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This paper is concerned with steady-state subcritical gravity-capillary waves that are7

produced by potential flow past a wave-making body. Such flows are characterised by8

two non-dimensional parameters: the Froude number, F, and the inverse-Bond number,9

T. When the size of the wave-making body is formally small there are two qualitatively10

different flow regimes and thus a single bifurcation curve in the pF,Tq-plane. If, however,11

the size of the obstruction is order one then, in the limit F, T Ñ 0, Trinh & Chapman12

(2013b) have shown that the bifurcation curve widens into a band, within which there13

are four new flow regimes [J. Fluid Mech. 724, pp. 392–424]. Here, we use results from14

exponential asymptotics to show how, in this low-speed limit, the water-wave equations15

can be asymptotically reduced to a single differential equation, which we solve numerically16

to confirm one of the new classes of waves. The issue of numerically solving the full set of17

gravity-capillary equations for potential flow is also discussed.18

Key words: surface gravity waves, waves/free-surface flows19

1. Introduction20

The subject of this paper is the accurate calculation of steady-state free-surface flows21

where a disturbance has caused the emergence of distinct groups of gravity and capillary22

waves. In particular, we will discuss flow regimes that exist in the low-speed limit and23

numerically confirm the existence of a new class of waves predicted by Trinh & Chapman24

(2013b).25

The canonical application of free-surface flow is the fishing-line problem first reported26

by Russell (1845). Figure 1 corresponds to Russell’s original illustration of a two-27

dimensional cross-section of the free-surface for uniform flow past a fishing line. Inspired28

by Russell’s report, Rayleigh (1883) modelled the fishing line as a point pressure force29

and demonstrated that waves of constant amplitude exist when the flow is above a certain30

speed (approximately 23 cm/s in water of infinite depth). The disturbances upstream of31

the fishing line are capillary waves, principally governed by surface tension, while those32

downstream are due to gravity (see also § 271 of Lamb 1932).33

Then, in the latter half of the 20th century, it became possible to compute numerical34

solutions of the full nonlinear potential-flow equations for steady-state problems involving35

different geometries. As it pertains to the gravity-only problem, we mention as examples36

the works of Vanden-Broeck & Tuck (1977); King & Bloor (1987, 1990); Forbes & Schwartz37

(1982), although interest continues well into recent years in e.g. Părău & Vanden-Broeck38
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Figure 1: Original illustration from Plate 57 of Russell (1845) depicting the short-
wavelength capillary ripples upstream and long-wavelength gravity waves downstream of
a fishing line. Note that in Russell’s illustration, viscous effects are included.

(2002); Binder & Vanden-Broeck (2007); Binder et al. (2013). For reasons that will become39

clear, the numerical study of the types of steady-state gravity-capillary profiles illustrated40

in figure 1 is a much more difficult problem.41

Like the methodology developed in Rayleigh (1883), theoretical analysis of such wave-42

structure free-surface problems usually begins by linearising the governing equations about43

a small parameter, say δ, related to the size of the obstruction (linear geometrical theory).44

In addition to δ, gravity-capillary flows are typically characterized by two non-dimensional45

parameters: the Froude number, F and the inverse-Bond number, T, defined by46

F “
U
?
gL

and T “
σ

ρgL2
. (1.1)

Here, U and L are the chosen velocity and length scales, ρ is density and σ is the surface47

tension parameter. As is convention in water-wave studies, we refer to T directly as the48

Bond number. In this work, we focus on subcritical flows, i.e. those with F ă 1.49

As explained by Forbes (1983), linear geometrical theory indicates that for δ ! 1 there50

exists a critical curve, T “ TGpFq, that divides the subcritical part of the pF,Tq plane51

into two regions. Solutions with T ă TGpFq are called Type I and are associated with the52

constant-amplitude waves of figure 1, while solutions with T ą TGpFq are called Type II,53

and consist of localized solitary waves.54

Recently, it was predicted in Trinh & Chapman (2013a,b) that several new classes of55

solution can occur for nonlinear geometries with δ “ Op1q, in the limit of small Froude56

and Bond numbers, F, T Ñ 0. The authors considered the case of a right-angled step57

and used techniques from exponential asymptotics to show that the typical Rayleigh58

(1883) bifurcation curve predicted for linear geometry widens into a band as the height59

of the step increases, and that within this band a range of new solutions can be found.60

This work aims to numerically confirm these new, Type III waves, and thus we seek to61

develop methods that allow us to accurately solve the governing equations for nonlinear62

geometries. In doing so we make use of ideas developed in Trinh (2016, 2017), where63

computationally problematic integral terms [cf. (4.8)] are removed from the governing64

equations through a systematic asymptotic reduction in the low-speed, F, T Ñ 0 limit.65

1.1. The radiation problem66

Numerical solutions of steady-state free-surface problems require the use of effective67

radiation conditions —that no energy may come from infinity— on the edges of a truncated68

computational domain. However it is often unclear exactly how one can impose such69

a condition in practice, particularly when capillary waves are present. Stoker (1957)70

had previously provided several remarks on this unexpectedly challenging aspect of71

determining steady-state flows. As he writes (p. 175):72
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. . . it is by no means clear a priori what conditions should be imposed at infinity in73

order to ensure the uniqueness of a simple harmonic solution [. . . ] the steady state74

problem is unnatural—in the author’s view, at least—because a hypothesis is made75

about the motion that holds for all time, while Newtonian mechanics is basically76

concerned with the prediction—in a unique way, furthermore—of the motion of a77

mechanical system from given initial conditions.78

As Stoker notes, one should in principle formulate and solve an initial-value problem where79

it is often sufficient to only impose boundedness of the solution at infinity. Afterwards,80

the time-dependent solution may then be evolved to a steady state. In practice, however,81

there are a myriad of reasons why solving a steady-state formulation may be necessary—82

beyond simple computational efficiency. For instance, the study of solutions of the direct83

steady-state model may yield a wealth of information about the physical or mathematical84

structure of the problem; information that cannot be easily obtained through time-85

dependent experiments.86

Apart from specialized configurations (e.g. localized solitary waves), there has not yet87

been a proposed solution of the radiation problem, particularly for the case of Type I88

solutions. One approach, suggested by Grandison & Vanden-Broeck (2006) approximates89

the solution outside of the main computational domain using a Fourier series whose90

coefficients are found as part of the solution. Although this method was able to successfully91

compute a number of Type I solutions for flow over a small circular cylinder (non-92

dimensional radius δ “ 0.05), we have found that convergence is difficult to obtain for93

nonlinear geometries. Other options for correctly enforcing the radiation condition include94

the addition of artificial viscosity, say µ [as in Părău et al. 2007] or by solving the full95

time-dependent problem [as in Părău et al. (2010); Moreira & Peregrine (2010)]. However,96

in both cases, it is not clear that taking the limit µÑ 0 or tÑ8 will allow recovery of97

the full set of solutions when µ “ 0 and t “ 8.98

Our main strategy forwards is to explain how, in the limit F,T Ñ 0, the governing99

equations may be reduced to a single second-order differential equation, for which it100

is clear how the radiation condition should be applied. We solve this reduced model101

as a boundary-value problem, and use it to verify the new waves predicted in Trinh102

