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Optically controlled entangling gates in randomly doped silicon
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Donor qubits in bulk doped silicon have many competitive advantages for quantum computation in the
solid state: not only do they offer a fast way to scalability, but they also show some of the longest coherence
times found in any quantum computation proposal. We determine the densities of entangling gates in randomly
doped silicon comprising two different dopant species. First, we define conditions and plot maps of the relative
locations of the dopants necessary for them to form exchange interaction-mediated entangling gates. Second,
using nearest neighbor Poisson point process theory, we calculate the doping densities necessary for maximal
densities of single and dual-species gates. Third, using the moving-average cluster expansion technique, we
make predictions for a proof of principle experiment demonstrating the control of the far-from-equilibrium
magnetization dynamics of one species by the orbital excitation of another. We find agreement of our results
with a Monte Carlo simulation that handles multiple donor structures and scales optimally with the number of
dopants. The simulator can also extract donor structures not captured by our Poisson point process theory. The
combined approaches to density optimization in random distributions presented here may be useful for other
condensed matter systems as well as applications outside physics.

DOI: 10.1103/PhysRevB.100.064201

I. INTRODUCTION

Initial successes in the realization of coherent quantum
operations on collections of quantum bits (qubits), mainly
on AMO platforms such as trapped ions [1,2] and ultracold
atoms in optical lattices [3–6], have shown how hard it is
to construct a quantum computer large enough to outperform
its classical counterparts. This scalability challenge might be
more easily overcome in solid-state realizations, for which a
wide range of qubits have been proposed, including Majorana
fermions in nanowires [7,8], superconducting qubits [9–11],
nitrogen-vacancy centers in diamond [12], quantum dots [13],
and donor impurities in silicon [14,15]. Superior scaling might
not only unlock date-based algorithms such as factoring [16],
unstructured search [17], and machine learning [18] but may
also lead to a better understanding of strongly correlated sys-
tems through Feynman’s idea of quantum simulation [19–22].

A realization in doped silicon, the most important material
in the electronics industry today, could point the way forward
for the widespread introduction of quantum computation.
Donor impurities have several spin-1/2 degrees of freedom
which provide natural Hilbert spaces to encode qubits [23].
The nuclear spins of 31P [24,25] and the electron spin of the
valence electron have some of the longest decoherence times
of any qubit realizations.
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FIG. 1. Optically controlled interaction-exchange-energy entan-
gling gates in donors in silicon. At time t1, all donors are nonin-
teracting in their ground state; at time t2, the controls are excited
to a higher-lying and physically extended orbital state, entangling
themselves via Heisenberg exchange with the neighboring qubits of
a different donor species; finally, at t3, the control donor electron falls
back to the ground state. In the Stoneham-Fisher-Greenland (SFG)
[26] scheme (left), the excited controls mediate entangling interac-
tions between pairs of qubits and the control is then removed from
the entangled state on de-excitation [27] while, in the Heisenberg
scheme (right), the entanglement is produced between a qubit and
the control.

2469-9950/2019/100(6)/064201(13) 064201-1 ©2019 American Physical Society

https://orcid.org/0000-0002-2752-6462
https://orcid.org/0000-0002-9969-7391
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.100.064201&domain=pdf&date_stamp=2019-08-08
https://doi.org/10.1103/PhysRevB.100.064201


ELEANOR CRANE et al. PHYSICAL REVIEW B 100, 064201 (2019)

These range from hours to several days [28], especially
when benefiting from isotopically pure 28Si and/or field-
insensitive clock transitions [29,30]. Initialization and readout
[31] and single-qubit operations have been demonstrated on
single electron spins [28] via metallic microwave strip lines
[32] and donor-bound exciton spectroscopy [33,34]. However,
in addition to initialization, readout, and single-qubit oper-
ations, a two-qubit entangling gate is required for universal
quantum computation [35].

