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Abstract: A nonparametric approach to the modeling of social networks using

degree-corrected stochastic blockmodels is proposed. The model for static network

consists of a stochastic blockmodel using a probit regression formulation and popu-

larity parameters are incorporated to account for degree heterogeneity. We specify a

Dirichlet process prior to detect community structure as well as to induce clustering

in the popularity parameters. This approach is flexible yet parsimonious as it allows

the appropriate number of communities and popularity clusters to be determined au-

tomatically by the data. We further discuss and implement extensions of the static
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model to dynamic networks. In a Bayesian framework we perform posterior infer-

ence through MCMC algorithms. The models are illustrated using several real-world

benchmark social networks.

Key words: community detection; stochastic blockmodels; degree correction; Dirich-

let process

1 Introduction

Social networks play a central role in the dissemination of information (Westerman

et al., 2014), formation of alliances (Gulati, 1998), transmission of disease (Cauchemez

et al., 2011) and many other areas. It is thus important to understand the under-

lying structure of a social network and the behavioral patterns in the interactions.

A common characteristic of social networks is that they often exhibit community

structure, where certain groups of nodes (representing the social actors) are more

densely connected within each group than across groups. The community structure

may be present due to various factors such as similar interests, social stature or phys-

ical locations. Studying the nodal attributes associated with the communities can

provide a greater understanding of the network topology, behavioral patterns and

network dependent processes such as epidemic spreading. However, identifying the

community structure in a network can be challenging as the number of communities

is typically unknown and the communities can vary in size and rate of interaction.

Moreover, results can be distorted if the broad degree distributions often observed in

real networks are not taken into account (Karrer and Newman, 2011). In this article,
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we propose a nonparametric approach to community detection in social networks by

using independent Dirichlet processes (Ferguson, 1973) to capture the blockstructure

in the social network and induce clustering in the activity level of nodes.

The partitioning of nodes into structurally equivalent groups, such that nodes in the

same group relate with other nodes in the same way, was first discussed by Lor-

rain and White (1971), followed by White et al. (1976). Building upon the work of

Holland and Leinhardt (1981) and Fienberg and Wasserman (1981), Holland et al.

(1983) generalized this deterministic concept and formulated stochastic blockmodels

to allow for data variability. In a stochastic blockmodel, the nodes of a network

are partitioned into groups and the distribution of ties between the nodes depends

only on the group membership of the nodes and the probabilities of interactions

between different groups. The stochastic blockmodel is generative and a wide va-

riety of network structures, such as community, hierarchical or core-periphery, can

be produced through different choices of the probability matrix. In a priori block-

modeling, exogenous actor attribute data are used to partition the nodes, while the

discovery of blockstructures from relational data is referred to as a posteriori block-

modeling (Wasserman and Anderson, 1987). Snijders and Nowicki (1997) studied a

posteriori blockmodeling for undirected networks when there are only two groups and

derived procedures for finding the blockstructure using both maximum likelihood and

Bayesian estimation. Nowicki and Snijders (2001) extend their approach to directed

valued networks where the number of classes is fixed and address the nonidentifiabil-

ity problem of the class labels. Handcock et al. (2007) consider a different clustering

approach based on latent space models (Hoff et al., 2002), which assumes that the

probability of a tie is dependent on the positions of the actors in some unobserved

space and decreases with distance.
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The stochastic blockmodel has been extended in many ways. To overcome the re-

striction that each actor can only belong to one group, Airoldi et al. (2008) develop

mixed membership stochastic blockmodels (MMSB), where each node is associated

with a membership vector describing the probability of the node belonging to each

of the groups. Each node can also assume different group membership when inter-

acting with different nodes. Latouche et al. (2011) considers overlapping stochastic

blockmodels, where each node can belong simultaneously to multiple groups with

independent probabilities. The infinite relational model introduced by Kemp et al.

(2006) allows the number of groups to be determined automatically by the data by

drawing the membership vector from a Chinese restaurant process (CRP, Pitman,

2006).

Karrer and Newman (2011) point out that the stochastic blockmodel often yield poor

fits to real-world networks whose degree distributions are much broader than those

generated by the stochastic blockmodel. To account for heterogeneity in the degrees

of nodes, they propose degree-corrected stochastic blockmodels, which modify the

probability of a tie between node i in group gi and node j in group gj from ωgigj to

θiθjωgigj , where ωrs denotes the probability of a tie between group r and s while θi

measures the activity level or “popularity” of node i. Estimates of the parameters

are derived using maximum-likelihood and they demonstrate that degree-corrected

blockmodels lead to improved community detection. Gopalan et al. (2013) consider a

related “assortative MMSB with node popularities” model, that uses a logit link and

extends the MMSB to incorporate node popularities. A stochastic variational infer-

ence algorithm (Hoffman et al., 2013) is developed for posterior inference. Peng and

Carvalho (2016) consider degree-corrected stochastic blockmodels using a Bayesian

approach and a logistic regression formulation. Posterior inference is obtained via
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data augmentation with latent Pólya-Gamma variables and a canonically mapped

centroid estimator that addresses label non-identifiability.

In this article, we focus on degree-corrected stochastic blockmodels for community de-

tection in undirected social networks using a nonparametric Bayesian approach. The

static model is formulated using probit regression and a Dirichlet process (DP) prior

(Ferguson, 1973) is employed to capture the communities in the network and induce

clustering among the popularity parameters. The DP is widely used in Bayesian non-

parametric models, particularly in DP mixture models, as a prior over distributions.

It is well known that the DP is almost surely discrete. If the random probability

measure G is a DP(α,G0) with total mass parameter α and baseline distribution G0,

then G can be represented as

G(·) =
∑
h≥1

whδθh(·),

where δθ is a point-mass at θ and the atoms {θh}h≥1 are such that θh
iid∼ G0. The

weights follow a stick-breaking process (Sethuraman, 1994), wh = Vh
∏

j<h(1 − Vj),

where Vh
iid∼ Beta(1, α). Due to the discreteness of the DP, the prior induces clustering

of the subjects in the sample based on the unique values of the parameters θh, where

the number of clusters K is unknown and learned from the data. The nonparametric

approach is highly flexible yet parsimonious as it does not require the number of

communities to be fixed in advance and instead allows the appropriate number of

communities and popularity clusters to be determined automatically by the data.