& Chapman (2013b). The reduced model is derived in sections 4–5, and then solved103

numerically in section 6. Sections 2-3 give a simple explanation for one of the new classes104

of waves.105

2. An explanation of the new waves via the dispersion relations106

Here, we give a simple explanation of one of the new classes of gravity-capillary waves107

that were previously described using the more sophisticated exponential asymptotics.108

This is done by comparing upstream and downstream dispersion relations, and is similar109

in spirit to arguments in Binder & Vanden-Broeck (2007).110

2.1. The upstream dispersion relation111

The dispersion relation that governs linear perturbations of wavenumber k̃ from uniform112

flow of speed U and depth h is [cf. (2.90) in Vanden-Broeck (2010)]113

U2 “

„

g

k̃
`
σ

ρ
k̃



tanhpk̃hq. (2.1)
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Figure 2: Upstream (thick) and downstream (thin) dispersion relations. The upstream
relation Gpkq is given by (2.2), and the downstream dispersion relation Hpkq is given
by (2.6). Both are plotted with T “ 0.15, and the depth ratio in Hpkq is hd/u “ 0.8.
Constant-amplitude waves exist for values of F that intersect the dispersion curve. Thus
there is a region, marked ‘III’, where constant-amplitude waves only exist downstream.

In most typical formulations, the dispersion relation is defined in the context of the114

upstream quantities, thus re-scaling the expression above, we have115

F2 “

„

1

k
` Tk



tanhpkq ” Gpk; Tq. (2.2)

In (2.2), we have used the mean upstream channel height, L “ hup, and velocity, U “ Uup,116

for the definitions of the Froude and Bond numbers [cf. (1.1)]. The wavenumber has been117

non-dimensionalized via118

k “ k̃hup. (2.3)

Thus, for a given value of T, the dispersion relation F2 “ Gpkq can be plotted in the119

pk,F2q-plane. An example profile of Gpkq, with T “ 0.15, is shown in figure 2.120

Note that if T ă 1{3, the upstream dispersion relation Gpkq has a minimum at121

pkG,F
2
Gq. The existence of the local minimum leads to two possible types of solutions122

within subcritical flows (F ă 1):123

Type I: If the Froude number lies within the band FG ă F ă 1, labeled I in the124

figure, then there exists two distinct real wave numbers. The smaller of the125

two wavenumbers corresponds to gravity waves and the larger to capillary126
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waves. The solution consists of constant-amplitude capillary waves upstream127

and constant-amplitude gravity waves downstream.128

Type II: If, however, the Froude number is less than the minimum of Gpkq and in129

regions II and III of figure 2, i.e. 0 ă F ă FG, then solutions to (2.2) are130

complex-valued. Thus the wave-trains decay in the far field.131

2.2. The downstream dispersion relation132

In addition to the two classes described above, the analysis of Trinh & Chapman (2013b)133

uses techniques from exponential asymptotics to predict several new classes of waves that134

occur in the low-Froude, low-Bond limit for finite-bodied (nonlinear) objects. However135

there is a simple explanation of one of these new classes. The key idea is that if the size136

of the step is sufficiently large, then the velocity and length scales downstream of the step137

must be re-defined. Consequently, a different dispersion relation applies downstream.138

We introduce the height and velocity ratios,139

hd/u “
hdown

hup
and Ud/u “

Udown

Uup
, (2.4)

and the downstream Froude and Bond numbers, as well as downstream wavenumbers,140

F “ Fdown

a

hd/u

Ud/u
, T “ Tdownh

2
d/u, k “

kdown

hd/u
, (2.5)

where by mass conservation hd/u “ 1{Ud/u.141

Applying (2.1) to these downstream quantities, and re-writing in terms of upstream142

quantities, we must have143

F2 “ h2d/u

„

1

k
` Tk



tanhphd/ukq ” Hpk; T, hd/uq. (2.6)

Thus in addition to the upstream dispersion relation Gpkq, we plot the downstream144

dispersion relation Hpkq on figure 2, for the same value of T and with hd/u “ 0.8. The145

downstream dispersion curve Hpkq has a local minimum at pkH ,F
2
Hq. Consequently, if the146

upstream Froude number is selected from within the band FH ă F ă FG then, although147

the upstream dispersion relation predicts decaying waves, the downstream dispersion148

relation indicates the presence of constant-amplitude waves. The result is a third class of149

solutions, in addition to those described in section 2.1.150

Type III: Decaying waves upstream and constant-amplitude gravity waves downstream.151

This regime is labeled as III in figure 2.152

2.3. A study of the pF,Tq-plane153

The bifurcation between constant-amplitude waves and decaying waves can also be154

viewed in the pF,Tq plane, and this is shown in the top portion of figure 3. There are two155

important features.156

Firstly, notice the thick line in the figure. This is essentially Rayleigh’s critical dispersion157

curve discussed in sections 1 and 2.1. That is, for F ă 1 and T ă 1{3, there exists a158

critical curve T “ TGpFq, which corresponds to the minimum over k of the upstream159

dispersion relation Gpk; Tq for each T, where Gpkq is given in (2.2). For linear geometries,160

this is the only critical curve. Configurations below the curve have constant-amplitude161

waves (Type I solutions), and configurations above the curve have decaying waves (Type162

II solutions).163

Secondly, notice the sequence of thinner curves in the figure. For the nonlinear step a164
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second critical curve T “ THpFq exists, which corresponds to minima in the downstream165

dispersion relation Hpk; Tq, given by (2.6). New solutions (Type III) with decaying166

capillary waves and constant-amplitude gravity waves are located in the region of the167

pF,Tq plane that lies between these two curves. Note the area of this region increases168

with the size of the step. The thin lines in figure 3 show the downstream critical curve169

