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Abstract

We construct a Wasserstein gradient flow of the maximum mean discrepancy
(MMD) and study its convergence properties. The MMD is an integral probability
metric defined for a reproducing kernel Hilbert space (RKHS), and serves as a
metric on probability measures for a sufficiently rich RKHS. We obtain conditions
for convergence of the gradient flow towards a global optimum, that can be related
to particle transport when optimizing neural networks. We also propose a way to
regularize this MMD flow, based on an injection of noise in the gradient. This
algorithmic fix comes with theoretical and empirical evidence. The practical
implementation of the flow is straightforward, since both the MMD and its gradient
have simple closed-form expressions, which can be easily estimated with samples.

1 Introduction

We address the problem of defining a gradient flow on the space of probability distributions endowed
with the Wasserstein metric, which transports probability mass from a starting distribtion ν to a target
distribution µ. Our flow is defined on the maximum mean discrepancy (MMD) [19], an integral
probability metric [33] which uses the unit ball in a characteristic RKHS [43] as its witness function
class. Specifically, we choose the function in the witness class that has the largest difference in
expectation under ν and µ: this difference constitutes the MMD. The idea of descending a gradient
flow over the space of distributions can be traced back to the seminal work of [24], who revealed
that the Fokker-Planck equation is a gradient flow of the Kullback-Leibler divergence. Its time-
discretization leads to the celebrated Langevin Monte Carlo algorithm, which comes with strong
convergence guarantees (see [14, 15]), but requires the knowledge of an analytical form of the target
µ. A more recent gradient flow approach, Stein Variational Gradient Descent (SVGD) [29], also
leverages this analytical µ.

The study of particle flows defined on the MMD relates to two important topics in modern machine
learning. The first is in training Implicit Generative Models, notably generative adversarial networks
[18]. Integral probability metrics have been used extensively as critic functions in this setting: these
include the Wasserstein distance [3, 17, 22] and maximum mean discrepancy [2, 4, 5, 16, 27, 28]. In
[32, Section 3.3], a connection between IGMs and particle transport is proposed, where it is shown
that gradient flow on the witness function of an integral probability metric takes a similar form to the
generator update in a GAN. The critic IPM in this case is the Kernel Sobolev Discrepancy (KSD),
which has an additional gradient norm constraint on the witness function compared with the MMD. It
is intended as an approximation to the negative Sobolev distance from the optimal transport literature
[35, 36, 45]. There remain certain differences between gradient flow and GAN training, however.
First, and most obviously, gradient flow can be approximated by representing ν as a set of particles,
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whereas in a GAN ν is the output of a generator network. The requirement that this generator network
be a smooth function of its parameters causes a departure from pure particle flow. Second, in modern
implementations [2, 5, 27], the kernel used in computing the critic witness function for an MMD
GAN critic is parametrized by a deep network, and an alternating optimization between the critic
parameters and the generator parameters is performed. Despite these differences, we anticipate that
the theoretical study of MMD flow convergence will provide helpful insights into conditions for GAN
convergence, and ultimately, improvements to GAN training algorithms.

Regarding the second topic, we note that the properties of gradient descent for large neural networks
have been modeled using the convergence towards a global optimum of particle transport in the
population limit, when the number of particles goes to infinity [12, 31, 38, 41]. In particular, [37]
show that gradient descent on the parameters of a neural network can also be seen as a particle
transport problem, which has as its population limit a gradient flow of a functional defined for
probability distributions over the parameters of the network. This functional is in general non-convex,
which makes the convergence analysis challenging. The particular structure of the MMD allows us to
relate its gradient flow to neural network optimization in a well-specified regression setting similar to
[12, 37] (we make this connection explicit in Appendix F).

