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Abstract

Preterm infant brain activity is discontinuous; bursts of activity recorded using EEG (electro-

encephalography), thought to be driven by subcortical regions, display scale free properties

and exhibit a complex temporal ordering known as long-range temporal correlations

(LRTCs). During brain development, activity-dependent mechanisms are essential for syn-

aptic connectivity formation, and abolishing burst activity in animal models leads to weak

disorganised synaptic connectivity. Moreover, synaptic pruning shares similar mechanisms

to spike-timing dependent plasticity (STDP), suggesting that the timing of activity may play a

critical role in connectivity formation. We investigated, in a computational model of leaky

integrate-and-fire neurones, whether the temporal ordering of burst activity within an exter-

nal driving input could modulate connectivity formation in the network. Connectivity evolved

across the course of simulations using an approach analogous to STDP, from networks with

initial random connectivity. Small-world connectivity and hub neurones emerged in the net-

work structure—characteristic properties of mature brain networks. Notably, driving the net-

work with an external input which exhibited LRTCs in the temporal ordering of burst activity

facilitated the emergence of these network properties, increasing the speed with which they

emerged compared with when the network was driven by the same input with the bursts ran-

domly ordered in time. Moreover, the emergence of small-world properties was dependent

on the strength of the LRTCs. These results suggest that the temporal ordering of burst

activity could play an important role in synaptic connectivity formation and the emergence of

small-world topology in the developing brain.

Introduction

Network connectivity shapes activity and modulates information transfer in the brain. For

example, small-world network architecture allows efficient integration and segregation of

information [1], and hub neurones or regions play a key role in carrying information
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throughout the brain [2]. This structured connectivity emerges during early human brain

development; a small-world modular network organisation with hub nodes can be observed in

preterm diffusion and functional MRI, with a significant increase in small-world topology

between 30 and 40 weeks’ gestation [3, 4].

The major period of connectivity formation and refinement in the cortex starts during foe-

tal development from approximately 20 weeks’ gestation and continues for the first few years

of postnatal life [5, 6]. MEG recordings of foetal brain activity and EEG recordings from pre-

term infants are characterised by discontinuous activity—bursts of slow wave oscillations with

nested high frequency activity are interspersed within periods of apparent electrical silence [7].

These bursts can occur in response to sensory stimulation [8–10], or following movement

[11], but the majority occur spontaneously in the background EEG [11]. Spontaneous bursts

are thought to originate from regions such as the subplate [12, 13], a transient population of

neurones present in early development [14], and may also relate to activity in the insula [15].

Neuronal activity is crucial for connectivity formation [16], and blocking or reducing burst

activity during critical developmental periods, for example, through removal of the subplate in

animal models, leads to abnormal cortical network connectivity, with weak thalamocortical

connectivity [17] and loss of cortical columnar structure [18, 19].

The temporal organisation of neuronal activity in early development may also play a key

role in connectivity formation—rearing fish in an environment with stroboscopic illumination

prevents the refinement of retinotectal maps [20] and periodic electrical stimulation of the fer-

ret optic nerve results in altered orientation selectivity in the cortex [21]. Moreover, activity-

dependent mechanisms at the synaptic level are key to connectivity refinement in the develop-

ing brain, and synaptic pruning shares similar molecular pathways with long-term depression

(LTD) in the adult brain [22], suggesting that the temporal organisation of activity may play a

critical role in connectivity formation. Recently it has been demonstrated that the burst activity

in preterm EEG exhibits scale-free properties [23], and that the bursts do not occur randomly

in time but follow a complex temporal ordering, known as long-range temporal correlations

(LRTCs) [24]. Thus, in the preterm neonatal brain, the timing of any given EEG burst is corre-

lated with the time of occurrence of all previous bursts of EEG activity [24]. Whether this cor-

related temporal structure of the timing of burst activity affects connectivity formation in the

developing brain is an important open question.

Here we consider this question by investigating connectivity formation in a simple activity-

dependent neuronal network model of the cortex. Motivated by the excitatory role of GABA

within the developing brain [25], we consider a model where all connections are excitatory.

We assume the cortex is driven by bursts of activity from a non-cortical source such as the sub-

plate [12, 13]. We compare connectivity formation in a network driven by bursts which exhibit

LRTCs, to the network connectivity that emerges when the network is driven by bursts with

random temporal ordering. This preserves the inter-burst interval distribution whilst changing

the temporal correlations in the ordering of the inter-burst intervals. We also compare with

the connectivity in networks driven by periodic bursts. Finally, we investigate the relationship

between network connectivity parameters and the strength of LRTCs within the burst tempo-

ral organisation. We test the hypothesis that LRTCs in the burst activity of the external input

promotes the emergence of small-world connectivity in the developing cortex.

Results

We investigated connectivity formation in directed networks of leaky integrate-and-fire neu-

rones. Whilst this work is motivated by the observation of LRTCs in the EEG of preterm

infants, i.e. an observation at the macroscopic scale, LRTCs have been demonstrated at
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multiple levels of the nervous system in adults, including in the spontaneous spiking of indi-

vidual neurones [26]. Although the external input which provides the LRTCs within our

model is on the macroscopic scale, with bursts originating from non-cortical sources such as

the subplate [12, 13], our focus here is on the effect such macroscopic phenomenon has on

connectivity formation at the microscopic (neuronal) scale.

