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Abstract 
Pictet-Spenglerases provide a key role in the biosynthesis of many biologically-active 
alkaloids. There is increasing use of these biocatalysts as an alternative to traditional organic 
synthetic methods as they provide stereoselective and regioselective control under mild 
conditions. Products from these enzymes also contain privileged drug scaffolds (such as 
tetrahydroisoquinoline or b-carboline moieties), so there is interest in the characterisation 
and use of these enzymes as versatile biocatalysts to synthesize analogues of the 
corresponding natural products for drug discovery. This review discusses all known Pictet-
Spenglerase enzymes and their applications as biocatalysts.    
 
1.1 Introduction  
Alkaloids are a group of naturally-occurring, nitrogen-containing molecules, many of which 
are pharmacologically relevant. Some widely known examples are quinine (anti-malarial), 
berberine (anti-bacterial), ergotamine (childbirth) and morphine (analgesic) [1]. Alkaloids 
have been used for medicinal and recreational purposes for millennia and there continues to 
be significant interest in isolating novel bioactive compounds from plants. There is also 
research activity focussed on the enzymes involved in alkaloid biosynthesis to understand 
their mechanism of action and replicate syntheses in vitro or in vivo.  
 
The Pictet-Spengler reaction involves an intermolecular cyclisation reaction between a b-
arylethylamine and an aldehyde or ketone. Synthetic approaches include the use of an acid 
or inorganic phosphate catalyst and the reaction proceeds via the condensation of the two 
substrates to form an iminium ion via an aminol intermediate [2,3]. Intramolecular 
nucleophilic attack of the aromatic ring onto the iminium ion provides ring closure and 
generates a stereogenic centre in the product, thus providing a significant increase in product 
molecular complexity in a single step (Scheme 1).[4] 
 

 
 
Scheme 1: The general scheme for the Pictet-Spengler reaction. A b-arylethylamine (e.g. an 

indole or aryl ring) is condensed with an aldehyde or ketone to give an iminion ion 
intermediate. An intramolecular cyclisation then occurs to give the product. A new chiral 

centre is formed in the product if R1 ≠ R2. 
 
The Pictet-Spengler reaction is a key step in the biosynthesis of many alkaloids and a variety 
of Pictet-Spenglerases (also known as PSases) involved in alkaloid production have been 
characterised and used in the syntheses of pharmacologically relevant molecules.[5]  Pictet-
Spenglerases are classified as lyases (EC 4) but there is no subclass dedicated to them. This 
review article discusses current progress in the identification and characterisation of Pictet-
Spenglerases and applications in the synthesis of alkaloids, with a view to highlighting future 
biocatalytic opportunities.  
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Figure 1: The natural substrate scope of known Pictet-Spenglerases. Each segment 

corresponds to an enzyme, which condenses a b-arylethylamine and an aldehyde or ketone 
to give the product. Protein structures, where known, are represented. The structures of 

NCS (PDB: 5N8Q), strictosidine synthase (PDB: 2FPC) and McbB (PDB: 3X27) are behind 3, 8 
and 12. 

 
1.2 Plant Pictet-Spenglerases 
1.2.1 Norcoclaurine synthase 
Norcoclaurine synthase (NCS) performs a stereoselective Pictet-Spengler reaction between 
two tyrosine-derived molecules, dopamine (1) and 4-hydroxyphenylacetaldehyde (2) to give 
(S)-norcoclaurine (3), the first committed intermediate to benzylisoquinoline alkaloids (BIAs) 
[6]. Many BIAs are pharmaceutically relevant and widely used, such as the analgesic, 
morphine and noscapine, used as an anti-tussive [7]. 
 
Two NCSs, isolated from Thalictrum flavum (TfNCS) and Coptis japonica (CjNCS) have been 
most widely characterised and early work on the enzymes isolated from plants established 
the native substrates and enzyme kinetics [8,9]. Since then recombinant enzymes have been 
generated in E. coli and a variety of structural studies have been performed with TfNCS. 
Initially a mechanism was proposed whereby the aldehyde binds first to the active site based 
upon NMR studies and a co-crystallised structure with a non-substrate benzaldehyde [10,11]. 
However, this did not account for the diverse aldehyde substrate scope observed and 
mechanistically an active site residue is required to deprotonate the catechol, for the 
intramolecular cyclisation with the iminium ion intermediate. More recent computational 
docking experiments and crystallographic studies, using a non-productive mimic of an 
advanced reaction intermediate co-crystallised with TfNCS (Figure 2a), provided new 
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mechanistic insights. These suggested that dopamine binds first to the active site, followed 
by the aldehyde [12,13]. A subsequent crystal structure and molecular dynamics studies using 
novel aldehyde substrates, as well as a new computational study have further supported the 
‘dopamine first’ mechanism [13,14]. This mechanism also accounts for the impressive 
substrate scope observed by TfNCS.  