Our main contribution in this work is to establish conditions for convergence of MMD gradient flow
to its global optimum. We give detailed descriptions of MMD flow for both its continuous-time and
discrete instantiations in Section 2. In particular, the MMD flow may employ a sample approximation
for the target µ: unlike e.g. Langevin Monte Carlo or SVGD, it does not require µ in analytical form.
Global convergence is especially challenging to prove: while for functionals that are displacement
convex, the gradient flow can be shown to converge towards a global optimum [1], the case of
non-convex functionals, like the MMD, requires different tools. A modified gradient flow is proposed
in [37] that uses particle birth and death to reach global optimality. Global optimality may also be
achieved simply by teleporting particles from ν to µ, as occurs for the Sobolev Discrepancy flow
absent a kernel regulariser [32, Theorem 4, Appendix D]. Note, however, that the regularised Kernel
Sobolev Discrepancy flow does not rely on teleportation.

Our approach takes inspiration in particular from [7], where it is shown that although the 1-Wasserstein
distance is non-convex, it can be optimized up to some barrier that depends on the diameter of the
domain of the target distribution. Similarly to [7], we provide in Section 3 a barrier on the gradient
flow of the MMD, although the tightness of this barrier in terms of the target diameter remains to be
established. We obtain a further condition on the evolution of the flow to ensure global optimality,
and give rates of convergence in that case, however the condition is a strong one: it implies that the
negative Sobolev distance between the target and the current particles remains bounded at all times.

We thus propose a way to regularize the MMD flow, based on a noise injection (Section 4) in
the gradient, with more tractable theoretical conditions for convergence. Encouragingly, the noise
injection is shown in practice to ensure convergence in a simple illustrative case where the original
MMD flow fails. Finally, while our emphasis has been on establishing conditions for convergence,
we note that MMD gradient flow has a simple O(MN +N2) implementation for N ν-samples and
M µ-samples, and requires only evaluating the gradient of the kernel k on the given samples.

2 Gradient flow of the MMD in W2

2.1 Construction of the gradient flow

In this section we introduce the gradient flow of the Maximum Mean Discrepancy (MMD) and
highlight some of its properties. We start by briefly reviewing the MMD introduced in [19]. We define
X ⊂ Rd as the closure of a convex open set, and P2(X ) as the set of probability distributions on X
with finite second moment, equipped with the 2-Wassertein metric denoted W2. For any ν ∈ P2(X ),
L2(ν) is the set of square integrable functions w.r.t. ν. The reader may find a relevant mathematical
background in Appendix A.

Maximum Mean Discrepancy. Given a characteristic kernel k : X × X → R, we denote by H
its corresponding RKHS (see [42]). The space H is a Hilbert space with inner product 〈., .〉H and
norm ‖.‖H. We will rely on specific assumptions on the kernel which are given in Appendix B. In
particular, Assumption (A) states that the gradient of the kernel, ∇k, is Lipschitz with constant L.
For such kernels, it is possible to define the Maximum Mean Discrepancy as a distance on P2(X ).
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The MMD can be written as the RKHS norm of the unnormalised witness function fµ,ν between µ
and ν, which is the difference between the mean embeddings of ν and µ,

MMD(µ, ν) = ‖fµ,ν‖H, fν,µ(z) =

∫
k(x, z) dν(x)−

∫
k(x, z) dµ(x) ∀z ∈ X (1)

Throughout the paper, µ will be fixed and ν can vary, hence we will only consider the dependence in
ν and denote by F(ν) = 1

2MMD2(µ, ν). A direct computation [32, Appendix B] shows that for
any finite measure χ such that ν + εχ ∈ P2(X ), we have

lim
ε→0

ε−1(F(ν + εχ)−F(ν)) =

∫
fµ,ν(x)dχ(x). (2)

This means that fµ,ν is the differential of F(ν) . Interestingly, F(ν) admits a free-energy expression:

F(ν) =

∫
V (x) dν(x) +

1

2

∫
W (x, y) dν(x) dν(y) + C. (3)

where V is a confinement potential, W an interaction potential and C a constant defined by:

V (x) = −
∫
k(x, x′) dµ(x′), W (x, x′) = k(x, x′), C =

1

2

∫
k(x, x′) dµ(x) dµ(x′) (4)

Formulation (3) and the simple expression of the differential in (2) will be key to construct a gradient
flow of F(ν), to transport particles. In (4), V reflects the potential generated by µ and acting on each
particle, while W reflects the potential arising from the interactions between those particles.