Several proposals to realize entangling gates in silicon
exploit the exchange interactions between ground-state elec-
tronic states; these interactions are strongly oscillatory be-
cause of interference between the different valley components
of donor wave functions [36] and typically require atomic-
scale precision in the positioning of the donors [24]. This
needs specialized lithography based on selective removal of
hydrogen atoms by scanning tunneling microscope [37] and
subsequent deposition of donor species [38], a delicate and
resource-intensive technique [32,38,39]. Schemes based on
electric-dipole interactions have larger donor spacings and tol-
erate less stringent fabrication requirements [40]. However, a
scheme capable of inducing entangling interactions with truly
random placement of donors would allow relatively seamless
integration of the fabrication into the standard widespread
silicon processing industry. In 2D, the donor locations could
be established using scanning tunneling microscopy at the
early stages of fabrication, enabling identification of suitable
gate geometries.

In this paper, we discuss a family of entangling gate imple-
mentations, sketched in Fig. 1, that make use of physically
localized or extended orbital excited states to control the
interactions between donor qubits in a disordered ensemble
[26]. These orbital excited states can be produced by exci-
tation with terahertz radiation [41], with multiple schemes
offering the necessary single-qubit addressability. Because
donors are randomly positioned, there is inhomogeneous
broadening due to differing local magnetic fields generated
by residual 29Si nuclear spins. This could enable selective
addressing of subensembles with a specific frequency of
terahertz radiation [42]. The spread of frequencies could be
further increased by placing the sample in a field gradient,
so each donor has a different transition frequency [42]. The
excited states produced (for example, 2p orbitals) have a
spatial structure that depends on the axis of polarization of
the laser, thus providing another tool for spatial selectivity
within local configurations. Important steps have been made
toward the realization of exchange-interaction-based gates in
donors in silicon. The disentanglement of the control donor
from the two entangled qubits was shown to be feasible
after the gate operation [27]. Coherent control of the valence
electron orbital states of dopants such as phosphorus, bismuth,
antimony, and arsenic has been demonstrated with terahertz
light, using a free electron laser (FEL) tuned to the low tens
of meV [41]. Furthermore, initialization and readout can be
done optically, using donor-bound exciton spectroscopy in the
terahertz frequencies, which was demonstrated experimen-
tally with phosphorus spins in silicon [43]. Until now, it has
remained unclear what densities of “viable” entangling gates
could be reached and even what the requirements are for a
configuration to be viable.

In this paper, we define suitable conditions for a viable gate
geometry and obtain the maximal gate densities for 2D or 3D
homogeneous doping. These correspond to the ideal limits
of a doped bulk sample or delta layer, respectively; we also
consider the case where two parallel ideal delta layers are im-
planted with different species. The general case of a spatially
varying density (hence, allowing both for graded doping of
a bulk material and for the inevitable broadening of real delta
layers) will be treated in a subsequent paper [44]; in that paper,
a heuristic will also be given which enables fast estimates of
the densities of viable clusters over a wide density range.

This paper is organized as follows. First, we estimate ap-
propriate conditions on the spacing of the dopants required for
them to form a viable entangling gate. Second, optimal doping
densities to produce the highest densities of entangling gates
are calculated using a Monte Carlo simulation and Poisson
point process theory. Third, we propose a proof-of-principle
experiment to show control over the exchange interaction
between donors at the optimal doping densities and predict its
results with the moving-average cluster expansion (MACE)
method [45]. Our numerical results apply to the case of group
V donors in silicon; however, our methods apply to any mate-
rial where particular configurations of multiple impurities are
required, and the conditions on the configurations needed can
be expressed in terms of distances between different species.

II. GEOMETRIC CONDITIONS ON OPTICALLY
CONTROLLED ENTANGLING GATE CONFIGURATIONS

First, we define conditions on the distances between
dopants to form a Stoneham-Fisher-Greenland (SFG) entan-
gling gate by comparing energy scales corresponding to the
lifetime of the excited state [46,47], the strength of the entan-
gling exchange interaction, and the requirement for qubits to
be isolated from each other when not part of the entangling
operation. These same considerations are also applicable to
the Heisenberg entangling gate. Based on these conditions, we
then calculate maps and line scans of the interaction exchange
energy from a theory including multivalley interference [36]
to delimit areas around donors in which entangling gate
operation is possible.

