Therapeutic approaches for spinal muscular atrophy (SMA)

Authors: Scoto M¹, Finkel RS², Mercuri E³, Muntoni F¹̊

¹ Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK
² Division of Pediatric Neurology, Nemours Children’s Hospital, University of Central Florida, College of Medicine Orlando, USA
³ Pediatric Neurology, Catholic University and Centro Nemo, Policlinico Gemelli, Rome, Italy

*Corresponding author

Abstract

Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disorder characterized by progressive muscle wasting and loss of muscle function due to severe motor neuron dysfunction, secondary to mutations in the survival motor neuron 1 (SMN1) gene. A second neighboring centromeric gene, SMN2, is intact in all patients but contains a C-to-T variation in exon 7 that affects a splice enhancer and determines exclusion of exon 7 in the majority of its transcript, leading to an unstable protein that cannot substitute for mutant SMN1.

Following successful studies on disease models and intensive studies on SMN functions in the past decade, SMN upregulation targeting SMN2, has been suggested as a possible
therapeutic approach. Recently we have witnessed an historical turning point with the first disease-modifying treatment receiving Food and Drug Administration (FDA) approval and now being available to patients also outside the clinical trial. This innovative treatment is an antisense oligonucleotide (ASOs) which, administered intrathecally, is able to increase exon 7 inclusion in the majority of the SMN2 mRNA, and increase the production of fully functional SMN protein. Alternative advanced therapies, such as viral vector mediated gene therapy and orally available small molecules are also showing promising results in early clinical trial phases.

Article

Spinal muscular atrophy (SMA) is a monogenic autosomal recessive disorder having an incidence of ~1 in 10000 live births.\(^1,2\) Since the disease-causing genetic defect responsible for SMA was identified in 1995, there has accrued significant understanding of SMA pathogenesis, genetic, biologic and cellular mechanisms leading to crucial recent breakthroughs in its treatment. Historically the treatment for SMA was divided between optimisation of clinical management on one end and experimental therapies on the other, and a recent Cochrane review on treatment for SMA reached the conclusion that no drug treatment for SMA has been proven to have significant efficacy.\(^3,4\)

Recently the treatment’s scenario has dramatically changed: the 23rd of December 2016 an oligonucleotide drug, called Spinraza, has received FDA approval for the treatment of SMA in the US. The FDA approval has been echoed by the European Medicine Agency (EMA) on 21 April 2017, when the Committee for Medicinal Products for Human Use (CHMP) adopted a positive opinion, recommending the granting of a marketing authorization for...
Spinraza is the first of a relatively rich list of experimental therapy compounds under evaluation to arrive to the goalpost of FDA/EMA approval. There are indeed a number of alternative approaches that are attractive therapeutic strategies, developed to either increase SMN protein level (orally bioavailable small-molecule drugs that modulate the splicing of SMN2; SMN1 gene replacement using viral vector) or act as neuroprotective drugs to improve motor neuron survival.

In this article we will review the most recent and promising therapeutic approaches for spinal muscular atrophy. (Figure 1)

Approved and experimental therapies aiming at increasing SMN protein levels

With greater understanding of the molecular basis of SMA in the past 2 decades, a major focus of therapeutic developments has been on increasing the full-length SMN protein by: increasing the inclusion of exon 7 in SMN2 transcripts; enhancing SMN2 gene expression; stabilizing the SMN protein, or replacing the SMN1 gene. Splice switching antisense oligonucleotides (ASOs) are synthetic RNA molecules that can interfere with physiological splicing of exons. They can either be designed to exclude an exon from the pre-mRNA (as in the case of the exon skipping strategy utilised in Duchenne muscular dystrophy) or induce the inclusion of an exon that would otherwise be removed (as it is the case for SMN2). Indeed all SMA patients carry at least one copy of SMN2, in which a single nucleotide change at a splice enhancer site excludes exon 7 in approximately 90% of its transcripts and results in the translation of a non-functional protein. The manipulation of
this splicing, inducing an increase in exon 7 retention in SMN2 pre-mRNA, is therefore an attractive therapeutic approach, both because it is applicable to all patients with SMA, and because the resulting mRNA, and eventually protein product, is identical to the one produced by SMN1. These ASOs are highly effective at promoting inclusion of exon 7 in SMN2 transcripts and at increasing SMN protein levels both in vitro and in vivo, although they are not capable of crossing the blood-brain barrier, so they require repeated intrathecal administration.\(^{(5, 6)}\)

Early open label clinical trials of the ASO Spinraza (also known as Isis 396443, SMNRx and nusinersen), demonstrated a good safety profile and encouraging efficacy data both in type I and type II SMA individuals.\(^{(7)}\) (table 1 shows a list of clinical trials using the ASO Spinraza).