Gradient flow of the MMD. We consider now the problem of transporting mass from an initial
distribution ν0 to a target distribution µ, by finding a continuous path νt starting from ν0 that converges
to µ while decreasing F(νt). Such a path should be physically plausible, in that teleportation
phenomena are not allowed. For instance, the path νt = (1 − e−t)µ + e−tν0 would constantly
teleport mass between µ and ν0 although it decreases F since F(νt) = e−2tF(ν0) [32, Section 3.1,
Case 1]. The physicality of the path is understood in terms of classical statistical physics: given
an initial configuration ν0 of N particles, these can move towards a new configuration µ through
successive small transformations, without jumping from one location to another.

Optimal transport theory provides a way to construct such a continuous path by means of the
continuity equation. Given a vector field Vt on X and an initial condition ν0, the continuity equation
is a partial differential equation which defines a path νt evolving under the action of the vector field
Vt, and reads ∂tνt = −div(νtVt) for all t ≥ 0. The reader can find more detailed discussions in
Appendix A.2 or [39]. Following [1], a natural choice is to choose Vt as the negative gradient of the
differential of F(νt) at νt, since it corresponds to a gradient flow of F associated with the W2 metric
(see Appendix A.3). By (2), we know that the differential of F(νt) at νt is given by fµ,νt , hence
Vt(x) = −∇fµ,νt(x).1 The gradient flow of F is then defined by the solution (νt)t≥0 of

∂tνt = div(νt∇fµ,νt). (5)

Equation (5) is non-linear in that the vector field depends itself on νt. This type of equation is
associated in the probability theory literature to the so-called McKean-Vlasov process [26, 30],

dXt = −∇fµ,νt(Xt)dt X0 ∼ ν0. (6)

In fact, (6) defines a process (Xt)t≥0 whose distribution (νt)t≥0 satisfies (5), as shown in Proposi-
tion 1. (Xt)t≥0 can be interpreted as the trajectory of a single particle, starting from an initial random
position X0 drawn from ν0. The trajectory is driven by the velocity field −∇fµ,νt , and is affected
by other particles. These interactions are captured by the velocity field through the dependence on
the current distribution νt of all particles. Existence and uniqueness of a solution to (5) and (6) are
guaranteed in the next proposition, whose proof is given Appendix C.1.
Proposition 1. Let ν0 ∈ P2(X ). Then, under Assumption (A), there exists a unique process (Xt)t≥0
satisfying the McKean-Vlasov equation in (6) such that X0 ∼ ν0. Moreover, the distribution νt of Xt

is the unique solution of (5) starting from ν0, and defines a gradient flow of F .

1Also, Vt = ∇V +∇W ? νt (see Appendix A.3) where ? denotes the classical convolution.
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Besides existence and uniqueness of the gradient flow of F , one expects F to decrease along the path
νt and ideally to converge towards 0. The first property, stated in the next proposition, is rather easy
to get and is the object of Proposition 2, similar to the result for KSD flow in [32, Section 3.1].
Proposition 2. Under Assumption (A), F(νt) is decreasing in time and satisfies:

dF(νt)

dt
= −

∫
‖∇fµ,νt(x)‖2 dνt(x). (7)

This property results from (5) and the energy identity in [1, Theorem 11.3.2] and is proved in
Appendix C.1. From (7), F can be seen as a Lyapunov functional for the dynamics defined by
(5), since it is decreasing in time. Hence, the continuous-time gradient flow introduced in (5)
allows to formally consider the notion of gradient descent on P2(X ) with F as a cost function. A
time-discretized version of the flow naturally follows, and is provided in the next section.