THpFq for various values of the depth ratio hd/u, with the shaded area giving the region170

where new waves can be found for the particular case of hd/u “ 0.75.171

3. Asymptotics in the small Froude-Bond limit172

Although our study of linear dispersion relations in the previous sections has given an173

insight into the new regimes in the pF,Tq-plane, it is important to recall that (2.2) and174

(2.6) are derived from the study of the free-surface problem assuming a flat-bottomed175

channel, which is only valid sufficiently far upstream and downstream. To derive a spatially-176

dependent dispersion relation that connects the upstream and downstream regions, it is177

necessary to use the more complex exponential asymptotics, which are valid as F,T Ñ 0.178

Since it is in this low-speed limit where the new waves are predicted, we re-write the179

dispersion relation (2.1) with180

F2 “ βε and T “ βτε2, (3.1)

for ε ! 1, following scalings from previous works (Trinh & Chapman 2013a,b).181

In the limit ε Ñ 0, the wavenumber scales like k “ k̂{ε. It will be shown below in182

section 4 that, to leading-order in ε, the asymptotic values of the speed downstream and183

upstream are
?
b and unity respectively, where b is a parameter describing the step height.184

The velocity scale ratio for flow over a step is therefore185

Ud/u “
?
b`Opεq „ 1

hd/u
. (3.2)

In this low-speed regime, tanhpkq Ñ 1 and the dispersion relation (2.2) becomes186

βτε2k2 ´ βεk ` 1 “ 0 (3.3)

with solutions187

kup “
1˘

?
1´A

2τε
, (3.4)

where A “ 4τ{β. This is the typical small-step wavenumber in the limit of small188

Froude/Bond numbers, and predicts a band A P r0, 1s where wavenumbers are real.189

However, for a large step we must use (2.6) and then (2.5) to calculate the downstream190

wavenumbers as191

kdown “ kuphd/u “
b˘

?
b2 ´A

2τ
?
bε

. (3.5)

Thus, if the Froude and Bond numbers are chosen so that A P r1, b2s then an additional192

regime is predicted, before the localised solitary waves emerge for A ą b2. The three193

different regions are illustrated in the lower portion of figure 3. The function χpφq that194

gives the spatially-varying phase of the waves is found in section 3 of Trinh & Chapman195

(2013b). Comparison of (3.9) in that work with the expressions above shows that the196

wavenumbers here are just the far-field limits of χ, as |φ| Ñ 8.197

In both (3.4) and (3.5), the plus root becomes singular as τ Ñ 0. This root therefore198

corresponds to capillary waves, and the minus root must correspond to gravity waves. This199

removes any ambiguity introduced by the extra dispersion relation, as we have exactly one200
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Figure 3: (Upper) Upstream (thick) and downstream (thin) bifurcation curves in the
pF,Tq plane, as discussed in section 2.3. For the case of hd/u “ 0.75, the shaded area
between them gives the region where new waves are possible. As hd/u decreases, the step
size becomes larger and the area between the two bifurcation curves grows. (Lower) The
different regions in the low-speed limit, where the boundaries of the bifurcation curve
are described in terms of the step-height parameter b [cf. section 3].
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Figure 4: Flow over a step in a channel shown in the (a) physical z-plane, (b) potential
w-plane, (c) upper half-ζ-plane. In our non-dimensionalization, the step corner (square)
is chosen to be ζ “ ´1 and the stagnation point (circle) is chosen to be ζ “ ´b with
b ą 1. The labels PQRS show the orientation of the different mappings with respect to
upstream and downstream locations.

upstream wavenumber that satisfies the radiation condition. The wavenumbers kup and201

kdown can thus be used to verify that numerical solutions satisfy the radiation condition.202

However these wavenumbers can also be used to prescribe the behaviour of the flow at203

infinity, and indeed this approach will later allow us to numerically confirm the existence204

of the new waves in the reduced model. First, we expand on the discussion of section 1.1,205

and illustrate the issues surrounding the numerical solution of the full problem.206

4. Boundary integral formulation207

Consider steady, two-dimensional potential flow of an incompressible fluid in a channel
with upstream velocity U , and a prescribed length scale L. The physical plane is shown
in figure 4(a). The flow is non-dimensionalised using these characteristic scales, and we
introduce complex physical coordinates, z “ x` iy, with x pointing along the channel, as
well as a complex potential w “ φ` iψ. The governing equations for the fluid are then

Laplace’s equation : ∇2φ “ 0 inside the fluid, (4.1a)

Kinematic condition : ∇φ ¨ n “ 0 on solid/free surfaces, (4.1b)

Bernoulli’s equation : F2|∇φ|2{2` y ` Tκ “ const. on the free surface. (4.1c)

In the kinematic condition, n denotes a normal of the channel boundary and, in Bernoulli’s208

equation, the curvature, κ, is defined to be positive when the centre of curvature lies209

inside the fluid. The derivation of this standard governing formulation is given in e.g.210

Chap. 2 of Vanden-Broeck (2010).211

In the analysis of the potential plane, it is convenient to choose the length scale to be212

L “
hup
π
, (4.2)
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where hup is the upstream height of the channel, and thus the non-dimensional height is213

set to π. We also non-dimensionalise the velocity according to its upstream value U , so214

that the non-dimensional flux is π. Setting ψ “ 0 on the free surface, it must then follow215

that ψ “ ´π on the channel bottom and consequently, the flow lies within a strip PQRS216

in the w-plane shown in figure 4(b).217

It is convenient to further map the strip-flow in the w-plane to the upper half-ζ-plane218

using the conformal map219

ζ “ ξ ` iη “ e´w “ e´pφ`iψq. (4.3)

Thus, the free surface and channel bottom are both mapped to η “ 0, with ξ ą 0 the free220

surface and ξ ă 0 the channel bottom. The flow in the upper half-ζ-plane is shown in221

figure 4(c), with the solid and fluid boundaries, marked PQRS, lying along the real axis.222

Next, we introduce the complex velocity, dw
dz by writing223

dw

dz
“ qe´iθ, (4.4)

for fluid speed q and streamline angle, θ. Below, we shall recast the original system (4.1)224

in terms of q and θ, either written as functions of w or ζ.225

Following the standard procedure, the requirement that φ satisfies Laplace’s equation226

(4.1a) is equivalently re-stated as a boundary-integral relationship between q and θ applied227

on the fluid and solid surfaces. For points on the free-surface, ξ ě 0, this allows us to228

write [cf. eqn (3.4) in Trinh & Chapman 2013a]229

log qpξq “ ´
1

π

„ˆ 0

´8

θpξ1q

ξ1 ´ ξ
dξ1 `´

ˆ 8
0

θpξ1q

ξ1 ´ ξ
dξ1



. (4.5)

