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A B S T R A C T

The Readiness Potential (RP) is a slow negative EEG potential found in the seconds preceding voluntary actions. Here, we explore whether the RP is found only at this
time, or if it also occurs when no action is produced. Recent theories suggest the RP reflects the average of accumulated stochastic fluctuations in neural activity, rather
than a specific signal related to self-initiated action: RP-like events should then be widely present, even in the absence of actions. We investigated this hypothesis by
searching for RP-like events in background EEG of an appropriate dataset for which the action-locked EEG had previously been analysed to test other hypotheses
[Khalighinejad, N., Brann, E., Dorgham, A., Haggard, P. Dissociating cognitive and motoric precursors of human self-initiated action. Journal of Cognitive Neuroscience.
2019, 1-14]. We used the actual mean RP as a template, and searched the entire epoch for similar neural signals, using similarity metrics that capture the temporal or
spatial properties of the RP. Most EEG epochs contained a number of events that were similar to the true RP, but did not lead directly to any voluntary action.
However, these RP-like events were equally common in epochs that eventually terminated in voluntary actions as in those where voluntary actions were not permitted.
Events matching the temporal profile of the RP were also a poor match for the spatial profile, and vice versa. We conclude that these events are false positives, and do
not reflect the same mechanism as the RP itself. Finally, applying the same template-search algorithm to simulated EEG data synthesized from different noise dis-
tributions showed that RP-like events will occur in any dataset containing the 1⁄f noise ubiquitous in EEG recordings. To summarise, we found no evidence of
genuinely RP-like events at any time other than immediately prior to self-initiated actions. Our findings do not support a purely stochastic model of RP generation, and
suggest that the RP may be a specific precursor of self-initiated voluntary actions.
1. Introduction

Voluntary actions – those caused by internal processes within the
agent themselves and not an external stimulus – have a neural signature
distinct from that of actions in response to the environment (Fried et al.,
2017; Haggard, 2008). A prominent feature of voluntary actions is that
they are preceded by a Bereitschaftspotential, or Readiness Potential (RP): a
slow, negative EEG potential over central midline neurons in the last
second or so before the action (Kornhuber and Deecke, 1965; Libet, 1985;
Haggard and Eimer, 1999). The RP has been the topic of intense interest,
notably since Libet’s (Libet, 1985; Libet et al., 1983) report that it begins
before individuals consciously experience themselves coming to a deci-
sion to act.

What does the RP represent? The conventional view (Kornhuber and
Deecke, 1965; Libet, 1985; Passingham, 1993) is that the RP primarily
reflects action preparation in supplementary motor area or/and
pre-supplementary motor area (Shibasaki and Hallett, 2006; Lang et al.,
1991; Yazawa et al., 2000), that begins when the agent unconsciously
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decides to act (Libet, 1985) and culminates in the motor command being
transmitted via the primary motor cortex (Brass et al., 2013). This ac-
count implies first that the RP is specific to voluntary actions: it should
occur just prior to voluntary actions, but not prior to non-voluntary ac-
tions. Second, and crucially, the RP should not occur when the agent
might in principle produce voluntary actions, but in fact does not. The
first prediction has been supported (Shibasaki and Hallett, 2006; Brass
et al., 2013). The second prediction is harder to test because of the way
that the RP is measured. The RP prior to voluntary actions cannot be
easily discerned on individual trials due to its small amplitude compared
to the noise inherent in EEG recordings (Shibasaki and Hallett, 2006). As
a result, RP studies typically average together a large number of trials,
time-locked to the time of the action. Any single-trial EEG events that are
similar to the RP but do not lead to actions (hereafter “RP-like events”)
would be missed as they provide no overt action to which they can be
aligned. Thus, the conventional interpretation of the RP as specifically
linked to voluntary action relies on biased sampling: it is quite possible
that RP-like events happen all the time, or at least at times unrelated to
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voluntary action. The claim that the RP is specific to voluntary actions
seems premature without unbiased knowledge of when RP-like events
occur.

