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Abstract

Animals need to devise strategies to maximize returns while interacting with their
environment based on incoming noisy sensory observations. Task-relevant states,
such as the agent’s location within an environment or the presence of a predator,
are often not directly observable but must be inferred using available sensory infor-
mation. Successor representations (SR) have been proposed as a middle-ground
between model-based and model-free reinforcement learning strategies, allowing
for fast value computation and rapid adaptation to changes in the reward function
or goal locations. Indeed, recent studies suggest that features of neural responses
are consistent with the SR framework. However, it is not clear how such represen-
tations might be learned and computed in partially observed, noisy environments.
Here, we introduce a neurally plausible model using distributional successor fea-
tures, which builds on the distributed distributional code for the representation and
computation of uncertainty, and which allows for efficient value function computa-
tion in partially observed environments via the successor representation. We show
that distributional successor features can support reinforcement learning in noisy
environments in which direct learning of successful policies is infeasible.

1 Introduction

Humans and other animals are able to evaluate long-term consequences of their actions and adapt
their behaviour to maximize reward across different environments. This behavioural flexibility is
often thought to result from interactions between two adaptive systems implementing model-based
and model-free reinforcement learning (RL).

Model-based learning allows for flexible goal-directed behaviour, acquiring an internal model of the
environment which is used to evaluate the consequences of actions. As a result, an agent can rapidly
adjust its policy to localized changes in the environment or in the reward function. But this flexibility
comes at a high computational cost, as optimal actions and value functions depend on expensive
simulations in the model. Model-free methods, on the other hand, learn cached values for states and
actions, enabling rapid action selection. This approach, however, is particularly slow to adapt to
changes in the task, as adjusting behaviour even to localized changes, e.g. in the placement of the
reward, requires updating cached values at all states in the environment. It has been suggested that the
brain makes use both of these complementary approaches, and that they may compete for behavioural
control [Daw et al., 2005]; indeed, several behavioural studies suggest that subjects implement a
hybrid of model-free and model-based strategies [Daw et al., 2011, Gläscher et al., 2010].

Successor representations [SR; Dayan, 1993] augment the internal state used by model-free systems by
the expected future occupancy of each world state. SRs can be viewed as a precompiled representation
of the model under a given policy. Thus, the SRs fall in between model-free and model-based

Preprint. Under review.

ar
X

iv
:1

90
6.

09
48

0v
1 

 [
st

at
.M

L
] 

 2
2 

Ju
n 

20
19



approaches and can reproduce a range of corresponding behaviours [Russek et al., 2017]. Recent
studies have argued for evidence consistent with SRs in rodent hippocampal and human behavioural
data [Stachenfeld et al., 2017, Momennejad et al., 2017].

Motivated by both theoretical and experimental work arguing that neural RL systems operate over la-
tent states and need to handle state uncertainty [Dayan and Daw, 2008, Gershman, 2018, Starkweather
et al., 2017], our work takes the successor framework further by considering partially observable
environments. Adopting the framework of distributed distributional coding [Vértes and Sahani, 2018],
we show how learnt latent dynamical models of the environment can be naturally integrated with
SRs defined over the latent space. We begin with short overviews of reinforcement learning in the
partially observed setting (section 2); the SR (section 3); and distributed distributional codes (DDCs)
(section 4). In section 5, we describe how using DDCs in the generative and recognition models leads
to a particularly simple algorithm for learning latent state dynamics and the associated SR.

2 Partially observable Markov decision processes

Markov decision processes (MDP) provide a framework for modelling a wide range of sequential
decision-making tasks relevant for reinforcement learning. An MDP is defined by a set of states
S and actions A, a reward function R : S × A → R, and a probability distribution T (s′|s, a) that
describes the Markovian dynamics of the states conditioned on actions of the agent. For notational
convenience we will take the reward function to be independent of action, depending only on state;
but the approach we describe is easily extended to the more general case. A partially observable
Markov decision process (POMDP) is a generalization of an MDP where the Markovian states s ∈ S
are not directly observable to the agent. Instead, the agent receives observations (o ∈ O) that depend
on the current latent state via an observation process Z(o|s). Formally, a POMDP is a tuple: (S, A,
T , R, O, Z , γ), comprising the objects defined above and the discount factor γ. POMDPs can be
defined over either discrete or continuous state spaces. Here, we focus on the more general continuous
case, although the model we present is applicable to discrete state spaces as well.