Individuals neurones in our model received both this external input and input from con-

nected neurones when these neurones fired. To ensure that neuronal firing did not saturate

the network or die out completely, synaptic weights were updated according to the number of

connections within the network (see Methods), which can be considered a form of homeo-

static plasticity [27]. The external input to the network was a bursty input, Fig 1A. In all cases

the bursts themselves were of a fixed duration and amplitude; differences in the driving input

were only reflected in the temporal ordering of the bursts, i.e, in the ordering of the inter-burst

intervals (IBIs)—the time between the bursts. In the case where the network was driven with

burst dynamics that exhibit LRTCs, the sequence of IBIs exhibited long-range temporal corre-

lations with a Hurst exponent (H) greater than 0.5. In the shuffled input case, the same IBIs

were randomly re-ordered in time, giving a Hurst exponent of the sequence of IBIs of H� 0.5.

Thus, in both cases the external input had the same IBI distribution, but the temporal ordering

of the bursts was changed and in the latter case the temporal correlations were lost.

Driving the neuronal networks with bursty input also led to bursts within the network

(Fig 1B and 1E). The Hurst exponent for the sequence of IBIs was determined using detrended

fluctuation analysis (DFA). The DFA exponents for the sequences of IBIs in the network

firing dynamics reflected those of the corresponding DFA exponents of the external input

Fig 1. Network input and burst dynamics. (A,D) Networks were driven by a bursty input. Bursts of activity (grey shaded region) were of

fixed duration and amplitude, and interspersed within periods of silence—inter-burst intervals (IBIs). (A) Example burst dynamics for the

first few bursts within a simulation where IBIs exhibited LRTC, and (D) the same IBIs randomly shuffled. (B,E) Raster plot of network firing

at the start of a simulation, demonstrating that burst dynamics also occur within the network. Firing dynamics are shown for the network

driven with LRTCs (B, blue), and driven with the same IBIs randomly shuffled (E, green). (C) DFA plots of the IBI sequences for the

network external input across simulations of length 100, 000. The Hurst exponent is estimated by the slope of the line of best fit, which in

these examples were H = 0.68 (with LRTC input, blue), and H = 0.51 (with the same input shuffled in time, green). (F) DFA plots for the

burst dynamics of the network firing across the same simulations. For these examples the Hurst exponents of the network firing were

estimated as H = 0.65 when the network was driven by an external input which exhibited LRTCs (blue), and H = 0.51 when the network was

driven with the same input randomly re-ordered in time (green). n is the box size and F(n) is the root mean square of the detrended signal

across the box (see Estimation of the Hurst exponent in the Methods).

https://doi.org/10.1371/journal.pone.0226772.g001
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(Fig 1C and 1F), indicating that the temporal characteristics of the driving input were trans-

mitted to the network activity itself.

Emergence of small-world topology and hub neurones

Network connectivity was allowed to evolve during simulations using an approach analogous

to spike-timing dependent plasticity (STDP). The likelihood of gaining a connection between

any two neurones was increased if the presynaptic neurone frequently fired just before the

postsynaptic neurone, whereas the likelihood of losing a connection was increased if the post-

synaptic neurone frequently fired before the presynaptic neurone. Connections were then lost

or gained if this likelihood measure reached set thresholds for gaining and losing connections

(see Methods). Network connectivity was initially random, with 40% connectivity in a network

with 200 neurones (alterations to these parameters are considered in the section Varying net-
work size and density). As with STDP in the adult brain [28], and as similar mechanisms to

LTD play a dominate role in neuronal network development [22], we initially set depression to

be slightly stronger than potentiation. We also modelled alternatives, i.e. equal amounts of

depression and potentiation and stronger potentiation than depression, which are described

below (see section Varying the plasticity parameters).
With slightly stronger depression than potentiation, and driven with burst dynamics which

exhibit LRTCs, the network on average lost connections across the course of the simulation

and, although the effect size is relatively small, the normalised clustering coefficient and small-

world index increased. Fig 2 shows the mean proportion of connections (i.e. the number of

connections divided by the number of all possible connections within the network), normal-

ised clustering coefficient, normalised mean path length and small-world index from 20 simu-

lations, which were all driven with external input which exhibited LRTC with H� 0.7. At the

end of the simulations, the node in degree distribution is skewed, with some neurones showing

much higher degree than others, indicating the presence of hub neurones (Fig 2D). Thus,

across the course of the simulation a small-world topology and hub neurones emerge. More-

over, the speed at which the proportion of connections, normalised clustering coefficient and

small-world index changes is high at the start of the simulations, indicating that the network

rapidly evolves to have connectivity with small-world properties.

In contrast, when the network is driven with the same external input but in which the burst

order has been randomly shuffled in time (and therefore does not exhibit LRTCs but instead

H� 0.5), the rate of change in the network parameters at the start of the simulation is much

lower than with external input which exhibits LRTCs, Fig 2. Thus, whilst over the course of the

simulation on average connections are still lost, the final network has a higher proportion of

connections. The normalised clustering coefficient and small-world index exhibit very little

change compared with when the networks are driven by bursts which exhibit LRTCs. More-

over, the resultant degree distribution is approximately normal and does not indicate the pres-

ence of hub neurones, Fig 2E.