Recently, Schurger and colleagues (Schurger et al., 2012; Schurger,
2018) proposed an alternative interpretation of the RP, which makes this
question particularly interesting. They demonstrated that the RP could
reflect evidence accumulation to an internal threshold for action (Usher
and McClelland, 2001). In the absence of external perceptual evidence,
the accumulator integrates stochastic neural fluctuations, producing a
random walk which would cause the accumulator to reach threshold.
When traces from multiple trials produced by this model are time-locked
to the time at which threshold is crossed – that is, the time of action – and
averaged, they reproduce the shape of the averaged RP. This indicates
that the RP signal could reflect the ongoing state of this accumulator. As a
result, the characteristic shape of the RP may represent an artefact of the
biased, action-locked sampling of accumulating stochastic signals. More
recently, Schurger (2018) showed that the RP could reflect the stochas-
tically fluctuating inputs to the accumulator, rather than the accumula-
tor’s output, if these inputs themselves are autocorrelated and follow a
random walk trajectory. An important consequence of the stochastic
account is that RP-like events, particularly RP-like events with amplitude
just short of the threshold required to trigger an action, should be found
throughout the EEG, and not only just prior to voluntary actions. A
somewhat similar possibility was raised by John C. Eccles, (1982, 1985),
who suggested that RP-like potentials may not be a causal consequence of
the decision to act, but instead might occur spontaneously, and that their
peaks may provide an opportunity at which weak volitional signals are
sufficient to trigger actions. Eccles’ dualism in fact lead him to suggest
that these volitional signals might be non-physical.
Fig. 1. A. The characteristic shape of the Readiness Potential (RP) in the moments pr
performed (blue). B. According to the classic account, the EEG signal on a single tri
begins. In the absence of action the single trial47 EEG is a noisy read-off from a flat si
that trigger actions on crossing threshold are averaged together locked to the time th
the same process as other, earlier drifts which do not, and so do not lead to volunta
accumulator is reduced. Due to the relationship between firing rates and spontaneou
poorer matches to the RP. D. Single trial neural firing rates for a simple simulated ev
(E.) and the variance (F.) of the firing rate of putative accumulator neurons, due to
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1.1. Our approach

In this work, we use a data-mining approach to test whether RP-like
events can be found throughout the EEG, or only prior to voluntary ac-
tions. The mean RP observed just prior to voluntary actions represents
our best estimate of what RP-like events that do not lead immediately to
actions would look like, if they exist. We use the mean RP as a matched
template filter, and compare it to a rolling window of the raw EEG from
individual trials to identify the windows that most resemble the RP – the
RP-like events present on each trial (see Woody, 1967, for a similar
approach in another domain).

Of course, applying this filter to noisy data is bound to reveal some
events that resemble the RP, simply by chance. We must therefore verify
that any events we find are really due to the same mechanism as the RP.
One way to do this is to analyse epochs from a control condition. In the
voluntary action condition, participants were allowed to perform an ac-
tion at a time of their own choosing. In the instructed action condition,
participants performed the same action, but only after being instructed to
do so by a visual prompt. The timing of this instruction was yoked to the
time of a voluntary action in a previous block, ensuring that the timing of
these actions was matched.

We sketch the predictions of the classical (Kornhuber and Deecke,
1965; Libet, 1985; Passingham, 1993) and stochastic (Schurger et al.,
2012) accounts of the RP in Fig. 1. According to the classical account
(Fig. 1B), the RP occurs just prior to voluntary actions, and at no other
time. This means that any RP-like events we find in the resting EEG
would be false positives: signals resemble the RP, but are produced by a
different mechanism. Two predictions follow from this. First, the degree
to which these events match the RP should not differ between conditions.
Second, events that happen to match the temporal profile of the RP may
ior to voluntary actions (red) is absent in average EEG epochs where no action is
al is a noisy read-off of the underlying RP, and ramps up as action preparation
gnal. C. According to the stochastic account, the RP is found when random walks
ey do so. The negative EEG drifts that cross threshold are therefore generated by
ry actions (black). When actions cannot be planned, the mean activation of the
s variability, this will reduce the volatility of the accumulator, and so produce
idence accumulation circuit. As input firing rate increases, so do both the mean
the Poisson firing statistics of both populations.
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not necessarily match the spatial profile, and vice versa.
The predictions for the stochastic account require some derivation.

According to the model proposed by Schurger (Schurger et al., 2012), in a
task like Libet’s, the moment of action onset is influenced by a stochastic
leaky accumulator process. In contexts where a voluntary action is likely,
this accumulator receives a weak input, reflecting the will to act in the
near future. The accumulator is ‘leaky’ (it includes a decay parameter),
and so its activation does not increase indefinitely, but reaches a stable
point where the input and the decay cancel out. In other words, in con-
texts where voluntary actions are likely, the baseline level of the accu-
mulator is raised closer to threshold. Because the accumulator is
stochastic, its state will follow a random walk with this stable point as its
mean – formally, it is an Ornstein-Uhlenbeck process. Eventually, this
random walk will cross the threshold for action, and the movement will
be executed. Crucially, it is random fluctuations, rather than any specific
volitional “signal”, that are the proximal cause of the accumulator
crossing threshold. Therefore, the RP should be only one of many peaks
in the EEG signal, albeit the only peak high enough to reach the
threshold. For this reason, the stochastic account predicts that RP-like
events should be found not only immediately prior to action, but also
at random times in the background EEG, as long as the appropriate inputs
are provided to the accumulator.