3 The successor representation

As an agent explores an environment, the states it visits are ordered by the agent’s policy and the
transition structure of the world. State representations that respect this dynamic ordering are likely to
be more efficient for value estimation and may promote more effective generalization. This may not
be true of the observed state coordinates. For instance, a barrier in a spatial environment might mean
that two states with adjacent physical coordinates are associated with very different values.

Dayan [1993] argued that a natural state space for model-free value estimation is one where distances
between states reflect the similarity of future paths given the agent’s policy. The successor representa-
tion (Dayan, 1993; SR) for state si is defined as the expected discounted sum of future occupancies
for each state sj , given the current state si:

Mπ(si, sj) = Eπ[

∞∑
k=0

γkI[st+k = sj ] | st = si] . (1)

That is, in a discrete state space, the SR is a N ×N matrix where N is the number of states in the
environment. The SR depends on the current policy π through the expectation in the right hand side of
eq. 1, taken with respect to a (possibly stochastic) policy pπ(at|st) and environment T (st+1|st, at).
Importantly, the SR makes it possible to express the value function in a particularly simple form.
Following from eq. 1 and the definition of the value function:

V π(si) =
∑
j

Mπ(si, sj)R(sj) , (2)

where R(sj) is the immediate reward in state sj .

The successor matrix Mπ can be learned by TD learning, in much the same way as TD is used to
update value functions. In particular, the SR is updated according to a TD error:

δt(sj) = I[st = sj ] + γMπ(st+1, sj)−Mπ(st, sj) , (3)
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which reflects errors in state predictions rather than rewards, a learning signal typically associated
with model-based RL.

As shown in eq. 2, the value function can be factorized into the SR—i.e., information about expected
future states under the policy—and instantaneous reward in each state1. This modularity enables rapid
policy evaluation under changing reward conditions: for a fixed policy only the reward function needs
to be relearned to evaluate V π(s). This contrasts with both model-free and model-based algorithms,
which require extensive experience or rely on computationally expensive evaluation, respectively, to
recompute the value function.

3.1 Successor representation using features

The successor representation can be generalized to continuous states s ∈ S by using a set of feature
functions {ψi(s)} defined over S . In this setting, the successor representation (also referred to as the
successor feature representation or SF) encodes expected feature values instead of occupancies of
individual states:

Mπ(st, i) = E[

∞∑
k=0

γkψi(st+k) | st, π] (4)

Assuming that the reward function can be written (or approximated) as a linear function of the
features: R(s) = wTrewψ(s) (where the feature values are collected into a vector ψ(s)), the value
function V (st) has a simple form analagous to the discrete case:

V π(st) = wTrewM
π(st) (5)

For consistency, we can use linear function approximation with the same set features as in eq. 4 to
parametrize the successor features Mπ(st, i).

Mπ(st, i) ≈
∑
j

Uijψj(st) (6)

The form of the SFs, embodied by the weights Uij , can be found by temporal difference learning:

∆Uij = δiψj(st) δi = ψi(st) + γM(st+1, i)−M(st, i) (7)

As we have seen in the discrete case, the TD error here signals prediction errors about features of
state, rather than about reward.

4 Distributed distributional codes

Distributed distributional codes (DDC) are a candidate for the neural representation of uncertainty
[Zemel et al., 1998, Sahani and Dayan, 2003] and recently have been shown to support accurate
inference and learning in hierarchical latent variable models [Vértes and Sahani, 2018]. In a DDC, a
population of neurons represent distributions in their firing rates implicitly, as a set of expectations:

µ = Ep(s)[ψ(s)] (8)

where µ is a vector of firing rates, p(s) is the represented distribution, and ψ(s) is a vector of encoding
functions specific to each neuron. DDCs can be thought of as representing exponential family
distributions with sufficient statistics ψ(s) using their mean parameters Ep(s)[ψ(s)] [Wainwright and
Jordan, 2008].