Comparison of the speed at which the network properties evolve in the network driven by

external input which exhibits LRTCs with the case where the external input is randomly shuf-

fled in time suggests that there is an early window during which the network is highly sensitive

to the temporal organisation of the external input. Whilst the level of activity within the exter-

nal input across the whole simulation is identical in both cases, we also ascertained that this

difference in the speed of emergence of small-world properties was not related to differences

in the level of activity of the external input at the start of the simulation. The average rate of

input at the start of the simulation was similar when the input exhibited LRTCs and when the

IBIs were randomly shuffled in time (S1 Fig). Moreover, considering individual examples with

Temporal ordering of input modulates connectivity formation
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similar levels of the external input at the start of the simulations, those networks driven with

input which exhibits LRTCs have different trajectories of their network properties compared

with those driven with shuffled input (S2 Fig). Therefore, the difference in the speed of emer-

gence of the network properties between the networks driven with external input with LRTCs

in the IBIs and the shuffled input is not because the level of input to the network is different at

the start of the simulation.

We chose to compare the network driven by external input which exhibits LRTCs with the

case where the external input is randomly shuffled in time as shuffling the inter-burst intervals

preserves the other properties of input, namely the distribution of the IBIs, whilst destroying

the temporal ordering. We also investigated what happened to the network when it was driven

with a periodic external input—where all the IBIs were identical in length and set to the aver-

age duration of the IBIs in the LRTC and shuffled cases (see Methods). With periodic external

input the rate of change in the network parameters is also much lower than when the external

input has LRTCs, Fig 2F, though it should be noted that as all IBIs are equal in length the peri-

odic external input does not preserve the overall IBI distribution, unlike the case where the

external input is randomly shuffled.

The difference in emergence of small-world properties when the external input exhibits

LRTCs leads to the question as to whether the magnitude of the LRTCs also affects connectiv-

ity formation. Therefore, we next investigated how driving the network with burst activity

with IBIs which exhibit different strengths of LRTCs alters the rate of emergence of small-

world properties.

Fig 2. Emergence of small-world topology and hub neurones. Network parameters across the course of simulations in networks driven with burst

activity which exhibits LRTCs in the IBIs (blue), with input with the same IBIs randomly shuffled in time (red) and with periodic bursts (green). Solid

lines indicate the mean across 20 simulations, and the shaded areas indicate the standard deviation. (A) The proportion of connections in the network,

(B) the normalised clustering coefficient, (C) the normalised mean path length, and (D) the small-world index across the course of the simulations in

networks driven with burst activity which exhibits LRTCs in the IBIs (blue) and with input with the same IBIs randomly shuffled in time (red). (E)

Average in degree distributions at the end of the simulations with the networks driven by burst activity which exhibits LRTCs in the IBIs (blue) and by

the input with the same IBIs shuffled (red). (F) The small world index in networks driven with burst activity which exhibits LRTCs in the IBIs (blue)

and with periodic bursts (green).

https://doi.org/10.1371/journal.pone.0226772.g002
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Varying the Hurst exponent modulates connectivity formation

We investigated driving the network with burst dynamics which had 4 different levels of Hurst

exponent: H� 0.5, 0.6, 0.7 and 0.8. In all cases, on average the network lost connections, but

networks driven by external input with higher Hurst exponents lost connections at a faster ini-

tial rate and quickly evolved to a network with small-world properties, see Fig 3. The average

Hurst exponent estimated using DFA in preterm infants is 0.68, with a range of 0.55–0.81 [24],

so the levels of Hurst exponent seen in preterm infants fall within the range of data simulated

here.

In these simulations, whilst the mean IBI of the external input was equal, the exact distribu-

tion of the IBIs was not. However, using the exact same IBI distribution for all simulations, but

continuing to vary the Hurst exponent, does not alter the results; the networks driven with

LRTCs with higher Hurst exponents exhibit a higher initial rate of change of network parame-

ters (see S3 Fig). This demonstrates that the change in connectivity formation is directly

related to the the temporal dynamics of the external input.

Varying the plasticity parameters

In the simulations to this point, LTD of the likelihood of losing/gaining a connection was set

to be slightly stronger than long-term potentiation (LTP) (i.e., AD = 0.55 and AP = 0.5, see

Methods). This led to the network on average losing connections. We next explored changes

in connectivity when these parameters were varied so that potentiation and depression were

equal (AD = AP = 0.5) and potentiation was greater than depression (AD = 0.5, AP = 0.55).

With potentiation higher than depression, on average connections are gained, and the normal-

ised clustering coefficient and small-world index increases (Fig 4). With the potentiation set

equal to the level of depression, the change in network parameters across the simulation are

Fig 3. The speed of network evolution is related to the Hurst exponent of the driving input. Changes in network parameters with the

networks driven by burst input with temporal correlations with different Hurst exponents: H� 0.5 (red), H� 0.6 (purple), H� 0.7 (blue, same

simulations as in Fig 2), and H� 0.8 (black). (A) The proportion of connections in the network, (B) the normalised clustering coefficient, (C)

the normalised mean path length (note for H� 0.5 and 0.6 the mean path length is equal to one throughout) and (D) the small-world index,

across the course of the simulations. (E) The average in degree distributions at the end of the simulations. (F) The average out degree

distributions at the end of the simulations. The solid lines indicate the mean across 20 simulations, and the shaded area the standard deviation.

https://doi.org/10.1371/journal.pone.0226772.g003
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very small in comparison, and whilst on average there is also an increase in the proportion of

connections, the normalised clustering coefficient and the small-world index, the networks at

the end of the simulation do not exhibit a high small-world index. Notably, in both cases the

speed of emergence of these properties is higher in the networks driven by bursts which exhibit

LRTCs, as was observed with AD = 0.55 and AP = 0.5, again demonstrating that the temporal

ordering of the burst activity in the external input plays an important role in shaping the net-

work connectivity.