Our model integrates the approach of Kemp et al. (2006) who use the CRP to detect

community structure and Ghosh et al. (2010), who use the DP to induce clustering

among the “productivity” and “attractiveness” parameters of a variation of the p1
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model (Holland and Leinhardt, 1981) and a social relations model (Gill and Swartz,

2007). The infinite-degree-corrected stochastic block model (Herlau et al., 2014)

also uses the CRP for community detection. However, they consider weighted links

modeled using a Poisson distribution and they do not consider clustering of the degree

parameters. The nonparametric network model introduced by Williamson (2016) also

uses the DP, albeit for clustering of links instead of the nodes and represents a network

as a possibly infinite sequence of node pairs.

We derive a Gibbs sampler for posterior inference and discuss some ways in which the

static model can be extended to dynamic networks. There is an extensive literature on

community detection in dynamic networks. For instance, Xing et al. (2010) extends

MMSB to dynamic networks using state space models by allowing the membership of

the nodes to vary with time while Sewell and Chen (2017) extend latent space models

to dynamic networks. Here we focus on changes in the activity level of individual

nodes and the dependency of a network on its previous state. The applicability of

the proposed models are illustrated using benchmark social networks.

This article is organized as follows. In Section 2 we present a model for static net-

works and discuss extensions of this model to dynamic networks. In Section 3, we

describe how posterior inference for the proposed models can be obtained using Gibbs

samplers. In Section 4, we use the proposed models to analyze three real-world social

networks. We conclude with a discussion of future research directions in Section 5.

Online supplemental material for this article are available.
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2 Nonparametric models for social networks

Let N = {1, . . . , n} be the set of actors of interest and y = [yij] be a n× n adjacency

matrix where yij is an indicator of a link from actor i to actor j. In this article,

we focus on undirected networks without self-links and multiple links. Hence y is

symmetric and the diagonal elements of y are zeros. When the network of interest is

observed at multiple (discrete) time points, T , we let yt = [yt,ij] be the n×n adjacency

matrix representing the state of the network at time t for t = 1, . . . , T .

2.1 Static model

First we introduce a model for a static network y that aims to detect community

structure while incorporating actor heterogeneity through node-specific popularity

parameters. Let S = {(i, j)|1 ≤ i < j ≤ n}. For (i, j) ∈ S, we assume

yij|pij
indep∼ Bernoulli(pij),

and introduce latent variable ζij|µij
indep∼ N(µij, 1), where

µij = θi + θj +
K∑
k=1

β∗k1{zi = zj = k}, (2.1)

such that yij|ζij = 1 if ζij > 0 and 0 if ζij ≤ 0 and 1{·} denotes the indicator

function. Here we exploit the latent variable representation of binary variables (Albert

and Chib, 1993) and assume a probit link where Φ−1(pij) = µij and Φ(·) denotes the

cumulative distribution function of the standard normal. The parameter θi represents

the popularity or activity level of actor i, K ≤ n denotes the total number of groups

or communities in the network and zi ∈ {1, . . . , K} represents the group membership

of actor i. The coefficient β∗k measures the rate of interaction in the kth community.
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Members within a community are assumed to interact with each other at a common

rate. A high β∗k indicates a tight or close-knit community where members interact

at a high rate while a low β∗k indicates a group with little interaction. The third

term on the right-hand side of (2.1) resembles a stochastic blockmodel where non-

diagonal entries of the probability matrix are set to a common value (not necessarily

zero). In (2.1), the probability of interaction, pij, between actors i and j depends

on their individual popularities as well as the interaction rate of their community if

they belong to the same community. An interaction between actors from different

communities is driven only by their popularities. Thus the presence of a link can

be explained by homophily in terms of community membership or popularities and

the popularity parameters {θi} and community assignments {zi} are competing to

explain the observed network. Note that K is unknown and the object of inference.

For model parsimony, a DP is used to induce clustering among the popularity param-

eters {θi}. We assume

θi|G
iid∼ G for i = 1, . . . , n,

G ∼ DP(α,G0),

(2.2)

where the base distribution G0 is N(0, σ2
θ) and α ∼ Gamma(aα, bα). Let θ∗ =

[θ∗1, . . . , θ
∗
L]T denote the set of unique values among {θ1, . . . , θn} and ci indicate the

latent class associated with θi so that θi = θ∗ci . Clustering the popularity parameters

results in a more parsimonious model representation assuming L� n. Moreover, such

a model is easier to interpret and is useful in understanding the network structure. It

also helps to identify influential nodes in the network who have high popularity and

possibly connections across multiple communities (see also Vu et al., 2013).

To detect the communities in the network, we employ again a DP, H, which is inde-
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pendent of G. We introduce a βi for each actor i where βi = β∗zi and assume

βi|H
iid∼ H for i = 1, . . . , n,

H ∼ DP(ν,H0),

(2.3)

where H0 is N(0, σ2
β) and ν ∼ Gamma(aν , bν). Let β∗ = [β∗1 , . . . , β

∗
K ]T be the set of

unique values among {β1, . . . , βn}.

In the proposed approach, the number of clusters L among {θi} and the number

of communities K are not fixed in advance. Instead, they are random and to be

inferred from the data. The prior distribution on L depends on the concentration

parameter α, with a larger α implying a larger L a priori. To avoid overfitting, we

opt for a prior for α that favors small values relative to n. We specify a gamma

prior on α which facilitates computations. The prior specification on α also affects

the prior distribution of the number L of components. The conditional mean and

variance of L given the concentration parameter of the DP and the sample size n are

E(L | α) =
∑n

i=1
α

α+i−1 and Var(L | α) =
∑n

i=1
α(i−1)

(α+i−1)2 (Liu, 1996; Jara et al., 2007).