Above, the first integral on the right hand-side is known (since we assume that the channel230

geometry is specified via θ for ξ ď 0). The second integral is the Hilbert transform applied231

to the free surface, and the dash across the integral sign indicates a principal value.232

In this work, we consider for convenience the case of flow over a right-angled step, given233

by specifying the streamline angles,234

θpξq “

$

’

&

’

%

0 ´8 ă ξ ă ´b,

π{2 ´b ă ξ ă ´1,

0 ´1 ă ξ ă 0,

(4.6)

where b ą 1 and ξ “ ´b is the image of the stagnation point of the step in the ζ-plane.235

Substitution of (4.6) into the first integral on the right hand-side of (4.5) and integrating236

yields237

´
1

π

ˆ 0

´8

θpξ1q

ξ1 ´ ξ
dξ1 “ log qs where qspξq ”

ˆ

ξ ` b

ξ ` 1

˙1{2

. (4.7)

In (4.7), we have defined the important ‘shape-function’, qs, which encodes the channel-238

bottom geometry and plays a critical role in the work that follows.239

Returning to the second integral on the right hand-side of (4.5), we shall also define240

the Hilbert transform operator H, defined on the free surface ξ ě 0 by241

Hrθspξq ” ´
1

π
´

ˆ 8
0

θpξ1q

ξ1 ´ ξ
dξ1, (4.8)

so that the boundary integral equation (4.5) can be written compactly as242

log qpξq “ log qspξq `Hrθspξq, (4.9a)
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which is to be satisfied along the free surface, ξ ě 0.243

To close the system, Bernoulli’s equation in (4.1c) is written in terms of q and θ using244

(4.4). Thus, along the free surface ψ “ 0, we have245

F2

„

q2
dq

dφ



´ T

„

q2
d2θ

dφ2
` q

dq

dφ

dθ

dφ



“ ´ sin θ. (4.9b)

The object now is to solve the integro-differential system given by the boundary integral246

(4.9a) and Bernoulli’s equation (4.9b) for the unknowns, q and θ, along the free surface247

given by ξ ě 0 or equivalently ´8 ă φ ă 8 and ψ “ 0. Note however that for248

computational purposes we must write (4.8) as249

Hrθspφq “ ´
1

π

˜ˆ ´Φ
´8

`´

ˆ Φ

´Φ

`

ˆ 8
Φ

¸

θpe´φ
1

q

e´φ1 ´ e´φ
p´e´φ

1

qdφ1, (4.10)

where ˘Φ are the limits of the computational domain. The standard approach is to discard250

the first and third terms in (4.10), which is known to introduce errors into the solution.251

These errors can be reduced by instead approximating the first and third terms by252

asymptotic solutions in the far-field, which was done for flow over a cylinder in Grandison253

& Vanden-Broeck (2006). Thus the numerical treatment of the Hilbert transform is key254

to satisfying the radiation condition.255

4.1. Challenges in solving the full problem256

The main challenge that confronts us in solving (4.9) is illustrated by figure 5(a) which257

shows two numerical solutions; one without surface tension (T “ 0, dashed) and one258

with small amount of surface tension (T “ 2.5 ˆ 10´3, solid). To produce figure 5, we259

discretise equations (4.9) using finite differences and solve the resulting nonlinear system260

using Newton’s method. This approach is used in the majority of the works referenced261

above (Forbes & Schwartz 1982; Forbes 1983; King & Bloor 1987) and is described in262

detail in Vanden-Broeck (2010).263

Figure 5(b) shows the Fourier spectra of the solutions qpφq, divided into either upstream264

or downstream components. Spectra (i) and (ii) correspond to T “ 0, while spectra (iii)265

and (iv) correspond to T ‰ 0. In this and all subsequent figures, Fourier spectra are266

calculated as follows: first, the solution, q, is interpolated onto a regular grid and the267

relevant upstream (φ ă 0) or downstream portions (φ ą 0) extracted. The Fourier268

transform is taken and the results shown as a bar graph. On the (angular) wavenumber269

axis of each spectrum, we mark predicted gravity and capillary wavenumbers with a ‘G’270

and ‘C’ as required, according to the predictions of sections 2 and 3.271

There are three types of error visible in figure 5.272

(i) The gravity-only flow (dashed curve) should consist of constant-amplitude waves273

downstream and a flat (or exponentially decaying) surface upstream. However, the274

dotted horizontal guides show that the downstream waves are distorted over the275

last few periods. This distortion is primarily associated with errors in evaluating276

the truncated Hilbert transform (4.8). The transform is expressed as an integration277

over the whole real line, but must be truncated to a finite computational domain.278

(ii) Still for T “ 0, the Fourier spectrum (i) shows that there are small gravity279

waves upstream. The radiation condition requires that only capillary waves exist280

upstream, so these waves are unphysical.281

(iii) Such errors become even more problematic for the flow with surface tension,282

T “ 2.5 ˆ 10´3. The solid curve in figure 5(a) demonstrates the presence of283

spurious waves upstream, as seen by the smaller inset. For this value of pF,Tq284
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(a) Boundary-integral solutions for flow over a step of non-dimensional height 0.2 at Froude
number F2

“ 0.5, for T “ 0 (dashed curve) and T “ 2.5ˆ 10´3 (solid curve) with N “ 800
grid points. Shown is the surface speed q, as a function of the velocity potential φ.
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(b) Fourier spectra for q, showing, for (i)-(iv) respectively: the upstream gravity flow,
downstream gravity flow, upstream gravity-capillary flow, and downstream gravity-capillary
flow. On each spectrum, ‘G’ denotes the gravity wavenumber predicted by the dispersion
relation (3.3). The predicted capillary wavenumber for the T ą 0 flow is k “ 198.