A subsequent large randomised double blind controlled clinical trial (ENDEAR) in which infants under 7 months of age with type I SMA received either Spinraza or sham procedure (control arm) was interrupted early following the positive interim efficacy analysis, allowing to all participants to be rolled over into an open label study (called SHINE). The positive results from this study prompted the submission of the new drug application with the FDA.

While the drug is currently licensed in US for patients with SMA, and at the time the application for EMA approval has been submitted, the pharmaceutical sponsor, Biogen, has offered to the trial sites in several European countries, the possibility to enrol more patients with type I SMA via an Expanded Access Program (EAP). (For more information visit www.biogen.com) The interim results from the randomized control study in type II patients and an open label study of Spinraza in pre-symptomatic infants have also been very favourable.
Small molecules. A number of low-molecular-weight drugs that can increase levels of full-length SMN protein by different mechanisms, from activating the SMN2 promoter to increasing its expression, or forcing read-through of the SMN2 product, are being studied. Histone deacetylase inhibitor compounds can increase SMN2 mRNA levels and had shown promising results in mouse models and cell lines derived from SMA patients but, when tested in clinical trials, they invariably showed little or no benefit. These have included clinical trials with sodium phenylbutyrate, valproic acid and hydroxyurea. Other small-molecule drugs such as aminoglycosides promote ribosomal reading through the stop codon of SMNΔ7 transcripts, enabling the translation of a protein variant with increased stability when compared to the native product of the SMN2 gene lacking exon 7. Subcutaneous administrations of a read-through inducing compound (TC007), while not extending survival, did result in increased gross motor function in treated SMA transgenic mice. A different class of more potent drugs capable of altering the splicing pattern of SMN2 transcripts to favour the inclusion of exon 7 has been more recently developed. These drugs have very substantial efficacy in improving outcome in the SMA transgenic mice and are currently in early clinical trials. One of these molecules was identified by PTC Therapeutics using a high throughput drug screening platform. This demonstrated unequivocal and robust efficacy in preclinical SMA transgenic mouse studies. Roche then chemically optimized this compound and brought it into the clinic as an orally bioavailable drug. A phase 1 multicentre randomized, double-blind, placebo-controlled study was initiated in 2015 to investigate the safety, tolerability, pharmacokinetics and pharmacodynamics of RG7800 following 12 weeks of treatment in
adult and pediatric patients with SMA (MOONFISH study; NCT02240355). After recruiting the first cohort of patients, the sponsor placed the trial on clinical hold due to unexpected eye safety findings observed in the parallel chronic preclinical toxicology study of RG7800. This clinical trial was eventually terminated. More recently Roche has initiated two phase I/II studies to investigate the safety, tolerability, pharmacokinetics, pharmacodynamics and efficacy of a similar compound, RG7916, in infants with type 1 SMA (FIREFISH; NCT02913482) and in Type 2 and 3 Spinal Muscular Atrophy (SUNFISH; NCT02908685). Both studies are currently ongoing and recruiting patients.

Novartis is pursuing a similar strategy with a small molecule also capable of increasing exon 7 retention in the SMN2 transcript and capable of substantially increase life expectancy in SMA transgenic mice (16); an open-label phase I/II study of oral LMI070 in infants with Type 1 spinal muscular atrophy was initiated in April 2015 in four European countries (NCT02268552). In middle 2016 the pharmaceutical sponsor has decided to pause the enrollment study as parallel chronic preclinical toxicology studies, using daily dosing for a year compared to weekly dosing in the human study, showed unexpected injuries to the peripheral nerves and spinal cord, testes, and blood vessels in the kidney. Since the announcement, all patients enrolled in the trial were closely monitored and the study is currently ongoing but not recruiting participants.

Viral Gene therapy. As a monogenic disease, SMA is a good target for vector-based gene replacement therapy to restore a normal form of the SMN1 gene in patients. Viral-mediated SMN gene delivery has been remarkably successful in preclinical studies. Both systemic and intra-cerebro-ventricular injection of self-complementary adeno-associated viral vectors (scAAV) expressing SMN showed efficient transduction of motor neurons in both mice and
non-human primates, as well as nearly complete correction of the SMA phenotype in mice. (17-19)

In selecting a potential vector to deliver the SMN1 gene, the adeno-associated virus vectors (AAV) 8 and 9 appeared to be an excellent contender due to its ability to cross the blood–brain barrier after systemic (intravenous) delivery in mouse models (20,21).