In contexts where voluntary actions are not intended, the baseline
input to the accumulator will be low, and so the accumulator will be far
below threshold. This means that any random fluctuations will generally
not be sufficient to trigger actions. But will such random fluctuations still
occur in this context? The original work only explicitly considered the
case where voluntary actions are rendered likely by a baseline shift, and
where noise in the accumulation process is constant over time - as is
typically the case in models that do not simulate the activity of individual
neurons (Bogacz et al., 2006). However, perceptual accumulation has
been shown to be noisier when the input to the accumulator is stronger
(Scott et al., 2015). The relationship between the mean strength of a
signal and its variability is ubiquitous in human cognition, and is known
as scalar variability, or Weber’s law (e.g. Gallistel and Gelman, 2000).
This phenomenon also emerges in neural circuits. Rather than firing at
evenly-spaced intervals, individual neurons show variable inter-spike
intervals with an approximately Poisson distribution, with variance be-
tween 1 and 1.5 times the mean rate of firing (Shadlen and Newsome,
1998). Random fluctuations in evidence accumulation are partly due to
this inherent noisiness of neural firing rates (Bogacz et al., 2006). It
therefore follows that a stronger input to the accumulator should not only
increase the baseline level of activation – and so the firing rates – but also
increase the variability of the input neurons’ firing rates. Furthermore,
because the input to the accumulator is integrated over time, increasing
the variance of the input produces an increase in low-frequency fluctu-
ations, rather than an increase in noise at all frequencies. This leads to
more prominent slow fluctuations in the EEG signal, producing events
that better resemble the RP. As a result, in contexts where voluntary
actions are allowed, and are enabled by an increase in mean input to the
accumulator, such as a baseline shift, one would expect more RP-like
events to occur than in contexts that disfavour voluntary action, and
where the mean firing rate is therefore lower and the accumulator less
variable (Fig. 1C, right). Fig. 1D and E show the behaviour of a simple
simulated neural circuit under different levels of input, and illustrate the
relationship between input firing rate, accumulator firing rate, and
accumulator volatility.

We used two different measures to quantify the incidence of false-
positive RP-like peaks in resting EEG in each condition. One captures
the temporal properties of the RP: a negative ramp-like trend peaking at
the time of action. The other captures its spatial distribution: negative
voltages over supplementary motor cortex relative to the rest of the scalp,
centred around electrode FCz. If the events identified are due to the same
mechanism as the RP, wewould expect these approaches to be consistent:
windows that match the temporal profile of the RP should also match the
spatial profile, and vice versa. If these matching events are due to chance,
3

however, we would expect little consistency between the temporal and
spatial patterns of RP-like events.

Of course, there are many ways we could measure the similarity of the
raw data to the RP. For both our temporal and spatial analysis, we use
inverse Euclidean distance metrics to quantify the similarity of the raw
EEG to the template. Euclidean distance identifies windows that match
both the shape and the amplitude of the template. In contrast, angle
measures such as correlation coefficients consider only the shape of the
signal, but not its amplitude (Bobadilla-Suarez et al., 2018). Our pre-
liminary explorations found that correlation coefficient measures tended
to identify many RP-like matching events that were orders of magnitude
larger than the RP itself – leading us to prefer distance metrics. It is also
possible to combine spatial and temporal information, with a given
weighting, to produce a spatio-temporal template that can be compared
to the raw data across all channels. Machine learning classifiers can also
be trained to differentiate RPs from baseline data, and used to estimate
the probability that a window of raw data contains an RP. In this
manuscript, we restrict our discussion to classical temporal and spatial
measures of similarity to the RP, based on Euclidean distance. However,
we have obtained consistent results using a number of other approaches
to estimate similarity (results not reported).