2.2 Euler scheme

We consider here a forward-Euler scheme of (5). For any T : X → X a measurable map, and
ν ∈ P2(X ), we denote the pushforward measure by T#ν (see Appendix A.2). Starting from
ν0 ∈ P2(X ) and using a step-size γ > 0, a sequence νn ∈ P2(X ) is given by iteratively applying

νn+1 = (I − γ∇fµ,νn)#νn. (8)

For all n ≥ 0, equation (8) is the distribution of the process defined by

Xn+1 = Xn − γ∇fµ,νn(Xn) X0 ∼ ν0. (9)

The asymptotic behavior of (8) as n → ∞ will be the object of Section 3. For now, we provide a
guarantee that the sequence (νn)n∈N approaches (νt)t≥0 as the step-size γ → 0.
Proposition 3. Let n ≥ 0. Consider νn defined in (8), and the interpolation path ργt defined as:
ργt = (I − (t− nγ)∇fµ,νn)#νn, ∀t ∈ [nγ, (n+ 1)γ). Then, under Assumption (A), ∀ T > 0,

W2(ργt , νt) ≤ γC(T ) ∀t ∈ [0, T ] (10)

where C(T ) is a constant that depends only on T .

A proof of Proposition 3 is provided in Appendix C.2 and relies on standard techniques to control
the discretization error of a forward-Euler scheme. Proposition 3 means that νn can be linearly
interpolated giving rise to a path ργt which gets arbitrarily close to νt on bounded intervals. Note that
as T →∞ the bound C(T ) it is expected to blow up. However, this result is enough to show that (8)
is indeed a discrete-time flow of F . In fact, provided that γ is small enough, F(νn) is a decreasing
sequence, as shown in Proposition 4.
Proposition 4. Under Assumption (A), and for γ ≤ 2/3L, the sequence F(νn) is decreasing, and

F(νn+1)−F(νn) ≤ −γ(1− 3γ

2
L)

∫
‖∇fµ,νn(x)‖2 dνn(x), ∀n ≥ 0.

Proposition 4, whose proof is given in Appendix C.2, is a discrete analog of Proposition 2. In fact,
(8) is intractable in general as it requires the knowledge of ∇fµ,νn (and thus of νn) exactly at each
iteration n. Nevertheless, we present in Section 4.2 a practical algorithm using a finite number of
samples which is provably convergent towards (8) as the sample-size increases. We thus begin by
studying the convergence properties of the time discretized MMD flow (8) in the next section.

3 Convergence properties of the MMD flow

We are interested in analyzing the asymptotic properties of the gradient flow of F . Although we know
from Propositions 2 and 4 that F decreases in time, it can very well converge to local minima. One
way to see this is by looking at the equilibrium condition for (7). As a non-negative and decreasing
function, t 7→ F(νt) is guaranteed to converge towards a finite limit l ≥ 0, which implies in turn that
the r.h.s. of (7) converges to 0. If νt happens to converge towards some distribution ν∗, it is possible
to show that the equilibrium condition (11) must hold [31, Prop. 2] ,∫

‖∇fµ,ν∗(x)‖2 dν∗(x) = 0. (11)
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Condition (11) does not necessarily imply that ν∗ is a global optimum unless when the loss function
has a particular structure [11]. For instance, this would hold if the kernel is linear in at least one of its
dimensions. However, when a characteristic kernel is required (to ensure the MMD is a distance),
such a structure can’t be exploited. Similarly, the claim that KSD flow converges globally, [32, Prop.
3, Appendix B.1], requires an assumption [32, Assump. A] that excludes local minima which are
not global (see Appendix D.1; recall KSD is related to MMD). Global convergence of the flow is
harder to obtain, and will be the topic of this section. The main challenge is the lack of convexity of
F w.r.t. the Wassertein metric. We show that F is merely Λ-convex, and that standard optimization
techniques only provide a loose bound on its asymptotic value. We next exploit a Lojasiewicz type
inequality to prove convergence to the global optimum provided that a particular quantity remains
bounded at all times.