5 Distributional successor representation

As discussed above, the successor representation can support efficient value computation by incorpo-
rating information about the policy and the environment into the state representation. However, in
more realistic settings, the states themselves are not directly observable and the agent is limited to
state-dependent noisy sensory information.

1Alternatively, for the more general case of action-dependent reward, the expected instantaneous reward
under the policy-dependent action in each state.
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Algorithm 1 Wake-sleep algorithm in the DDC state-space model
Initialise T,W
while not converged do

Sleep phase:
sample: {ssleept , osleept }t=0...N ∼ p(SN ,ON )

update W : ∆W ∝
∑
t

(ψ(ssleept )− fW (µt−1(Osleept−1 ), osleept ))∇W fW
Wake phase:
ON ← {collect observations}
infer posterior µt(Ot) = fW (µt−1(Ot−1), ot)
update T : ∆T ∝ (µt+1(Ot+1)− Tµt(Ot))µt(Ot)T
update observation model parameters

end while

In this section, we lay out how the DDC representation for uncertainty allows for learning and
computing with successor representations defined over latent variables. First, we describe an algorithm
for learning and inference in dynamical latent variable models using DDCs. We then establish a link
between the DDC and successor features (eq. 4) and show how they can be combined to learn what we
call the distributional successor features. We discuss different algorithmic and implementation-related
choices for the proposed scheme and their implications.

5.1 Learning and inference in a state space model using DDCs

Here, we consider POMDPs where the state-space transition model is itself defined by a conditional
DDC with means that depend linearly on the preceding state features. That is, the conditional
distribution describing the latent dynamics implied by following the policy π can be written in the
following form:

pπ(st+1|st)⇔ Est+1|st,π[ψ(st+1)] = Tπψ(st) (9)

where Tπ is a matrix parametrizing the functional relationship between st and the expectation of
ψ(st+1) with respect to pπ(st+1|st).

The agent has access only to sensory observations ot at each time step, and in order to be able to make
use of the underlying latent structure, it has to learn the parameters of generative model p(st+1|st),
p(ot|st) as well as learn to perform inference in that model.

We consider online inference (filtering), i.e. at each time step t the recognition model produces an
estimate q(st|Ot) of the posterior distribution p(st|Ot) given all observations up to time t: Ot =
(o1, o2, . . . ot). As in the DDC Helmholtz machine [Vértes and Sahani, 2018], these distributions are
represented by a set of expectations—i.e., by a DDC:

µt(Ot) = Eq(st|Ot)[ψ(st)] (10)

The filtering posterior µt(Ot) is computed iteratively, using the posterior in the previous time step
µt−1(Ot−1) and the new observation ot. Due to the Markovian structure of the state space model
(see fig. 1), the recognition model can be written as a recursive function:

µt(Ot) = fW (µt−1(Ot−1), ot) (11)

with a set of parameters W .

The recognition and generative models are updated using an adapted version of the wake-sleep
algorithm [Hinton et al., 1995, Vértes and Sahani, 2018]. In the following, we describe the two
phases of the algorithm in more detail (see Algorithm 1).

Sleep phase

The aim of the sleep phase is to adjust the parameters of the recognition model given the current
generative model. Specifically, the recognition model should approximate the expectation of the DDC
encoding functions ψ(st) under the filtering posterior p(st|Ot). This can be achieved by moment
matching, i.e., simulating a sequence of latent and observed states from the current model and
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minimizing the Euclidean distance between the output of the recognition model and the sufficient
statistic vector ψ(.) evaluated at the latent state from the next time step.

W ← argmin
W

∑
t

‖ψ(ssleept )− fW (µt−1(Osleept−1 ), osleept )‖2 (12)

where {ssleept , osleept }t=0...N ∼ p(s0)p(o0|s0)
N−1∏
t=0

p(st+1|st, Tπ)p(ot+1|st+1).