We also evaluated changes to the decay constants of the plasticity parameters—τ, the decay

constant of the spike timing, and τL, the decay constant of the likelihood of gaining or losing

connections (see Methods). For all previous simulations τ = 10 and τL = 100. Setting AD = 0.55

and AP = 0.5, first we varied τ 2 {5, 6, . . ., 15}. In all cases the proportion of connections lost,

and the normalised clustering coefficient vary according to the Hurst exponent, with the speed

of emergence higher in networks which exhibit LRTCs. For lower values of τ the overall

change in these parameters across the simulation, and the speed of emergence is lower than

with τ = 10, but small-world properties emerge (see S4 Fig). For higher values, however, when

H� 0.8 and H� 0.7 the number of connections lost at the end of the simulation is high so

that the network becomes disconnected. This leads to large variability in the small-world index

(S4 Fig) and should be noted as a limitation of our model—eventually it is possible for the net-

works to become disconnected. A similar pattern also emerges when τL is varied with τL 2 {50,

60, . . .., 150}. For lower values, the speed of emergence is slower than with τL = 100 and small-

world properties only start to clearly emerge with H� 0.8. Thus, it is important to note that

with low values of τL we do not see a difference in the network properties between the network

driven with LRTC and the network driven with random ordering of the bursts in the external

input. For higher values of τL, with H� 0.8, the network becomes disconnected (see S5 Fig),

Fig 4. Changes in connectivity are related to the levels of potentiation and depression. (A) The proportion of connections in the network,

(B) normalised clustering coefficient, and (C) small-world index across the course of 20 simulations with AD = AP = 0.5. (D) The proportion of

connections in the network, (E) normalised clustering coefficient, and (F) small-world index across the course of 20 simulations with AD = 0.5

and AP = 0.55. The networks are driven with burst dynamics which exhibit LRTCs (H� 0.7, blue), compared with the same input randomly

shuffled in time (red). Solid lines indicate the mean across the 20 simulations and the shaded area indicates the standard deviation. Results are

shown on the same scale for comparison.

https://doi.org/10.1371/journal.pone.0226772.g004
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leading to a break down in the small-world properties. However, there is still a distinction in

the changes in the proportion of connections and normalised clustering coefficient with the

level of the Hurst exponent. Disconnection of the network suggests that high values of both

decay constants may lead to pathological network connectivity. This is particularly the case

with H� 0.8, however, this level of LRTCs is rarely observed in the burst activity of preterm

infant EEG (average Hurst exponent estimated using DFA in preterm infants is 0.68 [24]).

Varying network size and density

Finally, we investigated changes in the network size and density. Previous simulations have all

had 200 neurones starting from a random connectivity structure with a density of 40%. Vary-

ing the network size did not have a major effect on the network parameters, but reduced the

variance see S6 Fig. In contrast, varying the initial connection density had a notable effect on

the final network structure, Fig 5. With a low initial connection density of 10%, although there

Fig 5. Changes in connectivity in relation to the initial network density. (A,E,I,M) The proportion of connections in the network, (B,F,J,N)

normalised clustering coefficient, (C,G,K,O) normalised mean path length and (D,H,L,P) small-world index across the course of 20 simulations

with an initial network density of (A-D) 10%, (E-H) 20%, (I-L) 30%, and (M-P) 50%. The networks are driven with burst dynamics which

exhibit LRTCs (H� 0.7, blue), compared with the same input randomly shuffled in time (red). Solid lines indicate the mean across the 20

simulations and the shaded area indicates the standard deviation.

https://doi.org/10.1371/journal.pone.0226772.g005
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is a difference between the network driven with LRTC and that driven by the external input

with random burst ordering in terms of the clustering coefficient, the differences in normal-

ised mean path length between the two lead to both networks having similar small-world indi-

ces throughout the simulations. With a high initial connection density of 50% there is a much

slower rate of change of the clustering coefficient and small-world index when the network is

driven with LRTCs compared with networks with an initial connection density of 40%. Thus,

we importantly note that the difference we observe between networks driven with bursts

which exhibit LRTCs and those with random temporal ordering is not always observed but is

dependent on the network parameters, including the initial connectivity and the plasticity

parameters.

Discussion

Here we examined an activity-dependent neuronal network model of connectivity formation

in the developing brain. We demonstrate the emergence of small-world topology and the pres-

ence of hub neurones, characteristics of brain networks [1, 2, 29, 30]. Furthermore, we found

that the temporal ordering of the activity driving the network may be important—when the

bursty input driving the network had IBIs which exhibited LRTCs this resulted in faster net-

work evolution compared with when the network was driven by the same input randomly

reordered in time (within a range of network parameters). Moreover, network evolution

dynamics were related to the magnitude of the Hurst exponent, with a faster speed of emer-

gence of small-world properties in networks driven by external input with higher Hurst

exponents.