3.1 Optimization in a (W2) non-convex setting

The displacement convexity of a functional F is an important criterion in characterizing the con-
vergence of its Wasserstein gradient flow. Displacement convexity states that t 7→ F(ρt) is a
convex function whenever (ρt)t∈[0,1] is a path of minimal length between two distributions µ and ν
(see Definition 2). Displacement convexity should not be confused with mixture convexity, which
corresponds to the usual notion of convexity. As a matter of fact, F is mixture convex in that it
satisfies: F(tν + (1 − t)ν′) ≤ tF(ν) + (1 − t)F(ν′) for all t ∈ [0, 1] and ν, ν′ ∈ P2(X ) (see
Lemma 25). Unfortunately, F is not displacement convex. Instead, F only satisfies a weaker notion
of displacement convexity called Λ-displacement convexity, given in Definition 4 (Appendix A.4).
Proposition 5. Under Assumptions (A) to (C), F is Λ-displacement convex, and satisfies

F(ρt) ≤ (1− t)F(ν) + tF(ν′)−
∫ 1

0

Λ(ρs, vs)G(s, t) ds (12)

for all ν, ν′ ∈ P2(X ) and any displacement geodesic (ρt)t∈[0,1] from ν to ν′ with velocity vectors
(vt)t∈[0,1]. The functional Λ is defined for any pair (ρ, v) with ρ ∈ P2(X ) and ‖v‖ ∈ L2(ρ),

Λ(ρ, v) =

∥∥∥∥∫ v(x).∇xk(x, .) dρ(x)

∥∥∥∥2
H
−
√

2λdF(ρ)
1
2

∫
‖v(x)‖2 dρ(x), (13)

where (s, t) 7→ G(s, t) = s(1− t)1{s ≤ t}+ t(1− s)1{s ≥ t} and λ is defined in Assumption (C).

Proposition 5 can be obtained by computing the second time derivative of F(ρt), which is then lower-
bounded by Λ(ρt, vt) (see Appendix D.2). In (13), the map Λ is a difference of two non-negative
terms: thus

∫ 1

0
Λ(ρs, vs)G(s, t) ds can become negative, and displacement convexity does not hold in

general. [8, Theorem 6.1] provides a convergence when only Λ-displacement convexity holds as long
as either the potential or the interaction term is convex enough. In fact, as mentioned in [8, Remark
6.4], the convexity of either term could compensate for a lack of convexity of the other. Unfortunately,
this cannot be applied for MMD since both terms involve the same kernel but with opposite signs.
Hence, even under convexity of the kernel, a concave term appears and cancels the effect of the
convex term. Moreover, the requirement that the kernel be positive semi-definite makes it hard to
construct interesting convex kernels. However, it is still possible to provide an upper bound on the
asymptotic value of F(νn) when (νn)n∈N are obtained using (8). This bound is given in Theorem 6,
and depends on a scalar K(ρn) :=

∫ 1

0
Λ(ρns , v

n
s )(1 − s) ds, where (ρns )s∈[0,1] is a constant speed

displacement geodesic from νn to the optimal value µ, with velocity vectors (vns )s∈[0,1] of constant
norm.
Theorem 6. Let K̄ be the average of (K(ρj))0≤j≤n. Under Assumptions (A) to (C) and if γ ≤ 1/3L,

F(νn) ≤ W 2
2 (ν0, µ)

2γn
− K̄. (14)

Theorem 6 is obtained using techniques from optimal transport and optimization. It relies on
Proposition 5 and Proposition 4 to prove an extended variational inequality (see Proposition 16), and
concludes using a suitable Lyapunov function. A full proof is given in Appendix D.3. When K̄ is
non-negative, one recovers the usual convergence rate as O( 1

n ) for the gradient descent algorithm.
However, K̄ can be negative in general, and would therefore act as a barrier on the optimal value
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that F(νn) can achieve when n→∞. In that sense, the above result is similar to [7, Theorem 6.9].
Theorem 6 only provides a loose bound, however. In Section 3.2 we show global convergence, under
the boundedness at all times t of a specific distance between νt and µ.