This update rule can be implemented online, and after a sufficiently long sequence of simula-
tions {ssleept , osleept }t the recognition model will learn to approximate expectations of the form:
fW (µt−1(Osleept−1 ), osleept ) ≈ Ep(st|Ot)[ψ(st)], yielding a DDC representation of the posterior.

Wake phase

In the wake phase, the parameters of the generative model are adapted such that it captures the sensory
observations better. Here, we focus on learning the policy-dependent latent dynamics pπ(st+1|st); the
observation model can be learned by the approach of [Vértes and Sahani, 2018]. Given a sequence of
inferred posterior representations {µt(Ot)} computed using wake phase observations, the parameters
of the latent dynamics T can be updated by minimizing a simple predictive cost function:

T ← argmin
T

∑
t

‖µt+1(Ot+1)− Tµt(Ot)‖2 (13)

The intuition behind eq. 13 is that for the optimal generative model the latent dynamics satisfies
the following equality: T ∗µt(Ot) = Ep(ot+1|Ot)[µt+1(Ot+1)]. That is, the predictions made by
combining the posterior at time t and the prior will agree with the average posterior at the next time
step—making T ∗ a stationary point of the optimization in eq. 14. For further details on the nature
of the approximation implied by the wake phase update and its relationship to variational learning,
see the supplementary material. In practice, the update can be done online, using gradient steps
analogous to prediction errors:

∆T ∝ (µt+1(Ot+1)− Tµt(Ot))µt(Ot)T (14)

s1 s2 st−1 st

o1 o2 ot−1 ot

T . . . T . . .

r1 r2 rt−1 rt

µ1 µ2 µt−1 µt. . . . . .

(a) DDC state-space model
(b) Learned dynamics (c) Trajectories

Figure 1: Learning and inference in a state-space model parametrized by a DDC. (a) The structure of
the generative and recognition models. (b) Visualization of the dynamics T learned by the wake-sleep
(algorithm 1). Arrows show the conditional mean Est+1|st [st+1] for each location. (c) Posterior
mean trajectories inferred using the recognition model, plotted on top of true latent and observed
trajectories.

Figure 1 shows a state-space model corresponding to a random walk policy in the latent space with
noisy observations, learned using DDCs (Algorithm 1). For further details of the experiment, see the
supplementary material.

5.2 Learning distributional successor features

Next, we show how using a DDC to parametrize the generative model (eq. 9) allows for computing
the successor features defined in the latent space in a tractable form, and how this computation can be
combined with inference based on sensory observations.
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Following the definition of the SFs (eq. 4):

M(st) = E[

∞∑
k=0

γkψ(st+k)|st, π] =

∞∑
k=0

γkE[ψ(st+k)|st,π] (15)

We can compute the conditional expectations of the feature vector ψ in eq. 15 by applying the
dynamics k times to the features ψ(st): Est+k|st [ψ(st+k)] = T kψ(st). Thus, we have:

M(st) =

∞∑
k=0

γkT kψ(st) (16)

= (I − γT )−1ψ(st) (17)

Eq. 17 is reminiscent of the result for discrete observed state spaces M(si, sj) = (I − γP )−1ij
[Dayan, 1993], where P is a matrix containing Markovian transition probabilities between states. In a
continuous state space, however, finding a closed form solution like eq. 17 is non-trivial, as it requires
evaluating a set of typically intractable integrals. The solution presented here directly exploits the
DDC parametrization of the generative model and the correspondence between the features used in
the DDC and the SFs.

In this framework, we can not only compute the successor features in closed form in the latent space,
but also evaluate the distributional successor features, the posterior expectation of the SFs given a
sequence of sensory observations:

Est|Ot [M(st)] = (I − γT )−1Est|Ot [ψ(st)] (18)

= (I − γT )−1µt(Ot) (19)

The results from this section suggest a number of different ways the distributional successor features
Est|Ot [M(st)] can be learned or computed.

Learning distributional SFs during sleep phase

The matrix U = (I − γT )−1 needed to compute distributional SFs in eq. 19 can be learned from
temporal differences in feature predictions based on sleep phase simulated latent state sequences
(section 3.1).