Figure 5: Solutions to the boundary-integral equations (4.9).
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the non-dimensional capillary wavenumber is k “ 198, but the upstream Fourier285

spectrum in (iii) shows that the dominant frequency is approximately one. Just286

as in the gravity-only flow, the solution does not satisfy the radiation condition.287

Furthermore, spectrum (iv) confirms that the downstream waves are not of the288

correct gravity-associated wavenumber, either.289

Convergence of the numerical scheme is more difficult at larger values of T. We emphasize290

that although the capillary waves shown in the smaller inset of figure 5(a) are not well291

resolved, the issues (i) to (iii) are not functions of the grid spacing or numerical tolerances.292

Our figure 5 takes inspiration from figure 3 of Forbes (1983), who provided some293

initial discussion of the radiation problem for flow over a semi-circular cylinder. Forbes294

(1983) further indicated that without knowledge of the proper boundary conditions, it295

was unclear how numerical solutions could be obtained for more nonlinear flows. Similar296

comments on the difficulty of the radiation problem appear in the works of e.g. Forbes297

& Schwartz (1982), Scullen (1998), Părău & Vanden-Broeck (2002), and Grandison &298

Vanden-Broeck (2006) for a variety of free-surface problems.299

5. Reduced models for gravity-capillary waves300

The preceding discussion makes clear that one problem with numerical computation of301

steady-state gravity-capillary waves is the truncation of the Hilbert transform, H, and302

the inability to correctly apply the radiation condition. In fact, as was argued by Trinh303

(2016, 2017), in the low-Froude and low-Bond limit εÑ 0, the Hilbert transform can be304

systematically removed and the governing system (4.9) reduced. Here we present only305

the ideas that are most relevant to the reduction. Detailed calculations are given in the306

appendix. A full comparison of reduced models for gravity-only flow is given in Trinh307

(2017).308

5.1. Removing the Hilbert transform309

For the purpose of developing the reduced model, it is important to consider three main310

points that emerge as a result of exponential asymptotics (Chapman & Vanden-Broeck311

2006). Firstly, in the limit εÑ 0 free-surface waves are associated with singularities in the312

analytic continuation of the leading-order solution qs, given by (4.7). These singularities313

lie in the complex plane, so it is necessary to write complex versions of the governing314

equations. That is, we extend φ to the complex plane, and re-write φ ÞÑ w P C. Similarly,315

we re-write ξ ÞÑ ζ P C. Care must be taken when defining the Hilbert transform (4.8) in316

the complex plane so as to preserve the principal-value behaviour as ζ approaches the317

real axis. This is accomplished through a small deformation of the path of integration318

about the point of evaluation, which contributes a residue term.319

The complex versions of the governing equations are thus

βεq2q1 ´ βτε2
`

q2θ2 ` qq1θ1
˘

` sin θ “ 0, (5.1a)

log q ´ iθ ` Ĥrθs ´ log qs “ 0, (5.1b)

where primes p1q denote differentiation in w and where we have defined320

Ĥrθspζq “
1

π

ˆ 8
0

θpξ1q

ξ1 ´ ζ
dξ1. (5.2)

Now in the system (5.1), we have moved from the free surface, where q, φ P R, to321

the complex upper-half plane, where q and φ “ w P C, and so solutions are complex-322

valued. To return to the free surface, where the solution is real, we must account for the323
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contribution from the lower-half plane. This is done by adding q to its complex conjugate,324

q˚. Understandably, these ideas of analytic continuation are subtle, but for more details,325

we refer readers to §5.1 and §8.4 of Trinh (2017).326

Next, in the limit εÑ 0, we expect that the solution, q, can be split into a base series327

qr which describes the mean flow, and a remainder term q̄ which describes the waves328

[cf. Ogilvie (1968); Chapman & Vanden-Broeck (2006)]. The base series is the regular329

asymptotic expansion in powers of ε with, say, N terms, and the remainder is OpεN q.330

Thus:331

q “ qr ` q̄ “
N´1
ÿ

n“0

εnqn ` q̄. (5.3)

We also do the same for θ. The inclusion of the remainder term in (5.3) is necessary332

because using a regular expansion alone predicts a flat surface at every algebraic order. In333

the low-speed limit, the waves are exponentially small and must be found with specialised334

techniques from exponential asymptotics.335

Finally, a careful analysis of the governing equations using the split solution (5.3)336

reveals that computation of the mean speed qr only involves the Hilbert transform of337

known terms, that is Ĥrθrs. Further, the remainder term q̄, and hence the form of the338

waves, does not depend on the Hilbert transform of θ̄ at leading order. Therefore the339

problematic term Ĥrθ̄s can be ignored in an asymptotically consistent way in the limit as340

εÑ 0. Equation (5.1b) reduces to the simple relationship341

q̄ “ iqsθ̄, (5.4)

which can be substituted into (5.1a) to give an ordinary-differential equation (ODE) for342

q̄, which is known as a reduced model.343

5.2. Choosing the truncation value N344

The derivation of the reduced model for an arbitrary truncation value N is given in345

the appendix, but here we focus on the case N “ 2. This particular value of N is chosen346

because it captures the functional form of the waves (Trinh 2017). In the limit εÑ 0, we347

expect the form of the waves to be348

q̄ „ AFpwqe´χpwq{ε. (5.5)

If the base series (5.3) is truncated at N “ 1, then the resulting N “ 1 reduced model349

produces a solution with the correct phase function χpwq. The N “ 2 reduced model350

produces a solution where both χ and F are correct. To obtain the constant pre-factor351

A, one must truncate the base series at the optimal point N pεq, where it is shown in352

Chapman & Vanden-Broeck (2006) that N Ñ8 as εÑ 0. The choice of N “ 2 therefore353

correctly predicts the form of the waves, up to a multiplicative constant A (Trinh 2017).354

5.3. The N “ 2 reduced model for the low-Froude low-Bond limit355

The first two terms in the truncated base series (5.3) are:

θ0 “ 0, (5.6a)

q0 “ qs, (5.6b)

θ1 “ ´βq
2
s

dqs
dw

, (5.6c)

q1 “ qs

´

iθ1 ´ Ĥrθ1s
¯

, (5.6d)
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Figure 6: Comparison of the full boundary-integral equations (4.9) (dashed curve) and
the N “ 2 reduced model (5.7) (solid curve) for gravity-only flow. The step-height b “ 2
and ε “ 0.2 (β may be set to unity without loss of generality). The insets show that the
reduced model produces constant-amplitude waves downstream.

where Ĥrθ1s may be evaluated explicitly, so that all terms in (5.6) may be written in
closed form. Using the relationship (5.4), we may re-write (5.1a) as an equation for q̄, the
N “ 2 reduced model. This last substitution involves a fair amount of algebra, and so
the derivation of this equation is outlined in the appendix. The N “ 2 reduced model is
given by

iβτε2 pqs ` εq1q q̄
2 `

`

βεq2s ` 2βε2qsq1 ´ iβτε2q1s
˘

q̄1

`

ˆ

´
i

qs
` ε

iq1
q2s
` 2βεqsq

1
s

˙

q̄ ` ε2
ˆ

iq21
2q2s

` 2βqsq
1
sq1 ` βq

2
sq
1
1

˙

“ 0. (5.7)