A. Conditions on the exchange-interaction energy

A phase gate (which can be combined with Hadamard
gates to result in a controlled NOT gate) [48] can be imple-
mented by the sequence

ûphase = r̂z
2

(
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2

)
r̂z
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2

)
ê12

(π

2

)
r̂z

1(π )ê12

(π
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)
, (1)

where the r̂z
i are single-qubit operations. The two-qubit opera-

tion is given by ê12( π
2 ) = e−i π

2 Ĥ12/J , where Ĥ12 = JŜ1Ŝ2 is the
Heisenberg Hamiltonian between spins S1 and S2. Equating
this with the time evolution operator Û = e− i

h̄ t Ĥ12 leads to the
condition

J = h

4t
or t = h

4J
(2)

for a successful phase gate operation.
The exchange interaction constant J arises from overlap of

spatially separated wave functions. The value of J (or t) must
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be controlled such that Eq. (2) is fulfilled, where the principle
source of imperfect gate operation results from interactions
between the gate dopants and other donors. In silicon, it is es-
pecially challenging to fulfill this requirement as the exchange
interaction between valence dopant electrons not only decays
exponentially with distance but also oscillates with a period of
the order of the lattice spacing due to intervalley interference
[49]. The lifetimes T1 of the donor excited states are limited by
phonon-mediated decay, and for phosphorus and arsenic they
have been measured as T1 = 200 ps [46], which limits the gate
operation time to t < T1; hence, we define an energy scale:

Jdec = h

4T1
. (3)

Since for proof-of-principle experiments we would require a
population of excited-state control spins, but not coherence
between the ground-state and excited-state wave packets,
Eq. (3) sets the minimum exchange energy for a successful
two-qubit gate. The phase coherence time T2 is bounded by
2T1 and has been measured to be 160 ps in Czochralski grown
silicon and is estimated to be above 320 ps in isotopically pure
silicon [41].

In the rest of this paper, we will consider two group-V
donor species: The shallow donor phosphorus (Si : P) as the
controls (also referred to as c in the general case), whose
excited-state wave functions mediate the interactions between
the deeper arsenic (Si:As) ground-state spins as the readout
qubits (also referred to as r if not specifically considering an
implementation relying on using this particular species).

1. SFG entangling gate

As represented in Fig. 1, we assume that only the control
donors are excited to a higher-lying orbital state which we will
choose to be the 2p excited state; the readout donors remain
in the ground state. The following conditions then need to be
met for successful gate switching operation:

Readouts. Interaction between readouts should be smaller
than the decoherence interaction-exchange energy defined in
Eq. (3), i.e., J (r1s-r1s)(r) < Jdec. We will denote the distance
at which these two scales are equal as Rrr .

Readout control. If the control is in the ground (1s) state,
the interactions between readout and control should also be
small: J (c1s-r1s)(r) < Jdec, with equality at Rmin. Furthermore,
if the control is in the excited state, control and readout should
interact, therefore J (c2p-r1s)(r) > Jdec with equality at Rmax.

Controls. If two neighboring controls are excited to the
2p, their interaction should not dominate the process, i.e.,
J (c2p-c2p)(r) < Jdec with equality at Rcc.

The distances introduced above are shown in Fig. 2 in the
form of multivalley exchange interactions and disk approxi-
mations discussed in the next section.

In the above considerations, we did not specify the number
of readouts per control. Although originally devised for two
readouts [26], we will leave this number general.

2. Heisenberg entangling gate

There are two ways of implementing this gate. In the first,
which we refer to as excited-ground Heisenberg gate, one
donor is in the excited and the other in the ground state;
this configuration is the same as the SFG gate with just one

(a)

(b)

FIG. 2. Interaction exchange energy (J) limits (a) in the layer in
which arsenic and phosphorus are doped and the light is polarized
in plane e‖ and (b) in the layer where arsenic is doped, which is
13.2 nm away from the phosphorus layer (avoiding all ground-state
multivalley interactions within the decay time) and parallel to it, and
the light is polarized out of plane e⊥. * indicates the “bilayer” case.
In the colored areas, J > Jdec, defined in Eq. (3). In (a), the horizontal
distortion of the exchange involving the p state is due to the linearly
polarized light being polarized in plane. Circles represent the discs
whose areas are equal to those of the interaction zones, multivalley
effects taken into account. The table defines the cutoff distances used
in terms of the interaction strengths, and gives the values of the
distances used in our numerical results.
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readout. In the second case, the excited-excited Heisenberg
gate, both donors are excited. This can be a single-species gate
composed of two Si:P electrons, for example.