 
Figure 2: a) Co-crystallised structure of TfNCS with an intermediate analogue in a productive 

and non-productive binding-mode (PDB: 5NON, chain A). b) Co-crystallised structure of 
RsSTR with strictosidine (PDB: 2V91, chain A). c) Co-crystallised structure of McBb with L-
tryptophan (PDB: 3X27, chain A). For structures key active site residues are represented.  

 
Initial substrate screens showed that a variety of different aldehydes were accepted as 
substrates but that the amine substrate scope was narrower, with the meta-hydroxyl moiety 
of dopamine (1, figure 1) being essential for a productive reaction [15,16]. Moreover, when 
chiral 𝛼-methyl substituted aldehydes were used, a kinetic resolution of the aldehyde 
occurred, resulting in the preferential acceptance of the (R)-aldehyde by TfNCS, giving 
(1S,1’R)-tetrahydroisoquinoline (THIQ) products in high diastereomeric ratios (98:2) using an 
active site mutant M97V [17].  Remarkably, ketones have also been accepted as substrates, 
leading to the biocatalytic production of chiral 1,1’-disubstituted and spiro-THIQs [18]. 
Indeed, a variety of linear aliphatic aldehydes have been accepted and this has been exploited 
in chemoenzymatic cascades to produce trolline derivatives, (S)-benzylisoquinoline and (S)-
tetrahydroprotoberberine alkaloids [19–21]. A summary of the reported NCS substrate scope 
is given in scheme 2. In vivo pathways incorporating NCS, to the alkaloids (S)-reticuline and 
thebaine have also been reported in E. coli and S. cerevisiae [22–25]. This in particular 
highlights the exciting opportunities of using NCS and variants in the preparation of a 
significant range of alkaloids.  
 
The substrate scope of CjNCS2 (59% identity, 78% homology to TfNCS) has been explored less 
extensively. To date, it accepts a range of aldehydes as substrates but not ketones [18].  The 
key active site residues in TfNCS and CjNCS2 are mostly conserved, other than A(Cj)79I(Tf) 
and there is an extra alanine in this loop in CjNCS2. However, the variant A79I in TfNCS does 
not alter the ketone acceptance observed, suggesting that perhaps the extra alanine in the 
loop is responsible for the differing activities [18]. NCSs from other plants (such as Argemone 
mexicana, Papaver bracteatum and Corydalis saxicola) have also been expressed 
recombinantly, characterised and found to give THIQ products in high yield with high 
enantiomeric excesses in the products [26]. 
 



NCSs used in biocatalytic applications have been shown to produce tetrahydroisoquinolines 
with (S)-stereochemistry at the C-1 carbon. However, there have been reports of the isolation 
of (R)-norcoclaurine from the seed embryo of the sacred lotus plant, Nelumbo nucifera [27–
29]. This suggests that the NCS that can either perform an (R)-selective reaction or a 
norcoclaurine epimerase may be present [30–32]. Recently, seven different genes encoding 
for NCS have also been identified in the sacred lotus genome [33]. Further details are 
discussed in a comprehensive review on sacred lotus alkaloid biosynthesis [34]. 

 
 
Scheme 2: Selected biocatalytic reactions with NCSs derived from Thalictrum flavum (TfNCS) 

and Coptis Japonica (CjNCS2). 
 
1.2.2 Deacetylipecoside synthase 
Two different Pictet-Spenglerases have been identified in Alangium lamarckii with the ability 
to condense dopamine (1) and secologanin (4), a glucosylated monoterpene. 
Deacetylipecoside synthase (DIS) forms the (R)-enantiomer at C-1 to give 5 while  
deacetylisoipecoside (DIIS) forms the (S)-enantiomer in 6. Both undergo spontaneous 
lactamization followed by subsequent enzymatic modifications to give alangiside and 
isoalangiside-type glucosides respectively. DIS has been successfully isolated and purified 
from A. lamarckii and found to be 30 kDa in molecular weight however, DIIS was found to be 
too labile for purification [35]. 
 
1.2.3 Strictosidine synthase  
Strictosidine synthase (STR) catalyses the Pictet-Spengler reaction between tryptamine (7) 
and secologanin (4) to form 3-a(S)-strictosidine (8), which is the biosynthetic precursor to 
monoterpenoid indole alkaloids [36]. There are over 2,000 different monoterpenoid indole 
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alkaloids (MIAs), many of which have important medicinal activities, such as quinine (anti-
malarial), camptothecin (anti-tumour agent) and ajmaline (anti-arrhythmic) [37]. Two STRs 
have been most extensively characterised, isolated from Rauvolfia serpentia (RsSTR) and 
Catharanthus roseus (CrSTR) [38,39]. 
 