Emergence of small-world topology

Starting from networks with initially random connectivity and allowing network connectivity

to evolve using a simple Hebbian STDP rule, we observed the emergence of small-world topol-

ogy and hub neurones. Small-world connectivity has been shown to arise in simple models

due to constraints such as efficient neuronal communication and metabolic costs related to

neuronal wiring [31], and hub nodes can arise through mechanisms such as preferential

attachment [32]. A number of previous authors have also examined more realistic computa-

tional models of brain development, including examining axonal growth in molecular gradi-

ents [33] and neurite branching [34]. Van Ooyen and Van Pelt showed that a simple model of

connectivity formation, with the growth and retraction of circular dendritic and axonal fields

based on neuronal activity, results in an equilibrium in connectivity level after an initial over-

shoot in connectivity consistent with experimental observations [35]. Meisel and Gross further

demonstrated that an activity-dependent model of connectivity formation ‘self-organised’ to a

balanced connectivity level irrespective of the initial level of connectivity [36]. More recently,

Damicelli et al. found that a local Hebbian plasticity rule allowed a network to reorganise to a

modular structure [37]. Thus, all of these models demonstrate the importance of neuronal

activity in connectivity formation. However, whilst it is known that neuronal activity is essen-

tial in the developing brain, both before and after birth [12, 16], we importantly show that the

temporal ordering of activity may also play a role in development.

The role of LRTCs

We find that when driven by burst activity which exhibits LRTCs the network evolves quickly

to a state with small-world topology. We speculate that this may be important in development,

where quickly transitioning to this type of network will allow for efficient integration and seg-

regation of information in the developing brain. This work was motivated by the observation

Temporal ordering of input modulates connectivity formation

PLOS ONE | https://doi.org/10.1371/journal.pone.0226772 January 10, 2020 9 / 20

https://doi.org/10.1371/journal.pone.0226772


that inter-burst intervals between bursts of activity in the EEG of preterm infants exhibits

LRTCs, with an average estimated Hurst exponent of 0.68 [24]. Evidence suggests that the sub-

plate provides essential input to the cortex during this stage of development [12, 13] so we

made the assumption that the burst dynamics of the external input were from a region such as

the subplate driving our cortical network. However, the LRTCs in burst dynamics are also

passed to the network itself, suggesting that other models which exhibit LRTCs in network

activity may also quickly evolve their connectivity. For example, this type of burst dynamics

with LRTCs in the inter-burst intervals can emerge in a system driven with continuous exter-

nal input in the region of a critical state [38]. Although our motivation for this work comes

from observations in preterm EEG, LRTCs in adults have been observed at all levels of the ner-

vous system including in spike timing [26]. Moreover, the LRTCs in the burst dynamics of our

model are in the external input which we consider to be a population of neurones rather than

from single neuronal firing.

Future directions—Understanding pathology in the developing brain

Premature-born infants display altered brain connectivity, indicated by reduced white matter

integrity [39, 40] and altered resting state connectivity [41, 42], at term-corrected age [39, 41]

and into childhood [40, 42]. Tactile, auditory, visual and noxious stimuli all evoke bursts of

activity, observed using EEG, in very preterm infants [8–10]. It is plausible that unexpected

sensory exposure, which could disrupt the temporal patterning of the ongoing brain dynamics,

in the premature period relates to the long-term neurological problems observed in children

who have been born very prematurely [43]. Indeed, the number of painful procedures an

infant receives in the premature period is correlated with altered brain development, including

lower white matter integrity, and lower cognitive ability at school age [40]. Whether sensory

stimuli alter LRTCs in the ongoing EEG of preterm infants is an open question, and a possible

extension of this work would be to determine whether sensory input disrupts connectivity for-

mation, which may lead to a better understanding of the long-term effects of premature birth.

Long-term depression of hippocampal synapses in mature cultures has been shown to result

in weaker synapses followed by selective elimination of very depressed synapses [44]. More-

over, synaptic pruning shares similar molecular pathways with long-term depression (LTD)

[22]. This suggests that connectivity formation in the developing brain may be altered through

STDP-like mechanisms, which forms the basis of the model we have used here. In some patho-

logical states, including neurodevelopmental disorders such as autism [45] and schizophrenia

[46], brain connectivity is altered, with network architecture which has lower clustering and

fewer hub nodes [31]. Both hyper- and hypoconnectivity have been observed in children with

autism [47, 48], and LTD dysregulation has been identified in mouse models of autism, leading

to the suggestion that alterations in synaptic plasticity and pruning may prevent proper devel-

opment of brain connectivity [22]. Further exploration of STDP models of connectivity forma-

tion, such as the one presented here, may shed light on these disorders.

Limitations

A significant limitation of this study is the small effect size that was observed. Moreover, the

effect was not observed across all parameter choices, for example, with low initial connection

density and with low values of the decay constant of the likelihood of gaining or losing connec-

tions. Nevertheless, this work demonstrates the possibility that the temporal patterning of

external input can lead to differences in structural connectivity formation in neuronal net-

works and therefore provides motivation for future empirical and experimental investigations

to further elucidate the role that the temporal ordering of activity may play in development.
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To simplify the model, all neurones within the network were driven by the same external

input. Whilst bursts of activity in the preterm EEG known as delta brushes can occur in a dif-

fuse pattern over large cortical areas, this is not always the case, with localised delta brushes

also observed [11]. It would not be realistic to model the whole cortex as being driven by one

external input, and a useful extension would be to determine how connectivity changes if neu-

rones were to receive different external inputs. As well as the external input, neurones that

were connected to each other received input when these neighbouring neurones fired. To

avoid either saturation of network firing or quiescence, the weights between individual neu-

rones were evolved according to the level of network connectivity, which can be thought of as

a form of homeostatic plasticity [27]. However, a limitation of our approach was that connec-

tions could be continually lost (and gained), which can lead to the network forming discon-

nected components. A possible extension of the work would be to see if maintaining the level

of connections within the network, as was done by Damicelli et al. [37] (another form of

homeostatic plasticity), but allowing connectivity to continue to evolve under the dynamics of

the network, would lead to small-world properties.