In the excited-ground case, the conditions are the same
as for the SFG gate, except only one readout should interact
strongly with a control, and not two.

For the excited-excited Heisenberg gate, the dominant pro-
cess should be the 2p± state of both controls interacting with
each other: J(c2p-c2p)(r) > Jdec with equality at Rmax = Rcc

and the entire gate should also be isolated from other donors
by this distance. The interaction of ground-state controls in 1s
should be small: J(c1s-c1s)(r) < Jdec with equality at R′

min.

B. Constraints on dopant separations from conditions
on exchange interaction

Having defined the conditions that viable entangling gate
configurations need to fulfill, we can now find the corre-
sponding distances by calculating maps of the exchange
interaction between Si:P and Si:As. The calculation of the
exchange-interaction energy using the Heitler-London ap-
proximation [36,50], taking into account the multivalley cou-
pled wave function and central cell correction, can be found in
Appendix A.

The 2p± excited state is split from the 2p0 excited state,
owing to the anisotropy of the conduction-band minima, and
can therefore be accessed separately using the appropriate
wavelength, as is demonstrated experimentally in Ref. [51].
We choose to use the 2p± state, as we have calculated that
it gives rise to a larger interactive area with the ground-state
arsenic than the 2p0 state. We only consider linearly polarized
light.

To simplify the treatment of the dopant distributions, we
approximate the regions in which J > Jdec, for J connecting
different types of dopant species in various states shown in
Fig. 2, as circles or spheres. To do this, we determine discs
whose areas are equal to those of the interaction zones. The
radii of these discs are also displayed in the table of Fig. 2. The
average fraction of the area that is common to the multivalley
delimitation and the circular approximation is 0.88. As we
have conserved the total volume, for a two-dopant cluster the
method is exact and for a three-dopant cluster this introduces
an error which is likely to be less than 12%. Neglecting the
multivalley effects would have led to an overestimation of the
interactive area.

For two-species gates, we also consider separating the
controls and the readouts into two separate parallel planes,
sufficiently distant that the ground states do not interact on the
timescale of the gate operation but sufficiently close that the
qubits can interact with the excited state of the controls. For
this to be optimized in a randomly doped sample, the readout
layer must be at a distance from the control layer which
maximizes exposure to the area in which J (c2p-r1s)(r) < Jdec

and minimizes exposure to the area in which J (c1s-r1s)(r) >

Jdec, represented in dark blue on Fig. 2. Small periodic oscil-
lations apart, the ground-state interaction exchange energies
are equal to Jdec in a spherically symmetric way, and can be
modeled as a sphere. It is then clear from basic geometrical
considerations, illustrated in Fig. 3, that the optimal distance d
separating the two layers should be equal to Rmin such that the

d = RminRmax

DC

DR

FIG. 3. Parallel bilayers. Separating the 2D distribution of con-
trol dopants Dc and readout dopants Dr into parallel bilayers enables
the determination of a distance at which the sphere defined by the
conditions on the interaction in Fig. 2 has the most area exposed
to the readout distribution. The optimal separation between the
layers is d = Rmin, as can be worked out from basic geometrical
considerations.

areas which the qubit can occupy in its own layer correspond
to a disk of inner radius 0 and outer radius

√
R2

max − d2, as
can be seen in Fig. 3. To ensure that the inner disk has a radius
0, any multivalley exchange interaction between the 1s state
of the Si:As in the upper plane with the 2p± states of Si:P
in the lower plane must be avoided, so we use d = 13.2 nm
(the exact limit on the interaction shown in Fig. 2) in the rest
of this paper. To increase the density of entangling gates, the
light could be polarized out of plane, thereby reducing the
planar interference distance of controls, thus allowing a higher
optimum doping density to be used with the result that con-
trols are packed more closely and more qubits become active.
All the multivalley exchange interaction limits displayed for
the bilayer case in Fig. 2 have been calculated in the readout
plane, 13.2 nm from the control plane and with out-of-plane
linearly polarized light.