Jara et al. (2007) also derive the following marginal expressions for E(L) and Var(L)

when α is given a Gamma(a0, b0) prior:

E(L) ≈ a0
b0
A, Var(L) ≈ E(L∗) +

a20
b20
B +

{
a0
b0
B + A

}2
a0
b20
,

where A = ψ0(
a0+nb0
b0

)−ψ0(
a0
b0

), B = ψ1(
a0+nb0
b0

)−ψ1(
a0
b0

), and ψ0(·) and ψ1(·) represent

the digamma and trigamma functions respectively. These may be used as reference

for setting hyperparameter values in the gamma prior. For example, in the karate

network in Section 4.1, where n = 34, a Gamma(5, 5) prior implies a prior mean of

4.1 and a prior variance of 3.8. The relation between K and ν is similar.

Next, we propose extensions of the static model to dynamic networks that evolve

over time. Suppose we observe networks yt = [yt,ij] for t = 1, . . . , T . For the dynamic
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models below, we assume that for t = 1, . . . , T , (i, j) ∈ S,

yt,ij|pt,ij
indep∼ Bernoulli(pt,ij).

As before we consider the probit link function and introduce latent variables ζt,ij|µt,ij ∼

N(µt,ij, 1) for (i, j) ∈ S, t = 1, . . . , T such that yt,ij|ζt,ij = 1 if ζt,ij > 0 and 0 if

ζt,ij ≤ 0. Thus, pt,ij = Φ(µt,ij).

2.2 Dynamic model 1

Dynamic model I assumes that the community memberships remain unchanged over

time but the popularities of the actors can vary with time. This assumption is appro-

priate for data where the communities arise due to factors that do not or are unlikely

to vary drastically over time, for instance, gender, race, physical locations and job

positions. In such cases, the changes in ties may be attributed to variations in the

activity levels of individual nodes. For (i, j) ∈ S and t = 1, . . . , T , let

µt,ij = θit + θjt +
K∑
k=1

β∗k1{zi = zj}.

In resemblance of the static model, we assume that the {θit} are independent and

induce clustering among them using a DP,

θit|G
iid∼ G for i = 1, . . . , n, t = 1, . . . , T,

G ∼ DP(G0, α),

where G0 is N(0, σ2
θ) and α ∼ Gamma(aα, bα). For this model, let θ∗ = [θ∗1, . . . , θ

∗
L]T

denote the set of unique values among {θ11, . . . , θnT} and cit indicate the latent class

associated with θit so that θit = θ∗cit for i = 1, . . . , n, t = 1, . . . , T . The {β∗k} and {zi}

are modeled using a DP as described in (2.3).
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2.3 Dynamic model II

Dynamic model II extends the static model by allowing the tie between nodes i and j

at time t to depend on the existence of the tie at the previous time point. It assumes

that the popularities and community memberships of the actors remain unchanged

over time. For (i, j) ∈ S and t = 1, . . . , T , let

µt,ij = ηyt−1,ij1{t > 1}+ θi + θj +
K∑
k=1

β∗k1{zi = zj},

where η ∼ N(0, σ2
η). The coefficient η can be interpreted as a measure of the persis-

tence of ties in the network once they are formed. A positive η implies that a tie is

more likely to be present at time t if it was present at time t− 1 than if it were not,

conditional on their popularities and community memberships. On the other hand,

a negative η implies that a tie is more likely to be present at time t if the tie was

absent at the previous time point than if it were present. The parameters {θi} are

modeled as in (2.2) and {zi} and {β∗k} are modeled as in (2.3). The popularities and

communities inferred from this model smooths out the noise in the data and provide

an overview of the behavior of actors over time.

3 Posterior inference

We use Gibbs samplers to perform posterior inference for the proposed models. To

obtain the updates in the Gibbs sampler, we derive the posterior distribution of each

variable conditional on the rest. Detailed derivations are given in the supplemental

material. Sampling from the DP is performed using the methods described in Neal

(2000) while the concentration parameters α and ν are sampled using the method
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described in Escobar and West (1995).

We introduce the following notations. Let Zij be a binary vector of length K where

the kth element is 1 if zi = zj = k, 0 otherwise, and Z = [Z12, Z13, . . . , Z(n−1),n]T be

a n(n − 1)/2 ×K matrix. We define ζij = ζji and ζt,ij = ζt,ji for 1 ≤ j < i ≤ n and

t = 1, . . . , T . Let Sm = {(i, j) ∈ S|ci = cj = m}, St,m = {(i, j) ∈ S|cit = cjt = m},

Pm = {(i, j)|j 6= i, ci = m, cj 6= m}, and Pt,m = {(i, j)|j 6= i, cit = m, cjt 6= m}.

We use TN(x|µ, σ, a, b) to denote the truncated normal distribution with density

1
σ
φ(x−µ

σ
)/(Φ( b−µ

σ
) − Φ(a−µ

σ
)), where φ(·) denotes the density of the standard normal

distribution. In the algorithms presented below, we use K and L to represent the

current number of communities and popularity clusters respectively at each iteration

and β∗ = [β∗1 , . . . , β
∗
K ] and θ∗ = [θ∗1, . . . , θ

∗
L] to represent the states currently associated

with the clusters.

For the static model, the joint distribution p(y, ζ, z, β∗, ν, c, θ∗, α) is given by

p(c|α)p(α)p(z|ν)p(ν)p(θ∗)p(β∗)
∏
i<j

p(yij|ζij)p(ζij|ci, cj, θ∗, zi, zj, β∗),

where ζ = {ζ11, . . . , ζn−1,n}, c = {c1, . . . , cn} and z = {z1, . . . , zn}. Note that p(c|α)

and p(z|ν) are defined in Neal (2000) as

P(zi = k|z−i, ν) =
m−i,k

n− 1 + ν
for k ∈ z−i, P(zi 6= zj for all j 6= i|z−i, ν) =

ν

n− 1 + ν
,

P(ci = `|c−i, α) =
n−i,`

n− 1 + α
for ` ∈ c−i, P(ci 6= cj for all j 6= i|c−i, α) =

α

n− 1 + α
,

(3.1)

where z−i = z\zi, c−i = c\ci, m−i,k =
∑

zj∈z−i 1{zj = k} and n−i,` =
∑

cj∈c−i 1{cj =

`}. The Gibbs sampler for the static model is outlined in Algorithm 1. Step 2

supposes that the number of distinct values in z−i is K ′. In the update, zi can either

assume one of these K ′ distinct values or a new value not assumed by any zj ∈ z−i.