The mechanism of action was elucidated by Maresh et al. in 2008 [40] A crystal structure of 
recombinant RsSTR co-crystallised in the presence of secologanin and tryptamine was solved 
(PDB: 2V91). The structure of STR is unusual, being the first example of a b-propeller protein 
found in the plant kingdom (Figure 2b). Sequence homology to similar structures is low [39]. 
Mutagenesis identified the key active site residues as E309, Y151 and H307. Kinetic isotope 
effects and pH dependence of the reaction suggested that formation of the iminium ion 
intermediate is acid-catalysed and that the final deprotonation step is base-catalysed. Ab 
initio calculations have indicated that the reaction mechanism does not go via a 
spiroindolenine intermediate [40]. 
 
The amine donor substrate scope is not limited to tryptamine and screens have been 
performed with wild-type and mutated STR [41–43]. Analogues with hydroxyl and methoxy 
groups at C-5 and C-6 respectively of tryptamine were accepted [44]. Activity was also 
retained when the tryptamine benzene ring was substituted for a pyridine moiety or if the 
tryptamine pyrrole ring was exchanged for a furan ring [45]. The aldehyde substrate scope 
has also been altered using active site mutants [43,44] and a recent review discusses the 
substrate scope in detail [46]. 
 
Despite these successes, recombinant expression and isolation of STRs has proven 
challenging. A recent paper by Pressnitz et al. improved the expression and activity of clarified 
cell lysates 100-fold via optimisation of the expression protocol by using synthetic, codon-
optimised genes in E. coli and the removal of signal peptides [47]. Interestingly, a variety of 
non-natural, aliphatic aldehydes have been accepted by four different STRs to give single 
enantiomer products with (R)-stereochemistry at the C-1 position. This led to the 
enantioselective chemoenzymatic synthesis of (R)-harmicine, in an analogous method to the 
synthesis of trolline-derivatives using TfNCS [47]. STR has also been employed in the 
stereoselective synthesis of N-substituted strictosidine derivatives as novel topoisomerase 
inhibitors and other alkaloids via chemoenzymatic cascades [42,48]. These examples highlight 
its potential application in future biocatalytic reactions and cascades. 
 
1.2.4 Putative Pictet-Spenglerase from Lophocereus schottii 
THIQ alkaloids with an isobutyl group at C-1 (lophocereine) have been isolated from L. schotti, 
a desert cactus [49,50]. No other naturally-occurring THIQs with an aliphatic group at the C-1 
position have been identified. Feeding studies have suggested that both leucine and 
mevalonic acid are precursors to lophocereine. It is however known that leucine is not 
incorporated via mevalonic acid [51,52]. Although the enzymes present in L. schottii have not 
been identified, 3-methylbutanal was also incorporated during feeding studies suggesting 
that lophocerine may be formed by a Pictet-Spenglerase [53,54]. 
 
1.3 Bacterial Pictet-Spenglerases  
1.3.1 McbB  



The enzyme McbB (isolated from Marinactinospora thermotolerans) has been found to 
perform the Pictet-Spengler reaction between L-tryptophan (9) and oxaloacetaldehyde (10). 
Subsequent oxidation and decarboxylation steps give a b-carboline scaffold, found in many 
pharmacologically active molecules including benzodiazepine inverse agonists [55,56]. The 
enzyme has been shown to accept the non-natural substrates, 5-methyl-DL-tryptophan, 7-
methyl-DL-tryptophan and smaller aldehydes such as methylglyoxal (11), formaldehyde, 
acetaldehyde, propanal and isobutyraldehyde instead of 10.  The co-crystallised structure of 
McbB with L-tryptophan was obtained by Mori et al. in 2015 (PDB: 3X27). The active site is 
formed by a homodimerization where each monomer adopts a slightly different 
conformation. The catalytically important active site residues have been determined and site-
directed mutagenesis resulted in the formation of various active mutants. Mutations of two 
bulky residues, H87A and R72A, located at the entrance of the active site, led to the 
acceptance of the unnatural aldehyde, phenylglyoxal and condensation with L-tryptophan 
[56]. 
 
1.3.2 NscbB 
Using genome mining, a new Pictet-Spenglerase enzyme, NscB, was discovered (identified in 
Nocardiopsis synnemataformans, derived from a kidney transplant patient). This 
comprehensive bioinformatics analysis using McbB as a search gene identified homologues 
based on existing microbial genomic data. NscbB catalyses the Pictet-Spengler reaction 
between L-tryptophan (9) and methylglyoxal (11) to give 1-acetyl-3-carboxy-b-carboline (12) 
i.e. the same reaction as with McbB. Both enzymes have high sequence identity (66%) and 
homology (80%) with a conserved active site residue E97 suggesting that that both operate 
via similar reaction mechanisms. NscbB has ca. a 30 fold higher kcat/KM than McbB, but NscbB 
is less thermally stable [57]. 
 