AveXis is currently conducting a single site study in the US (Nationwide Children’s Hospital, Columbus, Ohio, Dr Jerry Mendell), the first gene therapy phase I clinical trial to assess the safety of intravenous delivery of scAAV9-SMN in type 1 SMA infants. (NCT02122952) This open-label, dose-escalation clinical trial of AVXS-101 injected intravenously through a peripheral limb vein is currently active but not recruiting. A total of 15 infants have been enrolled in this study; participants were allocated in 2 cohorts receiving 6.7e13 vg/kg of AVXS-101 (n=3) and 2.0e14 vg/kg of AVXS-101 (n=12) delivered as a single intravenous administration. The primary analysis for efficacy will be assessed when all patients reach 13.6 months of age with an estimate study completion in December 2017.

Encouraging preliminary data were presented at several international conferences in 2016, and AveXis is planning a larger multicentre Phase III open-label single-dose, by intravenous infusion, gene replacement therapy clinical trial for patients with SMA type 1 both in US and EU.

Other therapeutic approaches:

Neuroprotective compounds. Olesoxime is another small molecule that has shown neuroprotective properties in a number of in-vitro and in-vivo studies promoting neurite outgrowth and communication with the mitochondrial permeability transition pore. In-vitro neuronal cell death studies demonstrated a dose-dependent increase in cell survival with the
The use of olesoxime in trophic factor deprivation assays. Furthermore, in SOD1G93A transgenic mouse models of ALS, treatment with olesoxime resulted in the prevention of weight loss, a delay in severe muscle function decline, and a 10% increase in lifespan compared to vehicle-treated controls. (22)

This drug has been tested in a phase II randomized, multicentre, double blind, placebo-controlled trial completed in 2013. A total of 165 non-ambulant patients with SMA type II and III, aged 3 to 25 years, were recruited in 23 sites in different European countries (France, Germany, Italy, UK, Poland, Netherlands, Belgium) and followed in the study for approximately two years. The randomization ratio was 2:1, with 108 to the olesoxime group (10mg/kg), and 57 to the placebo group. Preliminary results suggested that olesoxime maintains motor function and improves overall health status over the two-year treatment period.

An open-label study sponsored by Hoffmann-La Roche enrolling patients who participated in the phase II study to evaluate long term safety, tolerability, and effectiveness of olesoxime (OLEOS; NCT02628743) in patients with Spinal Muscular Atrophy is currently ongoing. The estimated study completion date is December 2020.

Skeletal muscle troponin activation. This type of therapeutic approach using another small-molecule is intended to slow the rate of calcium release from the regulatory troponin complex of fast skeletal muscle fibers, which may improve muscle function and physical performance in people with SMA. In collaboration with Astellas, Cytokinetics has developed CK-2127107 (CK-107), a novel skeletal muscle troponin activator which in preclinical models of spinal muscular atrophy, has demonstrated increases in submaximal skeletal muscle force in response to neuronal input and delays in the onset and reductions in the degree of muscle fatigue. (23)
A Phase 2, Double-Blind, Randomized, Placebo-Controlled, Study of CK-2127107 in Two Ascending Dose Cohorts of ambulant and non-ambulant Patients With SMA type II, III and IV is currently recruiting patients in the US and Canada. (NCT02644668)

Albuterol. Albuterol is a beta-adrenergic agonist that is recognized to have a positive anabolic effect in healthy individuals. This property has been evaluated in a pilot study on SMA type II and III patients that showed a significant improvement of myometry, FVC and DEXA scores at 6 months evaluation. (24) A following open label pilot study using oral salbutamol, which is a form of albuterol, showed an improvement of the functional scores at the Hammersmith Functional Motor Scale (HFMS) after 6 and 12 months of treatment. (25) In-vitro studies have also shown that salbutamol can unexpectedly increase the ratio of full length to truncated SMN mRNA, SMN protein and gem numbers by promoting the exon 7 inclusion and this effect was found to be directly proportional to the SMN2 gene copy number. (26, 27)

Stem cells. One of the goals of transplanted stem cells is to support endogenous motor neurons through the delivery of neuroprotective agents and, ideally, to also partially restore neuronal and non-neuronal cells. (28-30) Neural stem cells obtained from the spinal cord administered intrathecally to SMA mice showed appropriate migration into the parenchyma and the capability to generate a small proportion of motor neurons. These treated mice exhibited improved motor unit and neuromuscular function and showed a 38% increase in life expectancy. (31)

Despite the positive results of neural stem cell transplantation in mice, its translational value in human is unclear. Alternative protocols, which include the use of embryonic stem cells or induced pluripotent stem cells for transplantation, have been tried in animal models. These cells have the ability to differentiate in vitro and in vivo into neural stem cells and motor
neurons. Immune-suppression therapy may be necessary for this strategy to be successful.