3.2 A condition for global convergence

The lack of convexity of F , as shown in Section 3.1, suggests that a finer analysis of the convergence
should be performed. One strategy is to provide estimates for the dynamics in Proposition 2 using
differential inequalities which can be solved using the Gronwall’s lemma (see [34]). Such inequalities
are known in the optimization literature as Lojasiewicz inequalities (see [6]), and upper-bound F(νt)
by the absolute value of its time derivative

∫
‖∇fµ,νt(x)‖2 dνt(x). The latter is the squared weighted

Sobolev semi-norm of fµ,νt (see Appendix D.4), also written ‖fµ,νt‖Ḣ(νt)
. Thus one needs to find

a relationship between F(νt) = 1
2‖fµ,νt‖

2
H and ‖fµ,νt‖Ḣ(νt)

. For this purpose, we consider the
weighted negative Sobolev distance on P2(X ), defined by duality using ‖.‖Ḣ(ν) (see also [36]).

Definition 1. Let ν ∈ P2(x), with its corresponding weighted Sobolev semi-norm ‖.‖Ḣ(ν). The
weighted negative Sobolev distance ‖p− q‖Ḣ−1(ν) between any p and q in P2(x) is defined as

‖p− q‖Ḣ−1(ν) = sup
f∈L2(ν),‖f‖Ḣ(ν)≤1

∣∣∣∣∫ f(x) dp(x)−
∫
f(x) dq(x)

∣∣∣∣ (15)

with possibly infinite values.

Equation (59) plays a fundamental role in dynamic optimal transport. It can be seen as the minimum
kinetic energy needed to advect the mass ν to q (see [32]). It is shown in Appendix D.4 that

‖fµ,νt‖2H ≤ ‖fµ,νt‖Ḣ(νt)
‖µ− νt‖Ḣ−1(νt)

. (16)

Provided that ‖µ− νt‖Ḣ−1(νt)
remains bounded by some positive constant C at all times, (16) leads

to a functional version of Lojasiewicz inequality for F . It is then possible to use the general strategy
explained earlier to prove the convergence of the flow to a global optimum:
Proposition 7. Under Assumption (A),

(i) If ‖µ− νt‖2Ḣ−1(νt)
≤ C, for all t ≥ 0, then: F(νt) ≤ C

CF(ν0)−1+4t ,

(ii) If ‖µ− νn‖2Ḣ−1(νn)
≤ C for all n ≥ 0, then: F(νn) ≤ C

CF(ν0)−1+4γ(1− 3
2γL)n

.

Proofs of Proposition 7 (i) and (ii) are direct consequences of Propositions 2 and 4 and the bounded
energy assumption: see Appendix D.4. The fact that (59) appears in the context of Wasserstein flows
of F is not a coincidence. Indeed, (59) is a linearization of the Wasserstein distance (see [35, 36] and
Appendix D.6). Gradient flows of F defined under different metrics would involve other kinds of
distances instead of (59). For instance, [37] consider gradient flows under a hybrid metric (a mixture
between the Wasserstein distance and KL divergence), where convergence rates can then be obtained
provided that the chi-square divergence χ2(µ‖νt) remains bounded. As shown in Appendix D.6,
χ2(µ‖νt)

1
2 turns out to linearize KL(µ‖νt)

1
2 when µ and νt are close. Hence, we conjecture that

gradient flows of F under a metric d can be shown to converge when the linearization of the metric
remains bounded. This can be verified on simple examples for ‖µ − νt‖Ḣ−1(νt)

as discussed in
Appendix D.5. However, it remains hard to guarantee this condition in general. One possible approach
could be to regularize F using an estimate of (59). Indeed, [32] considers the gradient flow of a
regularized version of the negative Sobolev distance which can be written in closed form, and shows
that this decreases the MMD. Combing both losses could improve the overall convergence properties
of the MMD, albeit at additional computational cost. In the next section, we propose a different
approach to improve the convergence, and a particle-based algorithm to approximate the MMD flow
in practice.

