electrolysis experiments were carried out in a custom-made three electrode glass H-cell. The working electrode (WE) and CE compartments were separated by a Nafion® 117 proton conducting membrane. A gold mesh (GoodFellow 99.9%) was used as counter electrode (CE). The volume of the electrolyte in the WE compartment was 12 mL. The working electrode potential (E_{WE}) was referenced against a Hg/HgSO₄/sat. K₂SO₄ reference electrode (SI analytics) and converted to the reversible hydrogen (RHE) scale according to:

\[E_{RHE} (V) = E_{WE} + E_{MSE} + 0.059 \times pH \]

Where E_{WE} and E_{MSE} are the set potential at the WE (vs. Hg/HgSO₄/sat. K₂SO₄) and the reference electrode potential (typically 0.664 V ± 5mV vs. E_{SHE}), respectively. The reference electrode potential (E_{MSE}) was regularly checked by measuring the equilibrium potential against a Pt[H₂(1 atm)/H⁺(0.1 M)] electrode in 0.1 M HClO₄. Electrochemical measurements were conducted using a BioLogic VMP2 potentiostat controlled through the EC-Lab software. CO₂ electrolysis experiments were carried out potentiostatically (chronoamperometry) in a CO₂ saturated 0.1 M KHCO₃ solution (pH 6.8), prepared by bubbling CO₂ in a 0.1 M KOH aqueous solution (Merk, Potassium hydroxide hydrate 99.995 Suprapur®, solid pellets). The Ohmic resistance (R_Ω) was measured via electrochemical impedance spectroscopy (EIS) and the iR Ohmic drop was compensated for via positive feedback. The pressure in the working electrode (WE) compartment was kept at 1.1 bar. More details about the electrochemical characterization are reported in the Supplementary Information.

Products analysis

Gaseous reaction products were detected and quantified via in-line gas chromatography (GC). Liquid products were detected and quantified via head-space gas chromatography (HS-GC) and via high performance liquid chromatography (HPLC). External standards were used for the calibration of the HS-GC and HPLC analyses. Full details about the GC, HS-GC and HPLC analyses are given in the Supplementary Information.

CO and CO₂ dosing experiments

CO and CO₂ dosing experiments were conducted in a one-compartment three-electrodes glass cell equipped with a Lugging capillary connected to a Hg/HgSO₄/sat. K₂SO₄ reference electrode. A gold mesh was used as counter electrode. Prior to each measurement, the Ohmic drop was
determined via EIS and compensated for via positive feedback. A 0.1 M HClO₄ (Merck Suprapur 70%) electrolyte was used for the experiments. The electrode (RuO₂ film prepared using RuCl₃) was held at constant potential (-0.2 V_{RHE}, -0.5 V_{RHE} and -0.75 V_{RHE}) while monitoring the current.

Surface enhanced infrared absorption spectroscopy (SEIRAS) experiments

For the *in situ* SEIRA measurements, we used a Pt working electrode composed of a thin (ca. 50 nm) Pt film deposited on the Si prism (radius 22 mm, Pier optics) via an electroless deposition method.⁶¹ Magnetron sputtering was used to deposit the RuO₂ electrocatalysts. The film was sputtered on the electroless deposited Pt layer at a deposition rate of ~0.7 A/s under Ar:O₂=7:5 sccm, total pressure 3 mTorr, at 450°C, result in a thickness of ca. 30 nm, as measured by an electrochemical quartz crystal microbalance. The SEIRA spectra were recorded using a single reflection ATR accessory (Pike Vee-Max II, Pike Technologies) with the Si prism at an incident angle of 68 degrees. Before every experiment, Ar was bubbled through the electrolyte for 15 minutes in order to remove air from the solution. The prism surface was then cleaned by cycling the potential between 0.05 and 0.90 V vs. RHE. Details of *in situ* SEIRAS measuring procedure were described elsewhere^{62,63} and in the Supplementary Information.

ACKNOWLEDGMENTS

This project has received funding from the European Union’s Horizon 2020 research programme under the Marie Skłodowska-Curie grant agreement No. 705230. The support from the VILLUM Center for Science of Sustainable Fuels and Chemicals funded by the VILLUM Fonden research grant (9455) is also acknowledged. The author would like to thank Dr. A. Bhowmik, Dr. H. A. Hansen and Dr. T. Vegge (DTU Energy) for the fruitful discussions on the project.

AUTHOR INFORMATION

Corresponding Author

* Ifan E.L. Stephens (i.stephens@imperial.ac.uk)
 Stefano Mezzavilla (s.mezzavilla@imperial.ac.uk)
Department of Materials, Imperial College London, Royal School of Mines London SW72AZ, England

Present Addresses
† Department of Materials, Imperial College London, Royal School of Mines London SW72AZ, England

Author Contributions
The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Funding Sources
- European Union’s Horizon 2020, Marie Skłodowska-Curie grant agreement No. 705230.
- VILLUM Fonden research grant (9455)

REFERENCES