The findings of improved SMA phenotype in mice following the intrathecal transplantation of embryonic stem cell-derived neural stem cells included proper migration to target tissue in the spinal cord, neuroprotective function, and a 58% increase in lifespan.

A protocol to test neuronal stem cells in SMA patients is currently on hold by the FDA, however there are no imminent clinical trials expected in humans. Similarly, a controversial approach of allogenic mesenchymal cell transplantation, administered intravenously and intrathecally, initiated by a private enterprise in Italy, was interrupted in 2014 by a panel of experts appointed by the Italian Ministry of Health due to both lack of proven efficacy and serious concerns on the quality of the proposed drug as the mesenchymal cells given to patients were not grown under the approved EU strict set of quality control standards.

While the SMA research field is rapidly expanding with all the above therapeutic opportunities, and the outcome of the recently concluded phase 3 trials of Spinraza are extremely encouraging, nevertheless, there are still several questions that remain unsolved. A question is whether there is a defect of motor neurons development, a progressive loss of motor neurons or both. The timing for optimal intervention for all these approaches is not clear in the human, and in particular at which point there is irreversible pathology that precludes any meaningful therapeutic response in the various subtypes of SMA. Indeed, while a precise relationship between timing of the therapeutic intervention and response has been identified in several studies in the SMA mouse model, the equivalent information in the human is currently not available. Nor is it clear if clinical responses to these therapies will be sustained over time, especially in the growing child. In addition, animal models and limited but instructive patients case-reports have provided evidence that SMA pathology is not
restricted to motor neurons, but rather is a composite of pathology involving also skeletal muscle, neuromuscular junctions, interneurons and sensory-motor neurotransmission. (37-42) Systemic organ dysfunction or structural changes have been described in the most severe end of the SMA spectrum. It remains uncertain whether treatments that target motor neurons and not systemic tissues will lead to the development of multi-organ system dysfunction over time. Questions like “when, how, and which cell types should be targeted?” remain still critical to design innovative therapeutic strategies, and in particular the potential for a therapeutic advantage when targeting both the peripheral tissues and the CNS versus targeting exclusively the CNS needs to be demonstrated. Considering the therapeutic tools under development, it is likely that the answer to these questions will come from the studies in patients in the years to come.

Acknowledgements.

FM is supported by the National Institute for Health Research Biomedical Research Centre at Great Ormond Street Hospital for Children NHS Foundation Trust and University College London. The MRC Centre for Neuromuscular Diseases Biobank and the support of the MDUK and of the SMA Trust to the activities of the Dubowitz Neuromuscular Centre is also gratefully acknowledged

Conflict of interests.

FM is involved as principal investigator in the following clinical trials: nusinersen (SHINE, sponsored by Ionis and Biogen); olesoxime (OLEOS, sponsored by Roche). He has participated in scientific advisory board activities for Roche; Biogen and Avexis, and is also a
member of the Pfizer rare disease scientific advisory board. MS is involved as sub-
investigator in SHINE clinical trial and is principal investigator in OLEOS clinical trial.

RF is involved as principal investigator in the following SMA clinical trials:
nusinersen (CS3A, ENDEAR, CHERISH, NURTURE and SHINE, sponsored by Ionis and
Biogen) and CK-2127107 (CY 5021 study, sponsored by Cytokinetics and Astellas). He has
participated in scientific advisory board activities for Ionis, Biogen, Roche, Novartis and
AveXis; has served on the DSMB for the Roche RG7800 and AveXis AVXS-101 phase 1
study; and has served as an advisor to CureSMA (US), the SMA Foundation (US), SMA
REACH (UK) and SMA Europe.

EM is involved as principal investigator in the following clinical trials: nusinersen (SHINE,
sponsored by Ionis and Biogen); olesoxime (OLEOS, sponsored by Roche). He has
participated in scientific advisory board activities for Ionis, Roche; Biogen and Avexis.

References

screening and prenatal diagnosis for spinal muscular atrophy: clinical laboratory analysis of >72,400 specimens. European
2. MacDonald WK, Hamilton D, Kuhle S. SMA carrier testing: a meta-analysis of differences in test
treatment for spinal muscular atrophy type I. The Cochrane database of systematic reviews. 2012(4):Cd006281.
treatment for spinal muscular atrophy types II and III. The Cochrane database of systematic reviews. 2012(4):Cd006282.

Kariya S, Mauricio R, Dai Y, Monani UR. The neuroprotective factor Wld(s) fails to mitigate distal axonal and neuromuscular junction (NMJ) defects in mouse models of spinal muscular atrophy. Neuroscience letters. 2009;449(3):246-51.