Algorithm (3.2) describes the probabilities of cluster assignment and a is a constant
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that ensures these K ′+ 1 probabilities sum to one. Similarly, (3.3)–(3.7) describe the

update steps of cluster assignment.

For dynamic model I, the joint distribution p(y, ζ, z, β∗, ν, c, θ∗, α) is given by

p(c|α)p(α)p(z|ν)p(ν)p(θ∗)p(β∗)
T∏
t=1

∏
i<j

p(yt,ij|ζt,ij)p(ζt,ij|cit, cjt, θ∗, zi, zj, β∗),

where ζ = {ζ1,11, . . . , ζT,n−1,n}, c = {c11, . . . , cnT} and z = {z1, . . . , zn}. Note that

p(c|α) is defined as

P(cit = `|c−it, α) =
n−it,`

nT − 1 + α
for ` ∈ c−it,

P(cit is not equal to any value in c−it|c−it, α) =
α

nT − 1 + α
,

where c−it = c\cit and n−it,` is the number of indicators in c−it that are equal to `.

The definition of p(z|ν) remains as in (3.1). The Gibbs sampler for dynamic model I

is outlined in Algorithm 2.

For dynamic model II, the joint distribution is given by

p(y, ζ, z, β∗, ν, c, θ∗, α) = p(c|α)p(α)p(z|ν)p(ν)p(θ∗)p(β∗)p(η)

×
∏
i<j

{[∏
t≥1

p(yt,ij|ζt,ij)
]
p(ζ1,ij|ci, cj, θ∗, zi, zj, β∗)

[∏
t≥2

p(ζt,ij|ci, cj, θ∗, zi, zj, β∗, η, yt−1,ij)
]}
,

where ζ = {ζ1,11, . . . , ζT,n−1,n}, c = {c1, . . . , cn} and z = {z1, . . . , zn}. Note that

p(c|α) and p(z|ν) are as defined in (3.1). The Gibbs sampler for dynamic model II is

outlined in Algorithm 3.

We code Algorithms 1–3 in Julia and all experiments are run on an Intel Core i5 CPU

@ 3.30GHz, 8.0GB RAM. It is also possible to use softwares such as OpenBUGS to

obtain posterior inference for the proposed models by considering a truncated DP

approach (Ishwaran and Zarepour, 2000). However, we observe that the runtime in
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OpenBUGS is significantly longer than Julia especially as the number of nodes n and

the number of time points T increase. The computational complexity of Algorithms

1–3 scales as O(Tn2) since the first step cycles through each time point and node

pair. Moreover, the number of clusters in the DP (L and K) is expected to grow

logarithmically with the number of the nodes (Antoniak, 1974). We include Julia

codes for Algorithms 1–3 and an OpenBUGS code for implementing the static model

in the supplementary material. Extending the OpenBUGS code to the dynamic

models is straightforward.

We have experimented with using logistic instead of probit regression via OpenBUGS

and results are similar. The normal priors and gamma priors are adopted due to

conjugacy so that the updates in the Gibbs sampler are of closed form. For the normal

prior, we use a variance of one in the applications and doubling the variance results

in minimal changes, although using a very large variance will result in instability in

OpenBUGS. We think that a variance of 1 is sufficient since pij = Φ−1(−3) = 0.001

and pij = Φ−1(3) = 0.999. The model fit is more sensitive to the gamma prior

parameters (see example in Section 4.1). We recommend using the results of Jara et al.

(2007) for the expectation and variance of the number of clusters as a guideline for

setting the gamma prior parameters and to vary the parameters to test the sensitivity

of the model.

3.1 Cluster Analysis

We can perform posterior inference on the clustering structure using the MCMC

output. We derive a posterior estimate of the clustering by computing the posterior

similarity matrix S, which is a n×n symmetric matrix whose (i, j) entry contains the
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posterior probability that actors i and j belong to the same cluster. This probability

is estimated by the proportion of times actors i and j cluster together and it is

not affected by the problem of “label-switching” (labels associated with clusters may

change during MCMC runs, see e.g. Stephens, 2000) or the number of clusters varying

across iterations.

We can also compute a single (hard) clustering estimate by using the maximum

a posteriori (MAP) approach or methods based on the posterior similarity matrix

or Rand index (see discussion in Fritsch and Ickstadt, 2009). Here we consider

the Binder’s loss function (Binder, 1978), which is defined as the total number of

disagreements between the estimated and true clustering among all pairs of actors.

The R package mcclust provides a function, minbinder, that can be used to find

the clustering c∗ = [c∗1, . . . , c
∗
n] which minimizes the posterior expectation of this loss.

The posterior expected loss can be written as∑
i<j

|1{c∗i=c∗j} − Sij|, (3.8)

where the sum is taken over all possible pairs of actors and Sij is the (i, j) entry of

the posterior similarity matrix.

4 Applications

We investigate the performance of the static and dynamic models on three well-

known social network datasets and compare the fitted models with results obtained

previously in published literature. The first is a karate club network studied by

Zachary (1977) from 1970 to 1972, the second is a dolphins social network (Lusseau

et al., 2003) and the third is a dataset collected by Kapferer (1972) at an African
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clothing factory in Zambia. These datasets are available at the UCI Network Data

Repository (https://networkdata.ics.uci.edu/). The analysis on dolphins social

networks is available in the supplemental material together with a simulated data

example to test the sensitivity of the static model.