4 A practical algorithm to descend the MMD flow

4.1 A noisy update as a regularization

We showed in Section 3.1 that F is a non-convex functional, and derived a condition in Section 3.2 to
reach the global optimum. We now address the case where such a condition does not necessarily hold,
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and provide a regularization of the gradient flow to help achieve global optimality in this scenario.
Our starting point will be the equilibrium condition in (11). If an equilibrium ν∗ that satisfies (11)
happens to have a positive density, then fµ,ν∗ would be constant everywhere. This in turn would
mean that fµ,ν∗ = 0 when the RKHS does not contain constant functions, as for a gaussian kernel
[44, Corollary 4.44]. Hence, ν∗ would be a global optimum since F(ν∗) = 0. The limit distribution
ν∗ might be singular, however, and can even be a dirac distribution [31, Theorem 6]. Although the
gradient ∇fµ,ν∗ is not identically 0 in that case, (11) only evaluates it on the support ν∗, on which
∇fµ,ν∗ = 0 holds. Hence a possible fix would be to make sure that the unnormalised witness gradient
is also evaluated at points outside of the support of ν∗. Here, we propose to regularize the flow by
injecting noise into the gradient during updates of (9),

Xn+1 = Xn − γ∇fµ,νn(Xn + βnUn), n ≥ 0, (17)

where Un is a standard gaussian variable and βn is the noise level at n. Compared to (8), the sample
here is first blurred before evaluating the gradient. Intuitively, if νn approaches a local optimum
ν∗, ∇fµ,νn would be small on the support of νn but it might be much larger outside of it, hence
evaluating ∇fµ,νn outside the support of νn can help in escaping the local minimum. The stochastic
process (17) is different from adding a diffusion term to (5). The latter case would correspond
to regularizing F using an entropic term as in [31, 40] (see also Appendix A.5 on the Langevin
diffusion) and was shown to converge to a global optimum that is in general different from the global
minmum of the un-regularized loss. Eq. (17) is also different from [9, 13], where F (and thus
its associated velocity field) is regularized by convolving the interaction potential W in (4) with a
mollifier. The optimal solution of a regularized version of the functional F will be generally different
from the non-regularized one, however, which is not desirable in our setting. Eq. (17) is more closely
related to the continuation methods [10, 20, 21] and graduated optimization [23] used for non-convex
optimization in Euclidian spaces, which inject noise into the gradient of a loss function F at each
iteration. The key difference is the dependence of fµ,νn of νn, which is inherently due to functional
optimization. We show in Proposition 8 that (17) attains the global minimum of F provided that the
level of the noise is well controlled, with the proof given in Appendix E.1.
Proposition 8. Let (νn)n∈N be defined by (17) with an initial ν0. Denote Dβn(νn) =
Ex∼νn,u∼g[‖∇fµ,νn(x + βnu)‖2] with g the density of the standard gaussian distribution. Un-
der Assumptions (A) and (D), and for a choice of βn such that

8λ2β2
nF(νn) ≤ Dβn(νn), (18)

the following inequality holds: F(νn+1)−F(νn) ≤ −γ
2

(1− 3γL)Dβn(νn), (19)

where λ and L are defined in Assumptions (A) and (D) and depend only on the choice of the kernel.
Moreover if

∑n
i=0 β

2
i →∞, then

F(νn) ≤ F(ν0)e−4λ
2γ(1−3γL)

∑n
i=0 β

2
i . (20)

A particular case where
∑n
i=0 β

2
i →∞ holds is when βn decays as 1/

√
n while still satisfying (18).

In this case, convergence occurs in polynomial time. At each iteration, the level of the noise needs to
be adjusted such that the gradient is not too blurred. This ensures that each step decreases the loss
functional. However, βn does not need to decrease at each iteration: it could increase adaptively
whenever needed. For instance, when the sequence gets closer to a local optimum, it is helpful to
increase the level of the noise to probe the gradient in regions where its value is not flat. Note that for
βn = 0 in (19) , we recover a similar bound to Proposition 4.