III. MAXIMIZING THE ENTANGLING GATE DENSITY

We aim to tune the free parameters of a randomly doped
sample, the doping densities of both species, to maximize
the entangling gate density. Phosphorus atoms have a random
spatial arrangement on the silicon surface resulting from
exposure to phosphine gas [52]. The atoms cannot land in
exactly the same location, thus their arrangement corresponds
to a hard sphere Poisson point process; however, this radius of
exclusion being far smaller than Rrr , we revert to the use of
a pure Poisson point process. We have checked in our Monte
Carlo simulation that introducing a small hard sphere radius of
up to 0.5 nm, corresponding to the approximate silicon lattice
spacing, does not significantly change the results. Many meth-
ods, including analytical and simulation-based approaches,
are available to treat Poisson point processes: Monte Carlo
simulations can treat problems with complex geometries and
have the advantage of being flexible, but must be coded effi-
ciently to scale well. Analytical approaches can supply results
in closed form but rely on particular assumptions and are valid
only if these apply. Analytical nearest-neighbor methods have
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been used to study distributions of mth nearest neighbors [53],
isolated pairs of points [54], and the probability of occurrence
of reflexive nearest neighbors [55,56].

Here we employ a Monte Carlo simulation to count viable
configurations (defined in the previous section). It scales
linearly with the number of dopants, i.e., as O(nc + nr ),
where nc is the number of control dopants and nr is the
number of readout dopants. This allows large samples (up to a
million dopants per run) to be used routinely, leading to lower
statistical errors. The algorithm is described in Appendix C.
We find agreement of the results with an analytical solution
for a Poisson point process in both two and three spatial
dimensions. In the Monte Carlo simulation, we are also able
to identify configurations with more than two readouts within
the viability shell surrounding the same control. These could
be useful for implementing multiqubit entangling gates such
as the Toffoli gate [57].

A. Independent distributions

At the point of sample fabrication, each species is sepa-
rately released onto the silicon surface in gaseous form. The
resultant distributions of dopants can be considered to be
independent sets of events occupying the same volume. How-
ever, not all dopants will form gates, only those complying
to the conditions in the table of Fig. 2. The minimum sphere
surrounding an isolated control of radius Rcc must be empty
of other controls. Although this set of isolated events is a
subset selected from the full random distribution, we make
the approximation that with regard to the readout distribution,
the viable controls are randomly distributed.

This sphere of exclusion around viable controls encapsu-
lates and gives clearance to all the distance conditions on the
readout distribution, such that the latter acts as an independent
distribution within that volume. For example, Rcc is over twice
the maximum control-readout distance Rmax, which has the
implication that any readout dopant situated between Rmin and
Rmax of a viable control cannot be within Rmax of another
control and thus, within T1, can only interact with one control.

The problem can thereby be distilled into two separate
parts: Calculating the density of controls isolated by Rcc in
the control distribution, and multiplying by the cumulative
probability distribution function corresponding to the readout
distribution complying to all the distance conditions it is
subject to (see Fig. 2).

B. Maximizing the density of events isolated by a fixed radius

To calculate the optimal total control density, we seek to
maximize the density of events isolated by at least a fixed
radius Rcc, which we refer to as the isolated density with
isolation radius Rcc. The probability of finding an event in a
spherical shell of thickness dr at a distance r from a randomly
chosen event in the distribution of density Dt is dV (r)

dr Dt dr,
where V (r) is the volume of the sphere of radius r [58,59]. The
probability that there are no events closer to the randomly cho-
sen event than r is then P0(r) = e−V (r)Dt , from Refs. [58,60].
Optimizing this probability leads to setting the total density
of events to 1 (such that there is no chance of finding any
other event within r), as can be seen in Fig. 4. However,
optimizing the density of points Di isolated by exactly R from
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random point being isolated by a fixed radius (42.2 nm), and Di, the
density of points isolated by the same fixed radius, as functions of
the total density, Dt . Whereas the probability doesn’t contain a clear
maximum to optimize for, the density does.

their neighbors does present a maximum (see Fig. 4).