In the MCMC implementation, we run multiple chains from dispersed starting po-

sitions and use trace plots and kernel density plots to assess the convergence of the

MCMC chains as well as the length of burn-in to be discarded. The parameters L,

K, ν, α, η, β and θ are monitored.

4.1 Karate club network

This dataset contains 78 undirected friendship links among 24 members, which are

constructed based on interactions outside of club activities. Due to disputes over

the price of karate lessons, the club was divided informally into two factions, led

by the karate instructor “Mr Hi” (actor 1) and the president “John A.” (actor 34)

respectively (these names are pseudonyms). During the study, the club eventually

split into two separate clubs when Mr Hi was fired for trying to raise lesson fees

unilaterally and his supporters left to join the new club formed by Mr Hi. All members

joined clubs following their own factions except actor 9, who crossed factions to join

Mr Hi’s club because he was only three weeks away from a test for black belt at the

time of the split and he could not bear to give up his rank.

We fit the static model to this dataset using Algorithm 1, setting aν = bν = aα =

bα = 5 and σ2
θ = σ2

β = 1. Three chains were run in parallel, each consisting of

40,000 iterations with the first 30,000 discarded as burn-in. The total runtime is 172

seconds. A thinning factor of 5 was applied and the remaining 6000 samples were used

https://networkdata.ics.uci.edu/
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Figure 1: MCMC trace plots of K, L, ν and α (3 chains) after discarding burn-in

and thinning.
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Figure 2: Posterior distributions of K, ν L and α. For ν and α, the prior distributions

are shown in dotted lines and the posterior distributions in solid (blue) lines.

for posterior inference. Figure 1 shows the trace plots for some of the parameters.

Figure 2 shows the posterior distributions of the number of communities (K), the

number of popularity clusters (L), and the DP concentration parameters α and ν.

The mode of K is 3 and that of L is 4. The fitted model is quite parsimonious with

a relatively small number of clusters for both popularity and community. Figure 3

shows the posterior similarity matrices for the clusterings according to community

(left) and popularity (right). Figure 4 plots the posterior mean of θi against the

degree for each actor. While the factional leaders, Mr Hi (actor 1) and John A.

(actor 34), and a few other actors {2, 3, 33} have high popularity, the rest of the

members have much lower activity levels generally.
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Figure 4: Plot of posterior mean of θi against actor i’s degree.

Using the similarity matrices, we compute hard clustering estimates using Binder’s

loss function. There are three communities, one containing a single node {3} and

three popularity clusters. Figure 5 shows the fit of the static model to the karate club

network. We run Algorithm 1 again, fixing z and c to obtain estimates of β∗ and

θ∗ conditional on clustering structure. The conditional posterior mean and standard

deviation (in brackets) of these parameters are shown in the legend of Figure 5. There

are three clusters for the popularity parameters {θi}, the first contains {Mr Hi, John

A., 3}, the second contains {2, 33} and the third contains all remaining members.
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Figure 5: Fit of static model to karate club network. Nodes of the same color belong

to the same cluster and singletons are not colored.

For the communities, we note that the β∗k for groups 1 and 3 are strongly positive,

indicating a high interaction rate within each group. The posterior mean and standard

deviation of β∗k for the singletons necessarily equal that of the prior distribution.

Group 3 corresponds exactly to the faction led by John A. as concluded in Zachary

(1977) while group 1 together with the singleton {3} correspond to the faction led by

Mr Hi. From the posterior probability matrix, actor 3 has a 0.4 probability of being

clustered with members in group 1 and a 0.05 probability of being clustered with

members in group 3. It is thus reasonable to combine actor 3 with group 1. Hence,

our proposed static model is able to identify members in the factions accurately.

Incidentally, if we drop {θi} from the static model and consider just the blockmodel,

we obtain five clusters, four of which are singletons: {1}, {3}, {33}, {34} and the fifth

cluster contains all other members. This result is similar to the phenomenon discussed

in Karrer and Newman (2011), who note that the non-degree-corrected blockmodel

with K = 2 splits the network into high-degree and low-degree nodes instead of by
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factions, while the degree-corrected version splits it according to factions albeit with

one misclassification. In addition, Bickel and Chen (2009) observe that the non-

degree-corrected blockmodel with K = 4 splits the network according to factions

correctly after the merging of sub-communities. These observations highlight the

importance of accounting for degree variation in blockmodels as well as the difficulties

in determining an appropriate number of clusters. Our static model tries to address

these issues using a nonparametric approach via the automatic clustering structures

induced by the DP. We observed that the clusters identified by the static model can be

sensitive to the DP concentration parameters in some cases. For example, if we adopt

a more conservative prior, say by setting aν = bν = aα = bα = 10, then we obtain

three communities, the first corresponds to the faction led by John A., the second

contains {5, 6, 7, 11, 17} and the third contains all remaining members. Here, the

second cluster emerges as one with a higher interaction rate than the third. However,

merging the second and third clusters still yields Mr Hi’s faction.

While the clustering estimates return hard partitions of the network which are easy

to interpret, the posterior similarity matrices reveal finer details regarding the degree

of affiliation of actors towards the clusters that they are assigned to in the hard split.

The posterior similarity matrix of popularities shows evidence of two main blocks

but the partitioning among actors {1, 34, 3, 33, 2} is not straightforward. For the

posterior similarity matrix for communities, actor 10 is assigned to the cluster led by

John A., but he has a slightly lower posterior probability (≈ 0.5) of being together

with the other members in this cluster than the rest, and also has a positive posterior

probability (≈ 0.2) of being in the same cluster as members in Mr Hi’s faction.
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4.2 Kapferer’s tailor shop network

Kapferer (1972) collected data on the interactions among 39 workers in a tailor shop

in Zambia, Southern Africa, from June 1965 to February 1966, and he examined how

these social networks relate to major events taking place in the factory. The workers’

duties can be classified into eight categories: head tailor (worker number 19), cutter

(16), line 1 tailor (1–3, 5–7, 9, 11–14, 21, 24), button machiner (25–26), line 3 tailor

