De Belly, Henry;
(2020)
Plasma membrane and cell surface mechanics in embryonic stem cells.
Doctoral thesis (Ph.D), UCL (University College London).
Preview |
Text
Henry_De_Belly_Thesis.pdf - Accepted Version Download (27MB) | Preview |
Abstract
Changes in cell shape frequently accompany cell fate transitions. Cell shape changes are regulated by cell surface mechanics. One of the main determinants of cell surface mechanics is membrane tension, which is regulated by the interaction between the plasma membrane and the cytoskeleton. Yet how mechanics, and in particular membrane tension, affects the regulatory pathways controlling cell fate is poorly understood. In my PhD, I investigated the role of cell surface mechanics in regulating cell fate transition in early development. In order, to probe the interplay between shape, mechanics and fate, I used mouse embryonic stem (ES) cells, which spread as they undergo early differentiation. In order to asses cell surface mechanical changes during exit form naïve pluripotency, I helped establish a membrane pulling assay using an optical tweezer. Using this assay, I found that cell spreading during exit from naïve pluripotency is regulated by a decrease in plasma membrane tension. Higher tension appears to be due to higher expression and activity of proteins regulating membrane-to-cortex attachment, such as Ezrin-Radixin- Moesin. Next I demonstrated using Ezrin mutants that preventing this decrease in membrane tension obstructs early differentiation of ES cells. I confirmed these results using micropatterning to physically prevent the cells from changing their shape and membrane tension. I next investigated which membrane tension-mediated mechanosensitive pathway could explain these results. I found that decrease in membrane tension results in an increase in endocytosis which is a major regulator of signalling events. Specifically, I found that if cell membrane tension is not decreased, endocytosis of FGF signalling components, which direct exit from the ES cell state, is significantly inhibited. This results in defects in exiting naïve pluripotency as the ERK pathway requires endocytosis for full activation. Strikingly, the early differentiation defects I observed can be rescued by increasing Rab5a-facilitated endocytosis. Thus, I show that a mechanically-triggered increase in endocytosis regulates fate transitions. My findings are of fundamental importance for understanding how cell mechanics regulates biochemical signaling during cell fate changes.
Type: | Thesis (Doctoral) |
---|---|
Qualification: | Ph.D |
Title: | Plasma membrane and cell surface mechanics in embryonic stem cells |
Event: | University College London |
Open access status: | An open access version is available from UCL Discovery |
Language: | English |
Additional information: | Copyright © The Author 2020. Original content in this thesis is licensed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) Licence (https://creativecommons.org/licenses/by/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Lab for Molecular Cell Bio MRC-UCL |
URI: | https://discovery.ucl.ac.uk/id/eprint/10090153 |
Archive Staff Only
View Item |