2. Methods

2.1. Data collection

We analysed EEG recordings from a task in which participants were
sometimes allowed to act (press a button) at a time of their own choosing,
and sometimes required to wait for a visual cue before acting. The RP
data from this task has been published elsewhere (Khalighinejad et al.,
2019). The present analysis focusses on the background EEG component,
and is independent of the specific data epochs, research questions and
results of the previous paper. The design was similar to that reported by
our group previously (Khalighinejad et al., 2018), with some modifica-
tions. To elicit voluntary actions, participants completed what was
ostensibly a simple visual discrimination task, while EEG was recorded.
Participants were required to watch a random dot kinematogram, and
indicate, as soon as the dots began to move coherently in the same di-
rection, whether they moved left or right of the vertical. The interval
between the start of the trial and the onset of coherent motion was long
and highly variable, and was drawn from a shifted, truncated exponential
distribution (λ¼ 1/14 per s, offset¼ 2 s, truncated at 60 s).

In the voluntary action condition participants could skip to the next
trial at will, obtaining a small reward and avoiding a potentially long
wait, by making a bimanual action (pressing both response keys at the
same time). In the instructed action condition, participants performed
this same skip action when and only when the on-screen fixation dot
turned red, which occurred at a time yoked to a voluntary skip on the
previous block. Thus, the skip actions were endogenous in the voluntary
action condition, but exogenous in the instructed condition. In contrast, if
participants did not skip, they would always make an exogenous action in
response to the dot motion stimuli, when these eventually appeared.

Twenty participants completed two 60minute sessions. All partici-
pants gave informed consent prior to taking part in the study, and the
experiment was approved by the departmental ethics committee. In the
first session, participants were allowed to skip on as many trials as they
liked. In the second session, one week later, participants were only
allowed to skip 50% as many times as they chose to in the previous
session. The experiment was designed to investigate how this restriction
altered the consistency of volitional processes, but those research ques-
tions are not relevant here. Importantly, the second session resulted in
long EEG epochs during which the participant might or might not initiate
an endogenous action. These long epochs gave us unusually long portions
of EEG in which people might have made voluntary actions, but in fact
did not. These epochs were an ideal dataset for searching for RP-like
events. We analysed epochs where actions came at least 11 s after the
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beginning of the trial, and took the final 10 s of these epochs. Due to the
small and variable number of eligible trials per participant – mean
number of voluntary skip actions >11 s¼ 23.5, SD¼ 7.9, range¼ [8, 33]
– we pooled data across all participants.
2.2. EEG processing

EEG was recorded from 20 scalp electrodes (F3, Fz, F4, FC1, FCz, FC2,
C3, C1, Cz, C2, C4, CP1, CPz, CP2, P3, Pz, P4, O1, Oz, and O2) using a
BioSemi ActiveTwo system (BioSemi, 2011). Horizontal and vertical
electro-oculogram (EOG) recordings were made using external bipolar
channels positioned on the outer canthi of each eye as well as superior
and inferior to the right eye. Reference electrodes were positioned on the
mastoid bone behind the right and left ears. EEG signals were recorded at
a sampling rate of 2048Hz. A trigger channel was used to mark the time
of important events on the signal. Data were preprocessed using the MNE
package for python (Gramfort et al., 2013) and custom python and R
Fig. 2. A. EEG prior to voluntary actions, across 20 electrodes. We defined the shad
signal across all 20 electrodes. We use this data as a prototype for the time course
conductance artefacts attenuated. The RP is confined to a smaller area of the scalp clos
the RP, after current source density transformation. We use this data as a prototype fo
single-trial EEG. Inverse Euclidean distance between the template and the EEG wa
template (red) is shown overlaid on windows where the match is strong. Bottom: simi
calculated over the interval (t - 1, t).
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scripts. Signals were recorded at 2048Hz, re-referenced to the average of
the mastoid electrodes, subjected to low-pass (30 Hz), high-pass (0.1 Hz),
and notch (50 Hz; line noise) filtering, and resampled to 256Hz.

Epochs were extracted spanning from 11 s before to 0.5 s after
voluntary and instructed skip actions on trials where these actions
occurred after at least 11 s. Epochs containing extremely large artefacts
(changes in voltage greater than 500 μV) were discarded, before ICA was
used to subtract ocular artefacts from the data. Following ICA, we
excluded trials with peak-to-peak amplitudes greater than 150 μV.
Pooling across all participants, this pipeline produced 363 voluntary
action epochs, and 398 instructed action epochs.