Computing distributional SFs by dynamics

Alternatively, eq. 19 can be implemented as a fixed point of a linear dynamical system, with recurrent
connections reflecting the model of the latent dynamics:

τ ẋn = −xn + γTxn + µt(Ot) (20)

⇒ x∞ = (I − γT )−1µt(Ot) (21)

In this case, there is no need to learn (I − γT )−1 explicitly but it is implicitly computed through
dynamics. For this to work, there is an underlying assumption that the dynamical system in eq. 20
reaches equilibrium on a timescale faster than that on which the observations Ot evolve.

Both of these approaches avoid having to compute the matrix inverse directly and allow for evaluation
of policies given by a corresponding dynamics matrix Tπ offline.

Learning distributional SFs during wake phase

Instead of fully relying on the learned latent dynamics to compute the distributional SFs, we
can use posteriors computed by the recognition model during the wake phase, that is, using ob-
served data. We can define the distributional SFs directly on the DDC posteriors: M̃(Ot) =
Eπ[
∑
k γ

kµt+k(Ot+k)|µt(Ot)], treating the posterior representation µt(Ot) as a feature space over
sequences of observations Ot = (o1 . . . ot). Analogously to section 3.1, M̃(Ot) can be acquired by
TD learning and assuming linear function approximation: M̃(Ot) ≈ Uµt(Ot). The matrix U can be
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Figure 2: Value functions computed using successor features under a random walk policy

updated online, while executing a given policy and continuously inferring latent state representations
using the recognition model:

∆U ∝ δtµt(Ot)T (22)
δt = µt(Ot) + γM(Ot+1)−M(Ot) (23)

It can be shown that M̃(Ot), as defined here, is equivalent to Est|Ot [M(st)] if the learned generative
model is optimal–assuming no model mismatch–and the recognition model correctly infers the
corresponding posteriors µt(Ot) (see supplementary material). In general, however, exchanging the
order of TD learning and inference leads to different SFs. The advantage of learning the distributional
successor features in the wake phase is that even when the model does not perfectly capture the data
(e.g. due to lack of flexibility or early on in learning) the learned SFs will reflect the structure in the
observations through the posteriors µt(Ot).

5.3 Value computation in a noisy 2D environment

We illustrate the importance of being able to consistently handle uncertainty in the SFs by learning
value functions in a noisy environment. We use a simple 2-dimensional box environment with
continuous state space that includes an internal wall. The agent does not have direct access to its
spatial coordinates, but receives observations corrupted by Gaussian noise. Figure 2 shows the value
functions computed using the successor features learned in three different settings: assuming direct
access to latent states, treating observations as though they were noise-free state measurements, and
using latent state estimates inferred from observations. The value functions computed in the latent
space and computed from DDC posterior representations both reflect the structure of the environment,
while the value function relying on SFs over the observed states fails to learn about the barrier.

To demonstrate that this is not simply due to using the suboptimal random walk policy, but persists
through learning, we have learned successor features while adjusting the policy to a given reward
function (see figure 3). The policy was learned by generalized policy iteration [Sutton and Barto,
1998], alternating between taking actions following a greedy policy and updating the successor
features to estimate the corresponding value function.

The value of each state and action was computed from the value function V (s) by a one-step look-
ahead, combining the immediate reward with the expected value function having taken a given action:

Q(st, at) = r(st) + γEst+1|st,at [V (st+1)] (24)
In our case, as the value function in the latent space is expressed as a linear function of the features
ψ(s): V (s) = wTUψ(s) (eq. 5-6), the expectation in 24 can be expressed as:

Est+1|st,at [V (st+1)] = wTrewU · Es′|s,a[ψ(st+1)] (25)

= wTrewU · P · (ψ(st)⊗ φ(at)) (26)

Where P is a linear mapping, P : Ψ × Φ → Ψ, that contains information about the distribution
p(st+1|st, at). More specifically, P is trained to predict Est+1|st,at [ψ(st+1)] as a bilinear function
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of state and action features (ψ(st), φ(at)). Given the state-action value, we can implement a greedy
policy by choosing actions that maximize Q(s, a):

a∗ = argmax
a∈A

Q(st, at) (27)

= argmax
a∈A

r(st) + γwTrewU · P · (ψ(st)× φ(at)) (28)

The argmax operation in eq. 28 (possibly over a continuous space of actions) could be biologically
implemented by a ring attractor where the neurons receive state-dependent input through feedforward
weights reflecting the tuning (φ(a)) of each neuron in the ring.