(8, 15, 20, 22–23, 27–28), ironer (29, 33, 39), cotton boy (30–32, 34–38) and line 2

tailor (4, 10, 17–18). These positions require different levels of skills and some like

the head tailor, cutter, line 1 tailors and button machiners were perceived as having

more prestige. Here we focus on the symmetric “sociational” networks (based on

convivial interactions) recorded at two time points, the first was before an aborted

strike and the second was after a successful strike for higher wages. The network

at the second time point (223 edges) is much denser than the first (158 edges) as

the workers strive to be more united (thereby expanding their social relations) in

their efforts to change the wage system. This dataset has been widely studied, for

instance, by Mitchell (1989) and Nowicki and Snijders (2001) using block structures

and Thiemichen et al. (2016) using Bayesian exponential random graph models. For

each of the models fitted in this section, we run three MCMC chains in parallel. Each

chain uses 15,000 iterations, with the first 5000 discarded as burn-in. A thinning factor

of 5 was applied and posterior inferences are based on the remaining 6000 iterations.

The hyperparameters are set as aν = bν = aα = bα = 10 and σ2
θ = σ2

β = σ2
η = 1.

In the analysis below, the nodes are colored according to the inferred clusters and

singletons are not colored.

First, we fit the static model to the two time points separately to investigate whether
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Figure 6: Fit of separate static models to Kapferer social networks at t = 1 and t = 2.

the assumption that community memberships remain unchanged over time is suitable.

The results are shown in Figure 6. Three communities are detected at t = 1 and four

at t = 2. It seems that there are some changes to the community memberships. In

particular, some members in group 4 at t = 1 have joined group 1 at t = 2 while

some others have become singletons. Most members in group 1 and especially group

9 remain intact. If we exclude actors who are singletons at either t = 1 or t = 2, then

there are 28 actors left, of which 23 of the actors’ community membership remain

unchanged. An important observation is that the communities have a strong associa-

tion with the workers’ duties, which also provides some basis for the assumption that

community memberships remain unchanged.
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4.2.1 Dynamic model I

Fitting dynamic model I using Algorithm 2 took 139 seconds. Dynamic model I

assumes that the communities remain constant over time and the emergence or dis-

solution of ties are due to changes in the activity level of individual actors. The

posterior distributions of K, L, ν and α are shown in Figure 7. The mode of K is 6

and the mode of L is 4.
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Figure 7: Posterior distributions of K, ν, L and α. For ν and α, the prior distributions

are shown in dotted lines and the posterior distributions in solid (blue) lines.

Next we compute the posterior similarity matrices and use Binder’s loss function to

obtain hard clustering estimates. This yields nine communities and three popularity

clusters. Of the nine communities, five are singletons so there are essentially only four

communities. We run Algorithm 2 again, fixing z and c to obtain estimates of β∗ and

θ∗ conditional on the clustering structure. The results are shown in Figure 8, and the

mean and standard deviation (in brackets) of β∗ and θ∗ are reported for each group.

The first row shows the four communities which are constant across the two time

points. The shapes of the nodes represent the duties of the workers as explained in

the legend. The plots indicate a high degree of job homophily in the communities even

though these social networks are constructed based on casual interactions (“general
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Figure 8: Fit of dynamic model I to Kapferer social networks.

conversation, the sharing of gossip and the enjoyment of a drink together”, Kapferer,

1972). In particular, groups 1 and 2 consists of workers with jobs perceived to be of

higher prestige: cutter, line 1 and line 2 tailors, group 3 consists of line 3 tailors and

group 9 consists of all the ironers and cotton boys. The estimates of β∗k are strongly

positive, indicating a high interaction rate within each group.

There are three popularity clusters with increasing means, −1.41 (group 1), −0.46

(group 2) and 0.57 (group 3). Thus, we can consider the three clusters as representing

“low”, “average” and “high” popularity. Actors 19 (head tailor) and 16 (cutter)

are the only two actors with high popularity at t = 1, and they maintained high

popularity at t = 2. This is not surprising since they are regarded by Kapferer
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Figure 9: Barplot (left) shows the number of workers in each popularity cluster at the

two time points. Barplot (right) shows the proportion of workers in each popularity

cluster at each time for each job category.

(1972) to be in “supervisory” positions and play critical roles in the operation of

the factory. From the barplot (left) in Figure 9, the number of workers with low

popularity decreased from t = 1 to t = 2 while the number with average or high

popularity increased. This reflects the efforts of the workers in expanding social

ties after the first unsuccessful strike. Examining the results more closely using the

barplot (right) in Figure 9, the proportion of workers with low and average popularity

actually remained unchanged over the two time points for the ironers, cotton boys and

line 2 tailors (positions with lower prestige). Changes in popularity arise mainly from

line 1 tailors, button machiners and line 3 tailors. In particular, two line 1 tailors,

{21, 24} and a button machiner {25} moved from average to high popularity. These

observations are consistent with the analysis of Kapferer (1972), who noted that line

1 tailors made a strong attempt to expand their links after the first unsuccessful strike

as they stand to benefit the most from the change in wage system. Mitchell (1989)

also noted that the button machiner, Meshak (actor 25) played a crucial role in the

unfolding events at the factory and was regarded as a supervisor by the factory owner
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Figure 10: Posterior distributions of K, ν, L, α and η. For ν and α, prior distributions

are shown in dotted lines and the posterior distributions in solid (blue) lines.

during the final period.

4.2.2 Dynamic model II

Fitting dynamic model II using Algorithm 3 took 106 seconds. In this model, the

parameter η provides an indication of the persistence of ties. The probability that

a tie is formed at any time point depends on whether a tie exists at the previous

time point as well as the community membership of the nodes and their popularities.

Figure 10 shows the posterior distributions of K, ν, L, α and η based on 6000 MCMC

samples. The modes of K and L are both 6. The posterior mean of η is 0.58 and its

posterior mass is concentrated on positive values. This indicates that a tie is likely to

persist at the second time point given that it existed at the first time point. Figure

11 shows the posterior similarity matrices. We note that the block structures are not

clear-cut.