1.3.3 Mikimopine synthase and cucumopine synthase 
Mikimopine (13) and cucumopine (14) are opines, formed via the Pictet-Spengler 
condensation of histidine (15) and a-ketoglutaric acid (16). Opines are found in plant tumours 
induced by the parasite, Agrobacterium. The T-DNA encoding for the enzymes responsible for 
opine biosynthesis are passed to the plant via horizontal gene transfer. Opines are then 
synthesised by the plant cells and provide carbon and nitrogen sources for the invading 
bacteria. There has been little characterisation of the two enzymes; however the genes 
encoding mikimopine synthase (mis) have been isolated from A. rhizogenes and both 
enzymes have been expressed recombinantly in E. coli and enzymatic activity confirmed [58–
60]. Interestingly, the carbonyl substrate is an 𝛼-ketoacid, whereas other Pictet-Spenglerases 
typically have an aldehyde as the natural substrate.  
 
1.3.4 StnK2  
Stnk2 is a Pictet-Spenglerase involved in the biosynthesis of streptonigrin, an alkaloid 
antibiotic with antitumor activity and it has high sequence identity with McbB (41%). The 
enzyme performs a stereospecific reaction between (2S,3S)-b-methyl-tryptophan (17) and D-
erythrose-4-phosphate (18), with the newly formed chiral centre 19 in the (R)-configuration. 
(S)-Stereochemistry at C-3 in tryptophan is essential for its reactivity. The aldehyde substrate 
scope is limited: methylglyoxal and ethyl glyoxalate were not accepted. Interestingly, several 
fluoro-substituted L-tryptophan analogues were accepted and improved affinity was 
observed with 5- and 6-fluoro-(2S,3S)-β-methyl tryptophan compared to the natural 



substrate. This is therefore a promising strategy for generating fluorinated analogues of 
streptonigrin [61]. 
 
1.3.5 Non-ribosomal peptide synthetase SfmC (NRPS) 
The NRPS SfmC module has been found to perform seven sequential reactions, including two 
Pictet-Spengler condensation in the biosynthesis of Saframycin C, an anti-tumour antibiotic 
with a THIQ scaffold [62]. A full discussion of the NRPS SfmC Pictet-Spenglerase reaction is 
given in a recent review article [63]. 
 
1.4 Fungal Pictet- Spenglerases  
Comparative genetic analysis has been used to identify a silent Pictet-Spenglerase in the fish-
derived fungi, Chaetomonium globosum. It was found that 1-methyl-L-tryptophan (20) can 
upregulate the expression of the Pictet-Spenglerase which results in the condensation of 1-
methyl-L-tryptophan (20) with the aldehyde, flavipin (21) . The product is then altered by 
other fungal enzymes to give a novel class of alkaloids the ‘chaetoglines’ (22-25) and 
pharmacological activities have been assessed [64].  Two have anti-bacterial activities and 
another acts as an inhibitor of acetylcholinesterase [65]. 
 
1.5 Mammalian Pictet-Spenglerases 
1.5.1 Salsolinol synthase 
Salsolinol (26) has gained significant interest due to links with Parkinson’s disease and 
alcoholism [66]. It is a THIQ alkaloid, formed by the condensation of dopamine (1)  and 
acetaldehyde (27). Higher levels of (R)-salsolinol (26) have been found in the human brain, 
than the (S)-enantiomer from chiral HPLC studies [67,68], suggesting that salsolinol is formed 
enzymatically [69].  An enzyme, isolated from Rattus norveticus, has been overexpressed 
recombinantly in rat PC21 cells and expression correlated with an increased production of 
salsolinol. Chiral HPLC analysis of isolated salsolinol gave an enantiomeric excess of 20% (R-
isomer) [70].  
 
1.6 Conclusions  
Pictet-Spenglerases are valuable biocatalysts for synthetic applications that can perform the 
Pictet-Spengler reaction in a stereoselective and regioselective manner under mild reaction 
conditions. Several Pictet-Spenglerases have been documented in the literature, however 
only two (NCS and STR) have been widely characterized and used to synthesize a variety of 
novel alkaloids. The biocatalytic use of other Pictet-Spenglerases has been limited by a narrow 
substrate scope, challenging isolation methods or poor enzyme stability, however there is 
significant scope for further investigations. In time, genome mining and bioinformatics 
techniques are likely to reveal further novel enzymes. Enzyme engineering based upon ligand-
bound crystal structures and directed evolution methods are also likely to widen the substrate 
scope of the known Pictet-Spenglerases. Thus, the applications of recombinant Pictet-
Spenglerases in vitro or in vivo will continue to expand to generate diverse portfolios of 
alkaloids.  
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