3. Results

3.1. EEG analysis

Fig. 2A shows the ERP for the 2 s prior to voluntary actions across all
ed region [-1.05 s, -.05 s] as the Readiness Potential (RP) window. B. Mean EEG
of the RP. C. Current source density transformation of the EEG, with volume
e to supplementary motor area. D. Voltage across the scalp at -0.05 s, the peak of
r the spatial properties of the RP. E. Procedure for matching temporal template to
s calculated over a 1-s sliding window. Top: raw EEG from a single trial. The
larity over time on this single trial in arbitrary units, where similarity at time t is
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20 electrodes, referenced to the average of the mastoids. The negative
ramp of the RP can be seen in the second prior to action across a broad
range of electrodes centred on Fcz, a conventional site for RP recording.
We defined the period from �1.05 to �0.05 s prior to action as the RP
window, avoiding the final 50ms prior to action which could contain
components generated by the movement itself. This windowwas selected
based on visual inspection of the data. The apparent onset of the RP is
known to vary considerably between studies (Shibasaki and Hallett,
2006).

EEG from a single electrode, on a single trial, is noisy. For this reason,
to capture the temporal profile of the RP we analyse the mean signal
across all 20 electrodes over time. The unweighted mean signal was
strongly correlated with both the raw signal from FCz, r¼ 0.94, and with
a weighted mean based on the spatial pattern at the end of the RP win-
dow, r¼ 0.99. Importantly, the unweighted mean signal is a pure tem-
poral measure, and does not encode any spatial properties of the RP.
Almost identical results were obtained using the signal from FCz or the
weighted mean based on the spatial pattern. Fig. 2B show the ERP
derived from this mean signal. This provides an estimate of the RP’s
temporal profile. We used the 256 samples of this time series over the RP
window (�1.05 to �0.05 s), mean-centred, as our temporal RP template.
To estimate the temporal similarity of the single-trial EEG over time to
Fig. 3. Similarity of data to the RP template. A. Average similarity over time. Tem
smoother than spatial similarity. B. Distribution of similarity scores across epochs for
used to generate it (top), best-matching windows from epochs in the voluntary and
maximal time windows for the other metric (bottom). Error bars show standard dev
show 97.5 percentiles from the permutation distributions. Means greater than these
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the RP, we calculated the Euclidean distance between the template and
the mean signal on each trial in a sliding window, mean centred at each
time-step. Similarity was defined as the inverse of the Euclidean distance.
Each similarity metric was z-transformed to have a mean of 0 and a
standard deviation of 1 across the whole dataset. We also low-pass
filtered the similarity metric at 8 Hz for analysis. Fig. 2E illustrates how
this metric is calculated for a single trial.

Fig. 2C–D shows the current source density (CSD) transformation of
the same data, estimated by applying a surface Laplacian filter. This
transformation attenuates the effect of volume conductance on the EEG
signal. As a result, the RP component is more narrowly restricted to
electrodes around Fcz. This captures our best estimate of the RP’s spatial
profile: a negative potential centred around FCz, giving way to positive
voltages at more posterior sites. We used this pattern, over 20 electrodes,
as our spatial template. To estimate the spatial similarity of the single-
trial EEG over time to the RP we calculated the Euclidean distance be-
tween this template and the single-trial raw EEG at each time point.

Note that our two metrics capture distinct properties of the RP. The
temporal metric uses the signal over time, averaging across channels. The
spatial metric uses the CSD-transformed pattern over the scalp at a single
moment in time. In other words, the temporal metric captures deflections
across the scalp, regardless of their spatial distribution. The spatial metric
poral similarity is calculated over a 1 s sliding window, and so is temporally
the actual RP prior to actions – that is, the similarity of the template to the data
instructed conditions (middle), and similarity for each metric calculated at the
iations. C. Mean and standard error for similarity scores, across trials. Red bars
values are significant at p< .05.
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captures the spatial pattern at the end of a window, but is insensitive to
how these patterns change over time. It is also worth noting that the
temporal and spatial signatures of the RP do not emerge at the same time.
The negative deflection across channels begins at approximately �0.8 s
prior to action (Fig. 2B). However, signals from prefrontal (FCz) and
occipital (Oz) sites begin to diverge later, from approximately �0.4 s
(Fig. 2C).

Fig. 3 shows the average temporal (left) and spatial (right) similarity
over time in each condition. For most time windows, we find no differ-
ence in average similarity to the RP between conditions. At the time of
the RP itself, unsurprisingly, we find that epochs in the voluntary action
condition – those used to produce the RP template – becomemore similar
to this template, while those in the instructed action condition do not.
This is particularly true of the temporal similarity measure. The decrease
in similarity prior to instructed actions is due to the P300 response
evoked by the onset of the cue to skip.