Figure 12 shows the posterior estimate of the cluster assignment obtained by min-

imizing Binder’s loss function and the estimates of β∗ and θ∗ for these clusterings.

The communities detected are largely similar to that of dynamic model I except for

changes to the assignment of individuals {14, 16, 19, 21}. A new “community” con-



Nonparametric degree-corrected blockmodels 27

1 3 11 5 9 7 12 2 13 10 6 4 14 20 27 28 23 22 15 19 21 26 25 16 24 17 18 8 29 33 31 34 35 36 38 30 32 37 39

131159712213106414202728232215192126251624171882933313435363830323739

Community

0.0

0.2

0.4

0.6

0.8

1.0

1 9 31 33 36 5 7 2 15 23 29 38 35 17 8 27 22 4 26 18 32 30 28 3 13 11 21 25 12 34 14 24 16 19 6 20 39 37 10

193133365721523293835178272242618323028313112125123414241619620393710

Popularity

0.0

0.2

0.4

0.6

0.8

1.0

Figure 11: Posterior similarity matrices for community (left) and popularity (right).

sisting of {19, 21} is present. However, the β∗k estimate for this group is 0.54 with a

large standard deviation of 0.8. Thus, this is not truly a “community” in the sense

that there is a high interaction rate between the actors.

The number of popularity clusters increased from three in dynamic model I to six

in model II. In model II, the popularity of an actor summarizes his activity level

across all time points. Figure 13 shows how the mean of θi varies with the degree

of an actor at each time point. The head tailor and the cutter have significantly

higher popularity than the other workers, followed by actor 24 (Ibrahim) and actors

in popularity group 2. We note that group 2 includes several individuals who play

significant roles in the factory’s social relationships (Kapferer, 1972). These include

Lyashi (11), who tried to win followers in support of his view of the factory structure,

Hastings (13), who took on many supervisory duties for the cutter category at time

2, Meshak (25), who was regarded as a leader by the factory owner, and Mubanga

(34), an influential figure among unskilled workers.
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Figure 12: Fit of dynamic model II to Kapferer social networks.
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Figure 13: Plot of mean of θi against the actor i’s degree at t = 1 (left) and t = 2

(right).
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5 Conclusion and future work

We propose a nonparametric Bayesian approach for detecting communities in so-

cial networks, using degree-corrected stochastic blockmodels. In the proposed static

model, the number of communities and popularity clusters do not have to be fixed

in advance and are inferred from the data automatically through the use of the DP.

For the karate club network and the dolphins social network, we find that the static

model returns sensible results although there is some sensitivity to the DP concentra-

tion parameters. The inferred popularity clusters also summarizes the popularities of

the actors and helps in the identification of key players in the network. We discuss

two extensions of the static model to dynamic networks. Dynamic model I enables the

study of the change in activity level of actors over the entire duration while dynamic

model II provides a measure of the persistence of links formed in the network. While

the Gibbs samplers are feasible for small networks, they do not scale well to large

networks and more efficient methods of estimation, such as variational approximation

methods, need to be developed and will be object of future investigation.
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Initialize z, c, θ∗ and β∗ and cycle through the following updates:

1. For (i, j) ∈ S, draw ζij from TN(ζij|µij, 1, 0,∞) if yij = 1 and

TN(ζij|µij, 1,−∞, 0) if yij = 0, where µij = θ∗ci + θ∗cj + ZT
ijβ
∗.

2. For i = 1, . . . , n: If m−i,zi = 0, remove β∗zi from β∗. Draw zi according to (3.2):

P(zi = k|rest) = am−i,k exp
{
β∗k

∑
j 6=i: zj=k

(ζij − θ∗ci − θ
∗
cj

)− m−i,k
2

β∗k
2
}

for k ∈ z−i and P(zi 6= zj for all j 6= i|rest) = aν,

(3.2)

where a is a normalizing constant that ensures the above probabilities sum to

one. If the value of zi is not in z−i, draw β∗zi ∼ N(0, σ2
β) and add it to β∗.

3. Draw β∗ ∼ N(P−1
∑

i<j(ζij − θ∗ci − θ
∗
cj

)Zij, P
−1), where P = 1

σ2
β
IK + ZTZ.

4. Draw γ1 ∼ Beta(α + 1, n). Then draw α from the mixture: παGamma(aα +

L, bα−log γ1)+(1−πα)Gamma(aα+L−1, bα−log γ1), where πα
1−πα = aα+L−1

n(bα−log γ1) .

5. For i = 1, . . . , n: If n−i,ci = 0, remove θ∗ci from θ∗. Draw ci according to (3.3):

P(ci = `|rest) = bn−i,` exp
{
θ∗`
∑
j 6=i

(ζij − θ∗cj − Z
T
ijβ
∗)− n− 1

2
θ∗`

2
}

for ` ∈ c−i and P(ci 6= cj for all j 6= i|rest) = bα
σc
σθ

exp
{ µ2

ci

2σ2
c

}
,

(3.3)

where σ2
c =

(
n − 1 + 1

σ2
θ

)−1
, µci = σ2

c

∑
j 6=i(ζij − θ∗cj − ZT

ijβ
∗), and a is a

normalizing constants that ensure the above probabilities sum to one. If the

value of ci is not in c−i, draw θ∗ci ∼ N(µci , σ
2
c ) and add it to θ∗.

6. For m = 1, . . . , L, draw θ∗m ∼ N(µm, σ
2
m), where σ2

m =
(

1
σ2
θ

+
∑
Sm4+

∑
Pm 1

)−1
and µm = σ2

m

[
2
∑
Sm(ζij − ZT

ijβ
∗) +

∑
Pm(ζij − θ∗cj − Z

T
ijβ
∗)
]
.

7. Draw γ2 ∼ Beta(ν + 1, n). Then draw ν from the mixture: πνGamma(aν +

K, bν−log γ2)+(1−πν)Gamma(aν+K−1, bν−log γ2), where πν
1−πν = aν+K−1

n(bν−log η) .