Summary

In conclusion, early spontaneous and sensory driven activity is known to be crucial for the

development of connections within neural networks. Here we investigated whether the tempo-

ral ordering of burst activity within an external driving input affects connectivity formation in

a neuronal network model. Using a STDP model of connectivity formation, we observed that

the presence of LRTCs in the ordering of burst activity facilitates the emergence of small-

world topology and hub neurones. We suggest that early brain activity, driven by the subplate,

leads, through activity-dependent mechanisms, to a small-world cortical network structure,

and that LRTCs may play an important role in this connectivity formation warranting further

investigation.

Software availability

All the code for this model can be downloaded here https://github.com/berthouz/

BrainDevBursts/tree/1.0 [49].

Methods

Neuronal dynamics

Individual neuronal dynamics were modelled as leaky integrate-and-fire neurones described

by the differential equation

dV
dt
¼ � gLðV � VrÞ þ IðtÞ ð1Þ

where V is the membrane potential of the neurone, Vr is the resting potential, gL is the leak

conductance and I(t) is the input (both external input and input from other neurones within

the system). When the neurone reaches a threshold membrane potential Vthres it fires and is

reset to Vreset. For all neurones in the simulations Vthres = −54 mV, Vr = −70 mV, Vreset = −60

mV [50]. The leak conductances were randomly chosen from a normal distribution with mean

0.025 and standard deviation 0.005. This heterogeneity in the conductances leads to heteroge-

neity in the firing dynamics.
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Neuronal input

The external input to the system was constructed using fractional Gaussian noise; an example

of a process that exhibits LRTCs, with a Gaussian data distribution. The IBI sequence was con-

structed from a random normal distribution with mean� 4.5 and standard deviation� 3.

This sequence was ordered according the ordering of the fractional Gaussian noise process,

generating LRTCs in the IBI sequence. The external input to the system was constructed from

this sequence of IBIs, with bursts with a duration of 5 and an amplitude of 0.8mV between

each IBI, see Fig 1A. We confirmed that the sequence of IBIs constructed in this way exhibited

LRTCs indicated by a DFA exponent greater than 0.5 (see Estimation of the Hurst exponent).
The Hurst exponent of the IBIs was altered by varying the exponent of the fractional Gaussian

noise.

We compared the connectivity changes, to connectivity changes within a network evolving

under external input with random burst occurrence. This input was constructed by randomly

shuffling the IBIs from the original external input. In this way the two inputs are identical in

terms of the distribution of the IBIs (and bursts are identical throughout) and it is only the

temporal structure of the input that is altered. We also compared the connectivity changes in

networks driven with periodic external input. For this case the IBIs were all identical and were

set to a duration of 4. Bursts were identical to the external input which exhibited LRTCs, and

had a duration of 5 and an amplitude of 0.8mV.

In S1 Fig, the rate of input is calculated within moving windows of length 200 by summing

the external input within the window and dividing by the window length. As all bursts have

equal amplitude, this reflects the temporal ordering of the burst activity within the external

input.

The external input was the same to all neurones. Each neurone also received, at each time-

step, an input from presynaptic neurones that had fired at the previous time-step. Synaptic

weights were equal for all connections and were set to 2

pN where N is the number of neurones in

the network and p is the proportion of connections in the network. This is calculated at each

time step, according to the maximum number of connections which is equal to N(N − 1) (net-

works are directed). This update to the synaptic weights can be thought of as a form of homeo-

static plasticity—without it the network either stops firing when connectivity falls (the external

input alone is not sufficient to make the network fire frequently), or the network starts to fire

continually as connectivity is increased. Using this approach, the average levels of activity in

the network were maintained across the course of the simulation.

Estimation of the Hurst exponent

The presence of LRTCs in data can be determined through estimation of the Hurst exponent,

H. A Hurst exponent of H = 0.5 indicates that the data does not exhibit correlations or exhibits

short-range correlations only (for example, white noise). A Hurst exponent of 0.5 <H< 1

indicates that the data exhibits LRTCs. Here we estimated the Hurst exponent using detrended

fluctuation analysis (DFA) [51] which calculates the exponent as the slope of the line of best-fit

of the average root-mean-square fluctuations across different box sizes (see Fig 1C for an

example plot and Peng et al. [51] for detailed methodology). Briefly, the signal is first integrated

and then divided into boxes of equal length, n. For each box a least-squares fit to the data is

found and the integrated signal is detrended by subtracting this local trend. The root mean

square fluctuation, F(n) is calculated and the process is repeated for different box sizes and the

average fluctuation is compared to box size on a double logairthmic plot. The minimum

box size was set to 5 IBIs and the maximum to one tenth of the length of the IBI sequence (the

recommended maximum window size [52]). This approach has been used by a number of
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previous authors to determine the presence of LRTCs in data, including neurophysiological

data sets [24, 53–58]. As the external input was constructed to have true LRTCs, and these will

not be contaminated by noise, it is reasonable to use DFA to calculate a single linear fit to the

data. However, in the absence of such prior knowledge, it is more robust to to use maximum

likelihood techniques along with model selection methods [59, 60].