In deriving (5.7) we have chosen to include terms only up to Opεq, bearing in mind the356

ansatz (5.5) which means that derivatives of q̄ contribute a factor of 1{ε. The leading-order357

forcing term is Opε2q. The reduced model (5.7) is a linear ODE with known coefficients,358

to be solved for q̄. Thus (5.7) is computationally much more convenient than the full359

system (4.9), as the latter includes a non-local term via the Hilbert transform. Moreover,360

it is much simpler to apply the radiation condition to the reduced model than to the full361

system, and so we can be sure of selecting the unique physically-relevant solution.362

Figure 6 compares numerical solutions to the full system (4.9) (dashed curve) and the363

reduced model (5.7) (solid curve) for gravity-only flow (i.e. with τ “ 0). In this case,364

the radiation condition requires that the upstream surface is flat and it is sufficient to365

solve (5.7) by imposing the condition q̄ “ 0 at the first mesh point (only one condition is366

needed as the gravity-only problem is first-order). Note that the reduced model produces367

constant-amplitude waves downstream, whereas the boundary-integral formation does not368

[cf. figure 5(a)]. The reduced model therefore produces constant-amplitude waves of the369

correct frequency, but nevertheless does not agree with the boundary-integral solution370

downstream. This is due to truncation at N “ 2 terms.371
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5.4. Choosing the boundary conditions372

For gravity-capillary flows, it is insufficient to treat (5.7) as an initial-value problem373

(i.e. ‘shooting’ from upstream). In particular, Type I solutions have constant-amplitude374

capillary waves that extend upstream to ´8, so the values of q̄ and q̄1 at the first mesh375

point are not known a priori. Even in regimes where the upstream waves decay, however,376

we found that enforcing a flat surface at the first mesh point leads to inaccurate and377

unphysical results. Instead, we treat (5.7) as a boundary-value problem with Sommerfeld378

boundary conditions at either end, using wavenumbers that satisfy the radiation condition.379

These wavenumbers were derived in section 3. Thus we solve (5.7) with the boundary380

conditions381

q̄1 ` ikq̄ “ 0 (5.8)

at the first and last mesh points, where k is the relevant wavenumber given by (3.4)382

and (3.5) upstream and downstream respectively. By imposing (5.8) we have restricted383

ourselves to flows where the far-field solution is a train of linear waves (either constant-384

amplitude or decaying). However this is clearly not the only possibility, and indeed (5.8)385

only allows us to recover one of the four new classes of waves described in Trinh &386

Chapman (2013b).387

6. Results388

Here we present numerical results for the N “ 2 reduced model, and explore the low-389

Froude, low-Bond limit of the bifurcation diagram in figure 3 to validate the existence of390

the new (Type III) solutions described in Trinh & Chapman (2013b). With the boundary391

conditions (5.8) applied at either end of the computational domain, we are able to obtain392

good solutions to the N “ 2 model for a wide range of parameters. By keeping the values393

of β, b and ε fixed (at 1, 2 and 0.5 respectively) and increasing τ we move up the vertical394

axis on figure 3 and vary the value of A “ 4τ{β.395

Figure 7 shows the two classical solutions that exist when the geometry is linear, but396

computed with b “ 2 (i.e. in a nonlinear geometry). Figure 7(a) shows a type I solution397

with τ “ 0.24 and thus A “ 0.96 ă 1, with constant-amplitude waves upstream and398

downstream. We see that the downstream and, via the inset, upstream solutions are399

both correctly resolved. The Fourier spectra for this solution are given in figure 9(a, b),400

and confirm that the dominant wavenumbers agree with the predictions from section401

3, denoted G and C, and thus that the radiation condition is satisfied. However, the402

downstream solution is not completely ‘clean’ and small disturbances are visible on top403

of the main gravity waves, visible as a small peak in the spectrum at k « 12; this is404

shown with an arrow in figure 9(b) and is discussed further in section 6.1. Figure 7(b)405

shows a Type II solution, with τ “ 1.5 and thus A “ 6 ą b2. This is the solitary-wave406

solution from Rayleigh’s original classification, and has waves that decay in the far-field407

both upstream and downstream.408

Figure 8 shows a Type III solution with τ “ 0.255 and thus A “ 1.02 P r1, b2s. This409

is one of the new waves from Trinh & Chapman (2013b), predicted to exist when the410

step height, b´ 1, is Op1q in size. There are constant-amplitude waves downstream, but411

upstream the waves decay away from the step. This is shown in greater detail in the412

inset. The region over which the waves decay is predicted to increase as AÑ 1, and tests413

with various values of τ (not shown) confirm this. The downstream spectrum is shown in414

figure 9(c); and shows that the dominant frequency of the downstream solution is correct,415

again with a small secondary peak near the label C˚.416

In summary, the careful application of the Sommerfeld boundary condition (5.8) to the417
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Figure 7: Solutions to the N “ 2 reduced model (5.7) as a boundary-value problem (BVP)
with Sommerfeld conditions (5.8) at either end. The parameters are tb, ε, βu “ t2, 0.5, 1u
and the value of τ is chosen so that each subfigure shows a solution of a different type
(see figure 3). (a) Type I solution with τ “ 0.24, (b) Type II solution with τ “ 1.5.
Fourier spectra for solution (a) are shown in figure 9(a)-(b).
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Figure 8: Type III solution to the N “ 2 reduced model, representing one of the new
classes of waves from Trinh & Chapman (2013b). The parameters are as in figure 7, but
with τ “ 0.255 so that 1 ă A ă b2. The Fourier spectrum of the downstream solution is
shown in figure 9(c).
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N “ 2 reduced model (5.7) confirms the existence of one new class of waves predicted in418

Trinh & Chapman (2013b) for flow over a rectangular step. These solutions satisfy the419

radiation condition via the Sommerfeld boundary condition, which uses wavenumbers420

derived in section 3. This is confirmed by the Fourier spectra in figure 9. However, when421

ε “ Op1q these wavenumbers are no longer valid, and this leads to interference in the422

solutions. We will now discuss this in more detail.423

6.1. The appearance of beating for larger values of ε424

Both the dispersion relation (3.3) and the N “ 2 reduced model (5.7) are derived from425

the full water-wave problem in the limit εÑ 0. Thus for ε sufficiently small, solutions to426