Just as in figure 2, we compute the value function in the fully observed case, using inferred states or
using only the noisy observations. For the latter two, we replace ψ(st) in eq. 28 with the inferred
state representation µ(Ot) and the observed features ψ(ot), respectively. As the agent follows the
greedy policy and it receives new observations the corresponding SFs are adapted accordingly. Figure
3 shows the learned value functions V π(s), V π(µ) and V π(o) for a given reward location and the
corresponding dynamics Tπ . The agent having access to the true latent state as well as the one using
distributional SFs successfully learn policies leading to the rewarded location. As before, the agent
learning SFs purely based on observations remains highly sub-optimal.

Histogram of collected rewards

Figure 3: Value functions computed by SFs under the learned policy. Top row shows reward and
value functions learned in the three different conditions. Bottom row shows histogram of collected
rewards from 100 episodes with random initial states, and the learned dynamics Tπ visualized as in
fig. 1.

6 Discussion

We have shown that representing uncertainty over latent variables using DDCs can be naturally
integrated with representations of uncertainty about future states and therefore can generalize SRs to
more realistic environments with partial observability.

In our work, we have defined distributional SFs over states, using single step look-ahead to compute
state-action values (eq. 24). Alternatively, SFs could be defined directly over both states and actions
[Kulkarni et al., 2016, Barreto et al., 2017] with the distributional development presented here.
Barreto et al. [2017, 2019] has shown that successor representations corresponding to previously
learned tasks can be used as a basis to construct policies for novel tasks, enabling generalization. Our
framework can be extended in a similar way, eliminating the need to adapt the SFs as the policy of
the agent changes.

The framework for learning distributional successor features presented here makes a number of
connections to experimental observations in the hippocampal literature. While it has been argued
that the hippocampus holds an internal model of the environment and thereby supports model-
based decision making [Miller et al., 2017], there is little known about how such a model is acquired.
Hippocampal replays observed in rodents during periods of immobility and sleep have been interpreted
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as mental simulations from an internal model of the environment, and therefore a neural substrate
for model-based planning [Pfeiffer and Foster, 2013, Mattar and Daw, 2018]. Here, we propose a
complementary function of replays that is to do with learning in the context of partially observed
environments. The replayed sequences could serve to refine the recognition model to accurately infer
distributions over latent states, just as in the sleep phase of our algorithm. Broadly consistent with
this idea, Stella et al. [2019] recently observed replays reminiscent of random walk trajectories after
an animal freely explored the environment. These paths were not previously experienced by the
animal, and could indeed serve as a training signal for the recognition model. Learning to perform
inference is itself a prerequisite for learning the dynamics of the latent task-relevant variables, i.e. the
internal model.
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Supplementary material

A Approximations in the wake phase update

Here, we give some additional insights into the nature of the approximation implied by the wake
phase update for the DDC state-space model and discuss its link to variational methods.

According to the standard M step in variational EM, the model parameters are updated to maximize
the expected log-joint of the model under the approximate posterior distributions:

∆θ ∝ ∇θ
∑
t

Eq(st,st+1|Ot+1)[log pθ(st+1|st)] (29)

= ∇θ
∑
t

−
∫
q(st, st+1|Ot+1)(log pθ(st+1|st) + log q(st|Ot+1))d(st, st+1) (30)

= ∇θ
∑
t

−KL[q(st, st+1|Ot+1)‖pθ(st+1|st)q(st|Ot+1)] (31)

After projecting the distributions appearing in the KL divergence (eq. 31) into the joint expo-
nential family defined by sufficient statistics [ψ(st), ψ(st+1)], they can be represented using the
corresponding mean parameters:

q(st, st+1|Ot+1)
P

=⇒
[

Eq(st,st+1|Ot+1)[ψ(st)]
Eq(st,st+1|Ot+1)[ψ(st+1)]