To examine network firing and periods of activity/inactivity within the network dynamics

itself we separated activity using the method of Benayoun et al. [61]. Briefly, two consecutive

spikes within a network are separated as distinct bursts if the time difference between them is

greater than the average time, dt, between consecutive spikes within the total simulation. Thus,

a single burst consists of consecutive spikes which are less than dt apart. Benayoun et al. used

this approach to define avalanches—cascades of network activity—which have periods of sepa-

ration between them. In this way, avalanches are the same as bursts of activity and so the same

approach can be used to determine the bursts here. However, it is worth noting that the term

neuronal avalanche is used to define specifically bursts of activity within a network where the

distribution of avalanche sizes follows a power-law [62–64].

The average IBI within the network was lower than the average IBI within the external

input. This meant that, for the same simulation length, there are more IBIs within the network

dynamics, so when calculating the DFA exponents (Fig 1) the maximum box size is larger in

the case of the network firing dynamics than for the external input.

Connectivity formation

All networks were initially randomly connected with 40% connectivity, apart from in section

Varying network size and density where this initial connection density was varied. All networks

were directed, and connections were also formed and lost in a direction dependent manner.

Connections were updated depending on activity within the network, comparing the firing

times between all neuronal pairs. Let L be a matrix of values where L(i, j) indicates the likeli-

hood of losing/gaining a connection from neurone i (presynaptic) to neurone j (postsynaptic).

L(i, j) was modified by

Lði; jÞ ¼ Lði; jÞ þ AP exp �
Dti
t

� �

following a spike in neurone j, where Δti is the time since the last spike in neurone i, τ is a

decay constant and AP> 0 is the amplitude change when Δti = 0, and by

Lði; jÞ ¼ Lði; jÞ � AD exp �
Dtj
t

� �

following a spike in neurone i, where Δtj is the time since the last spike in neurone j and AD>

0 is the amplitude change when Δtj = 0.

A connection from i to j was gained (immediately, if there was not already a connection

present) when L(i, j) increased beyond the threshold value g = 2. A connection from i to j was

lost when L(i, j) decreased beyond the threshold value l = −2. In order to better take into

account temporal dynamics within the system (for example if two neurones only spike

together rarely) the values of L decayed with rate τL. Thus, at each time-step:

Lði; jÞ ¼ Lði; jÞ exp �
1

tL

� �

The loss-likelihood was initially set to zero for all connections and as in Song et al. [28]

depression in initial simulations was set to be slightly stronger than potentiation with AP = 0.5,
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AD = 0.55. We also set τ = 10 and τL = 100, with relatively slow decay of the likelihood values L
allowing for the temporal dynamics of a number of spikes to be taken into account, and the

decay of the spike timing τ relatively fast so as to allow the temporal dynamics of the external

input to take effect (the periods within the external input are relatively short and so to have an

effect the ‘memory’ within the system must be of a similar level). We consider changes in the

results when these parameters are varied in the final section of the Results.

Analysis

A number of measures were used to assess how the connection topology changed over the

course of the simulations. Firstly, the proportion of connections in the network (the number

of connections divided by the number of all possible connections within the network) was

used as a straight forward measure to compare whether there were differences in the evolution

of the network with different types of the external input. To analyse network topological prop-

erties we examined the mean path length and the clustering coefficient of the network. Given

any two neurones (or, more generally, nodes within a graph) the shortest path length is the

shortest distance needed to be traversed to pass from one node to the other. As we set all the

synaptic weights as equal, the shortest path length is equivalent to the lowest number of con-

nections between two neurones. The mean path length is then calculated as the average path

length for all pairs of neurones within the network [65]. Given two neurones both connected

to a third neurone, the clustering coefficient indicates the likelihood that these two neurones

are themselves connected [65]. A random network has a low mean path length and a low clus-

tering coefficient [66]. A number of studies have shown that the neural networks have a similar

mean path length to a random network (of the same size and density) but are much more clus-

tered indicating that the brain is a small-world network [2, 29, 31, 66, 67]. Mean path length

and clustering coefficients of the networks were calculated using the Brain Connectivity Tool-

box, using the functions for binary directed networks [65].

The values of the mean path length, L, and clustering coefficient, C, are only really mean-

ingful when compared to the average values of random [68, 69] or regular [66] networks of

the same size (number of connections and number of neurones). We therefore calculated the

values for a random network (Crand and Lrand) by averaging over the values for 50 random

directed networks of the same size. Random networks were constructed in this way for com-

parison every 100,000 simulation steps (at the same points as the network clustering coeffi-

cient and mean path length were calculated). The clustering coefficient and mean path length

of a network from the simulations were then normalised by dividing by the average values

from the random networks to obtain the normalised clustering coefficient and normalised

mean path length respectively. From these values the small-world index can be calculated

[68]:

s ¼
C=Crand

L=Lrand
ð2Þ

A value of σ = 1 indicates that the network is random, whereas σ> 1 indicates that the net-

work has small-world properties.