(5.7) computed using (3.3) satisfy the radiation condition. For larger values of ε, spurious427

secondary waves appear in the N “ 2 model, creating the ‘beating’ effect seen downstream428

in figure 7(a). The secondary waves arise due to interference between the two linearly429

independent solutions of the second-order ODE (5.7), which diverges from solutions of430

the full problem when ε “ Op1q. The beating is an indication that the reduced model431

is being used outside its range of validity, as the low-speed dispersion relation (3.3) no432

longer predicts the far-field behaviour of the solution.433

To confirm this, we can derive the far-field behaviour of (5.7) directly from the equation
itself, and see that it differs from (3.3) when ε “ Op1q. If we let |φ| Ñ 8, both q0 “ qs
and q1 tend to constant values:

qs Ñ 1 and q1 Ñ 0 as φÑ ´8,

qs Ñ
?
b and q1 Ñ β

˜

b2 ´
?
b

3π

¸

as φÑ8, (6.1)

so that far away from the step, (5.7) is a linear ODE with constant coefficients. The two434

linearly independent solutions have wavenumbers given by435

K˘ “ i
q3sβ ` 2q1q

2
sβε˘

?
∆

2qsβεpqs ` εq1qτ
, (6.2a)

where436

∆ “ β
´

q4sβ pqs ` 2εq1q
2
´ 4pqs ´ εq1qpqs ` εq1qτ

¯

. (6.2b)

Comparing (6.2a) with (3.3), we see that K˘ agrees with the upstream wavenumber kup437

for all ε, but only agrees with the downstream wavenumber kdown in the limit εÑ 0. Thus438

if kup and kdown are used in the Sommerfeld boundary conditions when ε “ Op1q, beating439

is observed due to the discrepancy between K˘ and kdown. The downstream spectra shown440

in figure 9(b)-(c) confirm that the secondary waves visible in figures 7(a) and 8 have the441

frequency predicted by (6.2a) (marked C* on the axis). Thus the interference visible in442

the solution is due to the use of kdown in the downstream boundary condition in a regime443

where the far-field solution has frequency K`.444

Thus the appearance of beating is a sign that the N “ 2 equation is reaching its limit445

of validity. Recall that both the dispersion relation (3.3) and the N “ 2 reduced model446

are valid asymptotic limits of the full problem when εÑ 0; however, the wavenumbers447

K˘ given in (6.2a) are valid for the N “ 2 equation at any ε. Thus if the reduced model448

is to remain relevant in the context of the full problem, it is important that ε is kept449

small enough that (3.3) is still valid and beating does not occur.450
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Figure 9: (a) Upstream and (b) downstream Fourier spectra for figure 7(a). (c)
Downstream Fourier spectrum for figure 8. The horizontal axes correspond to
wavenumber k and the vertical axis indicates the absolute value of the k-th mode. Labels
G and C correspond to gravity and capillary wavenumbers from section 3, while C˚

corresponds to the wavenumber from section 6.1.

7. Conclusions451

In order to compute state-state gravity-capillary flow past nonlinear geometries,452

specialised methods are needed to select the solution that satisfies the radiation condition.453

In section 5, we showed that the full problem can be reduced to a linear ODE using454

techniques from exponential asymptotics to justify removing the problematic Hilbert455

transform term. This reduction is valid in the low-Froude, low-Bond limit, but places456

no restriction on the size of the step. This ODE was still found to be very sensitive in457

the sense that precise boundary conditions were needed to select solutions that satisfy458

the radiation condition, but this is computationally simpler to implement in the reduced459

model than in the boundary-integral framework of the full problem. The relevant boundary460

conditions were derived in section 2 by considering different dispersion relations up- and461

downstream.462

With these boundary conditions, we were able to verify numerically the existence of463

new waves from Trinh & Chapman (2013b) for flow over a right-angled step, and to464

confirm that Rayleigh’s original bifurcation curve separates into a band when the size of465

the obstacle is too large to be linearised about. This was done in section 6, where one of466

the new classes of waves (decaying upstream, constant-amplitude downstream) was found467

to exist in an intermediate region between the two classical solutions [cf. figure 8].468

7.1. Difficulties in applications to the full problem469

One of the aims of developing these reduced models is to see whether their solutions can470

provide a starting guess for the iterative methods needed to solve the system of equations471

that comprises the full boundary integral problem (5.1).472

The authors ran several numerical experiments, using solutions from the N “ 2 equation473

(5.7) as starting guesses for the full problem. Experiments were run with a large number474
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(« 2000) of grid-points and moderate parameter values (b “ 1.7, ε “ 0.5) but these475

failed to converge to the correct solutions. Even on occasions where Newton’s method476

produced a result, the upstream wavenumbers were in serious error, and the accuracy is477

not significantly improved compared to solutions obtained using the initial guess θ “ 0.478

As discussed in section 5.2, the N “ 2 model produces solutions that differ from the full479

problem by a multiplicative constant. This can be seen in the gravity-only case in figure480

6, which compares solutions of the N “ 2 model and the full problem. Although the481

reduced model captures the wavelength correctly, there is a persistent error in amplitude.482

It is therefore not guaranteed that the two solutions would converge under Newton’s483

method. We do not believe that this conclusion should be regarded as disappointing per484

se, but rather that it illustrates an intrinsic difficulty that has not been noted before in485

an equally precise fashion.486

The sensitivity of the reduced model highlights both the importance and the difficulty487

of numerically satisfying the radiation condition, and the difficulties in dealing with the488

full boundary integral problem provide further evidence that the asymptotic approach489

developed in Trinh (2017) and applied here is a useful one for the study of gravity-capillary490

flows. We will conclude with a brief overview of different approaches to the radiation491

problem.492

7.2. A general view of the radiation problem493

In regards to the general radiation problem, we believe there are two possible responses.494

The first is to design schemes that profit from some asymptotic or analytical property of495

the solution in order to impose effective boundary conditions on the numerical solver. This496

is what we have done here; first in simplifying the governing equations to a form that is497

asymptotically valid at low speeds, and then application of known properties derived using498

exponential asymptotics. The scheme of e.g. Grandison & Vanden-Broeck (2006), where499

the upstream solution is matched to a truncated Fourier series with unknown coefficients500

is also of this spirit. Our work here has clarified to what extent such asymptotically501

applied radiation conditions will work and to what extent are they disrupted [cf. section502