]
=

[
µt(Ot+1)
µt+1(Ot+1)

]
(32)

pθ(st+1|st)q(st|Ot+1)
P

=⇒
[

Epθ(st+1|st)q(st|Ot+1)[ψ(st)]
Epθ(st+1|st)q(st|Ot+1)[ψ(st+1)]

]
=

[
µt(Ot+1)
Tµt(Ot+1)

]
(33)

To restrict ourselves to online inference, we can make a further approximation: µt(Ot+1) ≈ µt(Ot).
Thus, the wake phase update can be thought of as replacing the KL divergence in equation 31 by the
Euclidean distance between the (projected) mean parameter representations in eq. 32-33.∑

t

‖µt+1(Ot+1)− Tµt(Ot)‖2 (34)

Note that this cost function is directly related to the maximum mean discrepancy (Gretton et al.
[2012]; MMD)–a non-parametric distance metric between two distributions–with a finite dimensional
RKHS.

B Equivalence of Ep(st|Ot)[M(st)] and M̃(µt(Ot))

M̃(µt(Ot)) = Ep(O>t|Ot)[
∑
k

γkµt+k(Ot+k)] (35)

where
Ep(O>t|Ot)[µt+k(Ot+k)] = Ep(Ot+1:t+k|Ot)[µt+k(Ot+k)] (36)

=

∫
dOt+1:t+k p(Ot+1:t+k|Ot)

∫
dst+k p(st+k|Ot+k)ψ(st+k) (37)

=

∫
dOt+1:t+k p(Ot+1:t+k|Ot)

∫
dst+k

p(st+k,Ot+1:t+k|Ot)
p(Ot+1:t+k|Ot)

ψ(st+k)

(38)

=

∫
dst+k

∫
dOt+1:t+k p(st+k,Ot+1:t+k|Ot)ψ(st+k) (39)

= T kµt (40)
(41)
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Thus we have:

M̃(µt(Ot)) =
∑
k

γkT kµt (42)

= (I − γT )−1µt (43)
= Ep(st|Ot)[M(st)] (44)

C Further experimental details

Figure 1: Learning and inference in the DDC state-space model

The generative model corresponding to a random walk policy:

p(st+1|st) = [st + η̃]WALLS, (45)
p(ot|st) = st + ξ (46)

Where [.]WALLS indicates the constraints introduced by the walls in the environment (outer walls are of
unit length). η ∼ N (0, σs = 1.), η̃ = 0.06 ∗ η/‖η‖, ξ ∼ N (0, σo = 0.1), st, ot ∈ R2

We used K=100 Gaussian features with width σψ = 0.3 for both the latent and observed states. A
small subset of features were truncated along the internal wall, to limit the artifacts from the function
approximation. Alternatively, a features with various spatial scales can also be used. The recursive
recognition model was parametrized linearly using the features:

fW (µt−1, ot) = W [Tµt−1;ψ(ot)] (47)

As sampling from the DDC parametrized latent dynamics is not tractable in general, in the sleep
phase, we generated approximate samples from a Gaussian distribution with consistent mean. The
generative and recognition models were trained through 50 wake-sleep cycles, with 3 · 104 sleep
samples, and 5 · 104 wake phase observations.

The latent dynamics in Fig.1b is visualized by approximating the mean dynamics as a linear readout
from the DDC: Est+1|st [st+1] ≈ αTψ(st) where s ≈ αψ(s).

Figure 2 To compute the value functions under the random walk policy we computed the SFs based
on the latent (ψ(s)), inferred (µ) or observed ( ψ(o)) features, with discount factor γ = 0.99. In each
case, we estimated the reward vector wrew using the available state information.

Figure 3 To construct the state-action value function, we used 10 features over actions φ(a), von
Mises functions (κ = 2.) arranged evenly on [0, 2π]. The policy iteration was run for 500 cycles, and
in each cycle an episode of 500 steps was collected according to the greedy policy. The visited latent,
inferred of observed state sequences were used to update the corresponding SFs to re-evaluate the
policy. To facilitate faster learning, only episodes with positive returns were used to update the SFs.
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