We also compared network degree between the simulations by calculating the degree of the

neurones, defined as the number of connections that a neurone makes. As the networks were

directed we compared the in-degree distribution (the number of presynaptic neurones a neu-

rone has) and the out-degree distribution (the number of postsynaptic neurones a neurone

has) separately.
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Supporting information

S1 Fig. The initial rate of input to the network is similar whether the external input

sequence of IBIs exhibits LRTC or is shuffled. The average rate of input at the start of simula-

tions when the external input exhibits LRTCs (blue) compared with the input randomly shuf-

fled in time (red). This is shown for (A) the first 2% and (B) the first 0.2% of the simulations.

Solid lines indicate the mean rate of input across 20 simulations, and the shaded area indicates

the standard deviations.

(PDF)

S2 Fig. The speed of emergence of small-world properties at the start of simulations is not

related to the average rate of input at the start of the simulations. (A,B,C) Moving average

of the first 1000 IBIs (averaging across 100) for example IBI sequences which exhibit LRTCs

(blue, H� 0.7) and are randomly shuffled (red, H� 0.5). (A,B) An example of a IBI sequence

which exhibits LRTCs compared with a shuffled sequence. (C) The two IBI sequences which

exhibit LRTCs are compared. Note that the full simulations have over 500,000 IBIs so the

sequences in these figures equate to approximately the first 0.2% of the simulation. (D,E,F)

The proportion of connections in the network across the full simulations for the equivalent IBI

sequences shown in the row above. The initial rate of input to the network, reflected in the IBI

sequence, does not affect the speed at which the network evolves.

(PDF)

S3 Fig. The rate of network evolution is related to the Hurst exponent of the driving input

independent of the overall IBI distribution. Changes in network parameters with the net-

works driven by burst input with identical IBI distributions (across all simulations in this fig-

ure) but with temporal correlations with different Hurst exponents: H� 0.5 (red), H� 0.6

(purple), H� 0.7 (blue), and H� 0.8 (black). (A) The proportion of connections in the net-

work, (B) the normalised clustering coefficient, (C) the normalised mean path length (note for

H� 0.5 and 0.6 the mean path length is equal to one throughout) and (D) the small-world

index across the course of the simulations. (E) The average in degree distributions at the end

of the simulations. The solid lines indicate the mean across 20 simulations, and the shaded

area the standard deviation. Fig 3 demonstrated that the speed of emergence of small-world

properties is dependent on the magnitude of the Hurst exponent. However, the IBI distribu-

tion in these simulations was not identical as is the case here. This confirms that the differences

in the evolution of network parameters is related to the magnitude of the Hurst exponent

rather than the IBI distribution.

(PDF)

S4 Fig. Network evolution varies with the decay constant of spike timing. Changes in the

network parameters with different values of the decay constant of spike timing, τ. τ was varied

between (A,B,C,D) τ = 5 and (E,F,G,H) τ = 15. For lower values the network changes are small

but small-world properties emerge, and the rate of this emergence is dependent on the Hurst

exponent. For higher values of τ with H� 0.7, 0.8 the network becomes disconnected leading

to a break down of the small-world properties. (A, E) The proportion of connections in the

network, (B, F) the normalised clustering coefficient, (C, G) the small-world index, and (D, H)

the number of components across the course of simulations with H� 0.5 (red), H� 0.6 (pur-

ple), H� 0.7 (blue), and H� 0.8 (black). Note that in (D) the number of components is equal

to one throughout all simulations. Solid lines indicate the mean across 20 simulations, and the

shaded area the standard deviation.

(PDF)
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S5 Fig. Network evolution varies with the decay constant of the likelihood of gaining or

losing connections. Changes in the network parameters with different values of the decay con-

stant τL. τL was varied between (A,B,C,D) τL = 50 and (E,F,G,H) τL = 150. For low values of τL
the network changes are very small but small-world properties start to emerge with H� 0.8.

For higher values of τ with H� 0.7, 0.8 the network starts to become disconnected during the

course of the simulations. However, there is still a clear distinction in the changes in the pro-

portion of connections and normalised clustering coefficient with different values of the Hurst

exponent. (A, E) The proportion of connections in the network, (B, F) the normalised cluster-

ing coefficient, (C, G) the small-world index, and (D, H) the number of components across the

course of simulations with H� 0.5 (red), H� 0.6 (purple), H� 0.7 (blue), and H� 0.8

(black). Note that in (D) the number of components is equal to one throughout all simulations.

Solid lines indicate the mean across 20 simulations, and the shaded area the standard devia-

tion.

(PDF)

S6 Fig. Changes in connectivity in relation to the size of the network. (A,E,I,M) The propor-

tion of connections in the network, (B,F,J,N) normalised clustering coefficient, (C,G,K,O)

normalised mean path length and (D,H,L,P) small-world index across the course of 20 simula-

tions with a network size of (A-D) N = 100, (E-H) N = 500, (I-L) N = 1000, and (M-P)

N = 2000. The networks are driven with burst dynamics which exhibit LRTCs (H� 0.7, blue),

compared with the same input randomly shuffled in time (red). Solid lines indicate the mean

across the 20 simulations and the shaded area indicates the standard deviation. Results are

shown on the same scale for comparison.

(PDF)
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