6.1].503

In practice, researchers may instead choose to add additional effects (physical or504

phenomenological) in order to regularize the boundary conditions. For instance, one can505

solve the time-dependent Euler equations and numerically investigate the tÑ8 limit as506

in Părău et al. (2010). Or one can apply small artificial damping, µ, so as to destroy the507

capillary waves upstream as was originally done in Rayleigh (1883). These procedures508

may be effective in answering questions regarding the physical phenomena, but it may509

be extremely difficult to recover certain mathematical structures of the full steady-state510

problem. For instance, time-dependent formulations will only recover stable configurations511

(unless, perhaps, time is reversed), or viscous formulations may alter the structure of512

solutions in an irreparable way. Simply said, it is unclear to what extent the limits tÑ8513

or µÑ 0 are distinguished, and whether they account for singular effects in the entire514

space of steady-state solutions.515

Appendix A. Deriving the N “ 2 reduced model516

Here, we derive the N “ 2 reduced model given by (5.7). We first outline the argument517

from Trinh (2017), which justifies the removal of the Hilbert transform for the case of518

gravity-only flow. Then we will describe the algebra that leads to the reduced model for519

gravity-capillary flow, and include a Mathematica routine that allows for the derivation520

of higher-order reduced models.521
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A.1. Removing the Hilbert transform: outline522

The analysis required to justify the removal of the Hilbert transform can be easier
performed on the gravity-only problem where the equations are first order. Thus we set
τ “ 0 in the complex governing equations (5.1), and take β “ 1 without loss of generality.
The dependent variables qpwq and θpwq are then split into an N -term base series and a
remainder as in (5.3). The governing equations are then

ε
`

q2rq
1
r ` 2qrq

1
r q̄ ` q

2
r q̄
1
˘

` sin θr ` θ̄ cos θr “ Opq̄2, θ̄2q, (A 1)

log qr ´ log qs `
q̄

qr
` Ĥrθrs ` Ĥrθ̄s ´ i

`

θr ` θ̄
˘

“ Opq̄2q. (A 2)

These may be combined to give the integro-differential equation523

ε

ˆ

q1r ` 2
q1r q̄

qr
` q̄1

˙

`
sin θr
q2r

´
cos θr
q2r

ˆ

i log
qr
qs
` i

q̄

qr
` θr ` iĤrθrs ` iĤrθ̄s

˙

“ Opq̄2, θ̄2q.

(A 3)
Expanding coefficients in powers of ε, and using the fact that θ0 “ 0 and q0 “ qs, equation524

(A 3) becomes [cf. (7.2a) in Trinh (2017)]525

εq̄1 `

„

´
i

q3s
` ε

ˆ

2
q1s
qs
` 3i

q1
q4s

˙

`Opε2q


q̄ “ Rpw; Ĥrθ̄sq `Opθ̄2, q̄2q. (A 4)

The forcing term R may be written526

Rpw; Ĥrθ̄sq “ ´Ebern ` Eint
cos θr
q2r

, (A 5)

where Ebern and Eint are the remainders after the complex governing equations (5.1) have527

been satisfied to N terms by the base series. Note that this corrects equation (7.2) in528

Trinh (2017), where Ebern was multiplied by cos θr{q
2
r .529

Equation (A 4) can be solved using the method of integrating factors, giving530

εq̄pwq “ QpwqIpwqe´χpwq{ε, (A 6)

where

Qpwq “ const.ˆ
1

qspwq2
exp

ˆ

´3i

ˆ w

w˚

q1ptq

q4sptq
dt

˙

(A 7a)

χpwq “ ´i

ˆ w

w0

dt

q3sptq
(A 7b)

Ipwq “

ˆ w

´8

Rpt; Ĥrθ̄sq

ˆ

1

Qptq
`Opεq

˙

eχptq{εdt. (A 7c)

Here w0 is a singularity for qs in the complex plane and w˚ is an arbitrary starting point531

for the integration.532

As written, (A 6) is not a closed expression for q̄ since it involves taking the Hilbert533

transform of the unknown θ̄ in Ipwq. Note, however, that the exponent χ, which governs534

the phase of the waves, does not depend on the Hilbert transform at all. The same is535

true for gravity-capillary flow. As we outline below, Ĥ is asymptotically sub-dominant in536

(A 7c) and so the problem can be vastly simplified.537

The function (A 7c) can be analysed using the method of steepest descent (see Trinh538

(2016) for more details) in the limit as ε Ñ 0, where the integral is dominated by the539

contribution from the endpoints and the singularity w0. Expansion of the integrand at540

the endpoints shows that the contributions here only serve to provide additional algebraic541
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terms to the expansion and, as is much easier seen through a normal asymptotic expansion,542

these depend on taking the Hilbert transform of lower-order terms. Thus Ĥrθrs is crucial543

to determining the later terms of the base series qr. However, when the contribution from544

the singularity is analysed, we note that545

Ĥrθ̄spw0q “
1

π

ˆ 8
0

θ̄pξ1q

ξ1 ´ e´w0
dξ1 (A 8)

is small compared to the other terms in (A 5). This is because the singularity w0 lies546

off the free surface, and so is complex valued. The denominator of the integrand is thus547

bounded away from zero, and further the remainder θ̄ is expected to be OpεN q on the548

free surface, where it is evaluated during the integration. Thus, in the steepest descent549

analysis, the singularity produces the waves without depending on Ĥrθ̄s at leading order550

and so these terms can be justifiably removed from the equations without compromising551

the exponent or the structure of the waves.552

A.2. Derivation of the N “ 2 model553

The reduced model used for the numerical results in section 6 is obtained by truncating
the base series after N “ 2 terms. Using the substitution (5.3), to leading-order in ε the
complex governing equations (5.1) become

sin pθ0q “ 0,

log q0 ´ iθ0 ` Ĥrθ0s ´ log qs “ 0, (A 9)

whence θ0 “ 0 and q0 “ qs. At the next order,

βq2sq
1
s ` θ1 “ 0,

q1
qs
´ iθ1 ` Ĥrθ1s “ 0, (A 10)

which gives θ1 and q1 as in (5.6c) and (5.6d).554

To derive the reduced model, we then substitute

θ “ ´i
´

log pq{qsq ` Ĥrθs
¯

into (5.1a) and expand in powers of ε, with the base series known. By construction, the555

leading-order forcing term is Opε2q. The coefficients of q̄ and its derivatives are also556

expanded in powers of ε, and the number of terms retained reflects the ansatz (5.5) which557

indicates that every derivative of q̄ contributes a factor of 1{ε. For ease of use, we show in558

Table 1 how the reduced model can be derived in the coding language Mathematica.559
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