Next, for both metrics we selected the most RP-like window on each
trial, excluding windows that overlap with the actual RP (Fig. 3B–C). We
exclude this window in order to find only RP-like events that do not end
with the initiation of an action. Note that by doing so we also avoid
testing the template against the data that was used to generate it. These
RP-like events were significantly more similar to the template than even
the single-trial RPs themselves, in both the voluntary condition – tem-
poral similarity t(724)¼ 21.81, p< .001, BF10> 4� 1077, spatial simi-
larity t(724)¼ 35.01, p< .001, BF10> 5� 10153 – and the instructed
condition – temporal similarity t(759)¼ 21.10, p< .001,
BF10> 1� 1074, spatial similarity t(759)¼ 35.32, p< .001,
BF10> 5� 10140. In the voluntary action condition, the most RP-like
event was a better fit than the RP itself on that particular trial on
97.2% (temporal template) and 98.9% (spatial template) of trials.

According to the stochastic view of the RP, we should find events that
are more similar to the RP in the voluntary action condition than in the
instructed action condition. We quantify this by comparing the similarity
score for the most similar window on each trial in the voluntary and
instructed action epochs. Importantly, we found that these peak simi-
larity scores did not differ between conditions; temporal: t(759)¼ 0.06,
p¼ .949, BF01¼ 12.31; spatial: t(759)¼ 0.49, p¼ .647, BF01¼ 11.13.

Given that we find the same RP-like events in the instructed condition
as in the voluntary action condition, we sought to better understand what
these events represent. From each trial, we extracted the most RP-like
event according to either the temporal or spatial similarity score, and
6

averaged across trials to produce pseudo-Readiness Potentials, maximally
comparable to the event-related potential of the original RP. We repeated
this procedure using a randomly-chosen window from each trial to create
a baseline pseudo-RP.

Fig. 4A shows the time course of the RP and the generated pseudo-
RPs. The pseudo-RP constructed from the best temporal matches suc-
cessfully reproduces the time course of the true RP, and has lower vari-
ance across trials. The pseudo-RP constructed from the best spatial
matches did not show a negative slope, and was indistinguishable from
the baseline pseudo-RP. Fig. 4B shows the spatial distribution of the RP
and pseudo-RPs. The pseudo-RP constructed from the best spatial
matches qualitatively matches the true RP. However, the magnitude of
the negative peak is more pronounced for the RP, �19.8 μV/cm2 at FCz,
than the pseudo-RP, �9.5 μV/cm2 at Cz. The pseudo-RP constructed
from the best temporal matches showed no clear components, and was
also indistinguishable from the baseline pseudo-RP.

These findings indicate that the RP-like temporal and spatial events
we find in our data are unrelated. Segments of the EEG that match the
temporal pattern of the RP do not match its spatial profile. Similarly,
segments that match the spatial profile do not match the temporal profile.
We confirmed this by estimating the correlation between our metrics,
and found that the two measures were extremely weakly correlated,
ρ¼ .07 across the whole dataset, or mean ρ¼ 0.01 within trials. This
makes it unlikely that the RP-like events retrieved by our data search are
actually produced by the same mechanism as the true RP. This in turn is
consistent with the classical view that RP like events happen only prior to
voluntary actions, but not at other times.

3.2. Modelling

Given the presence of apparently RP-like temporal events in our EEG
epochs independent of voluntary action, we next sought to test whether
these results would be expected if our data consisted of only physiolog-
ical noise. An affirmative result would indicate that the RP-like events we
foundmay be a natural artefact of the background biological noise in EEG
recordings, rather than the hallmark of any action-related neural process.
Biological time series are characterised by 1/fα spectral scaling
(Wagenmakers et al., 2004): the spectral power at each frequency band is
inversely proportional to the frequency itself, Power ∝ 1=Freqα, with the
exponent ranging from α¼ 0 (uncorrelated white noise), to 0< α< 2
(pink noise), to α¼ 2 (red or Brownian noise, reflecting a randomwalk or
Fig. 4. Pseudo-Readiness Potentials, produced by
averaging together putatively RP-like events. A. The
true temporal RP, and temporal pseudo-RPs pro-
duced from the windows that best match the tem-
poral template in the raw data, windows that best
match the spatial template, and a baseline con-
structed by taking random windows on each trial. B.
The true spatial RP, and spatial pseudo-RPs from the
best spatial match, the best temporal match, and
random baseline windows. Note A. shows raw volt-
ages measured in μV, while B. shows CSD estimates
measured in μV/cm2.
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diffusion process). α is therefore also proportional to the correlation
between consecutive of samples of the underlying process. The RP itself is
a slow negative ramp, or a low-frequency oscillation in the frequency
domain. As a result, RP-like events should be more easily found in signals
with greater power at lower frequencies, i.e. 1/fα with a higher value of α
(see Fig. 5A).