4.2 The sample-based approximate scheme

We now provide a practical algorithm to implement the noisy updates in the previous section, which
employs a discretization in space. The update (17) involves computing expectations of the gradient
of the kernel k w.r.t the target distribution µ and the current distribution νn at each iteration n. This
suggests a simple approximate scheme, based on samples from these two distributions, where at each
iteration n, we model a system of N interacting particles (Xi

n)1≤i≤N and their empirical distribution
in order to approximate νn. More precisely, given i.i.d. samples (Xi

0)1≤i≤N and (Y m)1≤m≤M from
ν0 and µ and a step-size γ, the approximate scheme iteratively updates the i-th particle as

Xi
n+1 = Xi

n − γ∇fµ̂,ν̂n(Xi
n + βnU

i
n), (21)
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where U in are i.i.d standard gaussians and µ̂, ν̂n denote the empirical distributions of (Y m)1≤m≤M
and (Xi

n)1≤i≤N , respectively. It is worth noting that for βn = 0, (21) is equivalent to gradient
descent over the particles (Xi

n) using a sample based version of the MMD. Implementing (21) is
straightforward as it only requires to evaluate the gradient of k on the current particles and target
samples. Pseudocode is provided in Algorithm 1. The overall computational cost of the algorithm
at each iteration is O((M + N)N) with O(M + N) memory. The computational cost becomes
O(M +N) when the kernel is approximated using random features, as is the case for regression with
neural networks (Appendix F). This is in contrast to the cubic cost of the flow of the KSD [32], which
requires solving a linear system at each iteration. The cost can also be compared to the algorithm in
[40], which involves computing empirical CDF and quantile functions of random projections of the
particles.

The approximation scheme in (21) is a particle version of (17), so one would expect it to converge
towards its population version (17) as M and N goes to infinity. This is shown below.
Theorem 9. Let n ≥ 0 and T > 0. Let νn and ν̂n defined by (8) and (21) respectively. Suppose
Assumption (A) holds and that βn < B for all n, for some B > 0. Then for any T

γ ≥ n:

E [W2(ν̂n, νn)] ≤ 1

4

(
1√
N

(B + var(ν0)
1
2 )e2LT +

1√
M
var(µ)

1
2 )

)
(e4LT − 1)

Theorem 9 controls the propagation of the chaos at each iteration, and uses techniques from [25].
Notice also that these rates remain true when no noise is added to the updates, i.e. for the original
flow when B = 0. A proof is provided in Appendix E.2. The dependence in

√
M underlines the

fact that our procedure could be interesting as a sampling algorithm when one only has access to M
samples of µ (see Appendix A.5 for a more detailed discussion).

Experiments

Figure 1: Comparison between different training methods for student-teacher ReLU networks with
gaussian output non-linearity and synthetic data uniform on a hyper-sphere. In blue, (21) is used
without noise βn = 0 while in red noise is added with the following schedule: β0 > 0 and βn is
decreased by half after every 103 epochs. In green, a diffusion term is added to the particles with
noise level kept fixed during training (βn = β0). In purple, the KSD is used as a cost function instead
of the MMD. In all cases, the kernel is estimated using random features (RF) with a batch size of 102.
Best step-size was selected for each method from {10−3, 10−2, 10−1} and was used for 104 epochs
on a dataset of 103 samples (RF). Initial parameters of the networks are drawn from i.i.d. gaussians:
N (0, 1) for the teacher and N (10−3, 1) for the student. Results are averaged over 10 different runs.

Figure 1 illustrates the behavior of the proposed algorithm (21) in a simple setting and compares it
with three other methods: MMD without noise injection (blue traces), MMD with diffusion (green
traces) and KSD (purple traces, [32]). Here, a student network is trained to produce the outputs of a
teacher network using gradient descent. More details on the experiment are provided in Appendix G.1.
As discussed in Appendix F, this setting can be seen as a stochastic version of the MMD flow since the
kernel is estimated using random features at each iteration ((91) in Appendix G.1). Here, the MMD
flow fails to converge towards the global optimum. Such behavior is consistent with the observations
in [11] when the parameters are initialized from a gaussian noise with relatively high variance (which
is the case here). On the other hand, adding noise to the gradient seems to lead to global convergence.
Indeed, the training error decreases below 10−5 and leads to much better validation error. While
adding a small diffusion term (green) help convergence, the noise-injection (red) still outperforms
it. This also holds for KSD (purple) which leads to a good solution (b) although at a much higher
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