Algorithm 1: Gibbs sampler for static model.
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Initialize z, c, θ∗ and β∗ and cycle through the following updates:

1. For t = 1, . . . , T , (i, j) ∈ S, draw ζt,ij from TN(ζt,ij|µt,ij, 1, 0,∞) if yt,ij = 1 and

TN(ζt,ij|µt,ij, 1,−∞, 0) if yt,ij = 0, where µt,ij = θ∗cit + θ∗cjt + ZT
ijβ
∗.

2. For i = 1, . . . , n: If m−i,zi = 0, remove β∗zi from β∗. Draw zi according to (3.4):

P(zi = k|rest) = am−i,k exp
{
β∗k

∑
j 6=i:zj=k

∑
t

(ζt,ij − θ∗cit − θ
∗
cjt

)− Tm−i,k
2

β∗k
2
}

for k ∈ z−i and P(zi 6= zj for all j 6= i|rest) = aν,

(3.4)

where a is a normalizing constant that ensures the above probabilities sum to

one. If the value of zi is not in z−i, draw β∗zi ∼ N(0, σ2
β) and add it to β∗.

3. Draw β∗ ∼ N(P−1
∑

i<j Zij
∑

t(ζt,ij−θ∗cit−θ
∗
cjt

), P−1), where P = 1
σ2
β
IK +ZTZ.

4. As in Step 4 of Algorithm 1.

5. For t = 1, . . . , T , i = 1, . . . , n: If n−it,cit = 0, remove θ∗cit from θ∗. Draw cit

according to (3.5):

P(cit = `|rest) = bn−it,` exp
{
θ∗`
∑
j 6=i

(ζt,ij − θ∗cjt − Z
T
ijβ
∗)− n−1

2
θ∗`

2
}

for ` ∈ c−i and P(cit 6= any value in cit|rest) = bα
σc
σθ

exp
{µ2

cit

2σ2
c

}
,

(3.5)

where σ2
c =

(
n − 1 + 1

σ2
θ

)−1
and µcit = σ2

c

∑
j 6=i(ζt,ij − θ∗cjt − Z

T
ijβ
∗), and a is a

normalizing constants that ensure the above probabilities sum to one. If the

value of cit is not in c−it, draw θ∗cit ∼ N(µcit , σ
2
c ) and add it to θ∗.

6. For m = 1, . . . , L, draw θ∗m ∼ N(µm, σ
2
m), where σ2

m =
(

1
σ2
θ

+
∑

t

∑
St,m 4 +∑

t

∑
Pt,m 1

)−1
, µm = σ2

m

[
2
∑

t

∑
St,m(ζt,ij − ZT

ijβ
∗) +

∑
t

∑
Pt,m(ζt,ij − θ∗cjt −

ZT
ijβ
∗)
]
.

7. As in Step 7 of Algorithm 1.

Algorithm 2: Gibbs sampler for dynamic model I.
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Initialize z, c, θ∗ and β∗ and cycle through the following updates:

1. For t = 1, . . . , T , (i, j) ∈ S, draw ζt,ij from TN(ζt,ij|µt,ij, 1, 0,∞) if yt,ij = 1

and TN(ζt,ij|µt,ij, 1,−∞, 0) if yt,ij = 0, where µt,ij = ηyt−1,ij1{t > 1} + θ∗ci +

θ∗cj + ZT
ijβ
∗.

2. For i = 1, . . . , n: If m−i,zi = 0, remove β∗zi from β∗. Draw zi according to (3.6):

P(zi = k|rest) = am−i,k exp
{
β∗k
∑
t

∑
j 6=i:zj=k

(ζ̃t,ij − θ∗ci − θ
∗
cj

),−Tm−i,k
2

β∗k
2
}

for k ∈ z−i and P(zi 6= zj for all j 6= i|rest) = aν,

(3.6)

where b is a normalizing constant that ensures the above probabilities sum to

1. If the value of zi is not in z−i, draw β∗zi ∼ N(0, σ2
β) and add it to β∗.

3. Draw β∗ ∼ N(P−1
∑

i<j Zij
∑

t(ζ̃t,ij−θ∗ci−θ
∗
cj

), P−1), where P = 1
σ2
β
IK+TZTZ.

4. As in Step 4 of Algorithm 1.

5. For i = 1, . . . , n: If n−i,ci = 0, remove θ∗ci from θ∗. Draw ci according to (3.7):

P(ci = `|rest) = bn−i,` exp
{
θ∗`
∑
t

∑
j 6=i

(ζ̃t,ij − θ∗cj − Z
T
ijβ
∗)− T (n−1)

2
θ∗`

2
}
.

for ` ∈ c−i and P(ci 6= cj for all j 6= i|rest) = bα
σc
σθ

exp
{ µ2

ci

2σ2
c

}
,

(3.7)

where σ2
c =

(
T (n − 1) + 1

σ2
θ

)−1
, µci = σ2

c

∑
t

∑
j 6=i(ζ̃t,ij − θ∗cj − Z

T
ijβ
∗) and b is

a normalizing constant that ensures the above probabilities sum to 1. If the

value of ci is not in c−i, draw θ∗ci ∼ N(µci , σ
2
c ) and add it to θ∗.

6. For m = 1, . . . , L, draw θ∗m ∼ N(µm, σ
2
m), where σ2

m =
(

1
σ2
θ

+
∑
Sm 4T +∑

Pm T
)−1

and µm = σ2
m

(
2
∑
Sm(ζ̃t,ij − ZT

ijβ
∗) +

∑
Pm(ζ̃t,ij − θ∗cj − Z

T
ijβ
∗)
)

.

7. As in Step 7 of Algorithm 1

8. Draw η ∼ N(µη, σ
2
η,1), where σ2

η,1 =
(

1
σ2
η

+
∑

t≥2
∑

i<j y
2
t−1,ij

)−1
and µη =

σ2
η,1

∑
t≥2
∑

i<j yt−1,ij(ζt,ij − θ∗ci − θ
∗
cj
− ZT

ijβ
∗).

Algorithm 3: Gibbs sampler for dynamic model II.
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