In our data, we found no differences between voluntary and
instructed condition epochs at any frequency range. This provides further
evidence that the EEG did not differ between conditions apart from in the
moments just prior to action. In both conditions, the data showed 1/fα

scaling with α� 1.17 (Fig. 5B). As is typical of resting-state EEG, alpha-
band power (8-12Hz) was greater than would be expected in pure 1/fα

noise. Note that this spectral profile is also ‘whiter’ (closer to α¼ 0) than
what would be produced by the accumulator model proposed by
Schurger and colleagues. This is due to the presence of additional sources
of physiological and electrical noise in the EEG, and to the application of
an extremely mild high-pass filter to the data which reduces power at
frequencies below 0.1 Hz.

To explore how 1/fα scaling relates to the presence of RP-like events
in the EEG data, we simulated a series of datasets of 1/fα scaled noise, for
values of α between 0 and 1.5, scaled the amplitude of the simulated data
to match that of the EEG, and repeated our analysis on each of these
artificial datasets using the same RP template as before. This confirmed
that there is a positive monotonic relationship between α and the simi-
larity of events in the data to the temporal RP. That is, as the power law
exponent increases, and as the signal becomes dominated by low fre-
quency components, finding a 1-s window displaying a negative drift
becomes more probable (Fig. 5C). Importantly, at α¼ 1.17, the scaling
seen in our EEG data, the similarity of the RP-like events found in the
simulated data matches that seen in the EEG. We conclude from these
simulations that the RP-like events we find in our EEG data are
completely consistent with what one would find when searching for
matches to a template in sufficiently long series of autocorrelated 1/fα

noise, and the strength of these events in our data is what would be ex-
pected in spectrally-matched noise.
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4. Discussion

We found temporal and spatial events in raw EEG signals that
resembled the average Readiness Potential, occurring long before any
overt voluntary actions. However, these events do not support the hy-
pothesis that Readiness Potentials happen in the absence of action, for
two reasons. First, RP-like events were found to no greater extent in
epochs leading up to voluntary actions than in epochs where voluntary
responses were not permitted. Second, our two measures of similarity to
the RP – temporal and spatial –were unrelated to each other. Indeed, the
prevalence of temporal RP-like events in our data was no different from
what would be expected in a dataset containing only physiologically-
plausible noise with a similar spectral profile. We therefore conclude
that these RP-like events are indeed false positives: sections of EEG that
resemble aspects of the RP by chance, but are not produced by the same
process.

The conventional view of the RP is that it represents a specific, causal
precursor to voluntary actions that is produced after the unconscious
decision to act has been made (Kornhuber and Deecke, 1965; Libet,
1985). Our results are entirely consistent with this view. The alternative
is that RPs are stochastic fluctuations that happen to carry a neural signal
across the action threshold (Schurger et al., 2012; Schurger, 2018). We
noted above that in order for this to occur, the neural signal must be
increased to a level close to the threshold. This in turn should make the
signal more volatile, and so more likely to also produce RP-like events
that do not cross threshold, at least according to a Poisson neural spiking
model. We did not find evidence to support this prediction.

It could still be the case that the stochastic hypothesis is true, but that
RP-like fluctuations occur equally in voluntary action contexts and in
other contexts. For instance, we assumed that as the mean firing rate
increases in the SMA neurons responsible for the RP, so does the variance
over time. This is the case in individual neurons (Shadlen and Newsome,
1998), in many cortical circuits (Shadlen and Newsome, 1998; Church-
land et al., 2011), and in psychophysics (Weber’s law). However, this
property can be suppressed in more complex circuits, where recurrent
feedback loops lead to non-linear attractor dynamics (Wang, 2008).
Fig. 5. A. RP-like events (red dashed lines)
should be more pronounced when the EEG is
dominated by low frequencies (1/fα scaling
with a high value of α, green) than when
there is similar power in low and high fre-
quencies (a low value of α, blue). B. Spectral
profiles of EEG data in each condition. The
EEG data show 1/fα scaling, with α� 1.17
(dashed line) in both conditions. C. Similar-
ity to the temporal RP template for the best-
matching windows per trial, for simulated 1/
fα noise (blue) and the observed EEG (red).
Simulated noise with higher values of α
produced RP-like events that better matched
the RP template. The similarity of the RP-like
events found in the EEG data matched that of
those found in simulated noise with a
matched spectral profile.
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Further work is needed to resolve whether this is the case for the circuit
that produces the RP.

Similarly, we assumed that the baseline level of the accumulator was
greater in the voluntary action condition, where participants intended to
act spontaneously, than in the instructed action condition, where they
did not. This baseline shift explains how a stochastic accumulator model
can successfully trigger actions when there is a general intention to act,
but yet does not also produce occasional random actions at times when
they would be inappropriate (Schurger et al., 2012). Another possibility,
however, is that the mean level of the accumulator remains constant but
the threshold for action is reduced in the voluntary action condition (see
Bogacz et al., 2010; Forstmann et al., 2008). Many models of evidence
accumulation struggle to distinguish baseline shifts from threshold shifts.

A third possibility is that stochastic fluctuations occur independent of
context, and that they are necessary but not sufficient for voluntary ac-
tions to be produced. In cases where action is intended, there may be a
functional link between these fluctuations and activity in the primary
motor cortex and spinal cord. Otherwise, the fluctuations may occur but
not trigger any downstream activity. In other words, volition creates the
conditions under which ongoing neural fluctuations can trigger actions,
or, equivalently, neural fluctuations provide occasional windows during
which volition can trigger actions. This proposal is similar to the sug-
gestion by Eccles, 1982, 1985: ubiquitous RP-like potentials are neces-
sary but not sufficient to produce action at specific time points.
Accumulator models (Schurger et al., 2012; Usher and McClelland, 2001;
Bogacz et al., 2006) provide a way to formalise this idea. This model of
course faces the same difficulty as classical models of RP, namely to
provide a convincing account of what causes the volitional signal that
makes action possible.

In a previous study, Schultze-Kraft and colleagues (Schultze-Kraft
et al., 2016) trained real-time EEG classifiers to predict upcoming
voluntary actions, based in part on the RP. If these classifiers can suc-
cessfully use the RP to predict actions, without producing an excessive
number of false alarms, it follows that the RP does not occur in the
absence of action, consistent with our conclusions here. However, the
appropriate evaluation measures (e.g. Weiss and Hirsh, 1998) are not
reported in this work, making it difficult to draw such a conclusion.

Our task differs from typical RP studies in a number of ways (Kha-
lighinejad et al., 2018, 2019). The RP was initially recorded in a task
where participants are asked to press a button at a time of their own
choosing, without any external stimulation (Kornhuber and Deecke,
1965). We instead elicited self-initiated actions during a task where there
was a long and unpredictable waiting period at the start of each trial,
during which participants saw dots moving randomly with 0% coher-
ence. Each trial began once these dots began to move coherently in the
same direction. Participants here produced self-initiated actions in order
to skip the current trial, and begin the waiting period for the next trial, on
the basis that they may not have to wait as long in the next trial. How-
ever, we have demonstrated on a number of occasions (Khalighinejad
et al., 2018, 2019) that this task does produce the RP, and participants do
not initiate actions inappropriately in the instructed action condition. It
may be worthwhile to apply our analyses to EEG recorded during other
voluntary action paradigms, bearing in mind that a sufficiently long
epoch is required.

Finally, our conclusions are based on a null result: RP-like events were
found to the same extent in epochs leading up to voluntary actions and in
epochs where voluntary actions were not permitted. Bayesian analyses
provided strong statistical evidence that the two conditions did not differ
in this regard. However, we cannot rule out the possibility that there are
naturally-occurring RP-like events that our EEG recordings failed to
capture, or our analyses failed to detect. We might have failed to detect
such RP-like events due to having an inappropriate template. For
example, our template is based on the pooled true RP, which is neces-
sarily followed by a voluntary action. We then used this template to
search for RP-like events which were not related to voluntary actions.
Thus, the presence of EEG activity linked strictly to action execution in
8

the template, but not in the sample, might potentially be relevant to our
failure to find any RP-like events. However, we mitigated this risk by
using a search template that excluded the final 50ms prior to action, so
action execution effects are unlikely to be responsible for any failed de-
tections. Nevertheless, we cannot exclude the possibility that our
methods failed, for some other reason, to detect RP-like events that were
indeed present. We hope that the current results might stimulate further
developments in this area.

Note

Data and analysis scripts associated with this manuscript can be found
at in the accompanying Open Science Framework repository, at htt
ps://osf.io/t2rv3/.
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