Di ≡ Dt P0(R) = Dt e
−V (R)Dt , (4)

which is maximum when

Dt (Di max) = 1

V (R)
. (5)

At this density, the fraction of points isolated by R is 1/e:

Di, max = Dt e−1. (6)

The values for the total and isolated control densities cor-
responding to the control radii (table in Fig. 2) are displayed
in Table I.

The main steps of the calculation of the cumulative proba-
bility density function using nearest-neighbor methods for the
readout distribution can be found in Appendix B. We can now
construct the total densities of viable configurations for our
three types of entangling gate, for homogeneous doping with
a control density Dc, and a readout density Dr .

(i) The density of SFG gate configurations is the product
of the viable control density with the probability for a control
to be surrounded by a successful configuration of readouts [the

TABLE I. Total doping densities giving maximum number of
dopants isolated by a radius R. Results are for densities in 3D
(1015/cm3) and in 2D (1010/cm2) for polarizations in plane e‖,
corresponding to R = 42.2 nm or polarization out of plane e⊥
corresponding to R = 28.5 nm.

3D 2D

Polarization Both e‖ e⊥

Total density 3.18 1.79 3.91
Isolated density 1.17 0.66 1.44
Isolated fraction 1/e 1/e 1/e
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density in 2D doped silicon. Lines: Poisson point process theory.
Error bars: Monte Carlo simulation standard deviation. Orange and
light blue: SFG gates (two readouts). Red and dark blue: Excited-
ground Heisenberg gates (one readout).

product of the CPDFs defined in Eqs. (B1) and (B2)]:

Dsfg(Dc, Dr ) = Dc e−V (Rcc ) Dc

∫ Rmax

Rmin

dr1

∫ Rmax

r1

dr2S(r1)S̃(r2)

× D2
r e−(V (Rmax )+δSFG )Dr . (7)

(ii) The density of two-species excited-ground Heisenberg
entangling gates is

DHeis. ex−gd(Dc, Dr ) = Dc e−V (Rcc ) Dc

×
∫ Rmax

Rmin

drS(r)D2
r e−(V (Rmax )+δ)Dr .

(8)

(iii) The density of single-species excited-excited Heisen-
berg entangling gates is

DHeis. ex−ex(D) = D
∫ Rcc

R′
min

drS(r)D2e−(V (Rcc )+δ)D. (9)

C. Results

The results of Eqs. (7)—(9) for the distances corresponding
to Si:P and Si:As in the table of Fig. 2 are plotted in Figs. 5–7.
The plotted quantity is the density of readouts which are
actively participating in viable entangling gate configurations,
i.e., twice the density of entangling gates in the SFG case and
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FIG. 6. Dual species doping in 3D. Active percentage and read-
out density as a function of the total readout density in 3D doped
silicon. Lines: Poisson point process theory, Eqs. (7)–(9). Error bars:
Monte Carlo simulation standard deviation. Red: Heisenberg gates
(one readout). Orange: SFG gates (two readouts). Yellows: Three or
more readouts—percentages not shown for these cases because they
are negligible.

the same density as that of entangling gates for the Heisenberg
single-readout gate cases. The percentage of active readouts
is simply the density of readouts which are a part of an
entangling gate divided by the total density of readouts.

In all cases, the total density of controls is maximized by
choosing Dc = 1

V (Rcc ) from Eq. (5), yielding the viable control

density e−1

V (Rcc ) from Eq. (6), as can be seen in Fig. 4. The
optimal control densities calculated with the distances of the
table in Fig. 2 can be seen in Table II .

In 2D, the maximum density of readout dopants (Si:As)
which are a part of viable SFG gates is 6 × 108 dopants per
cm2, which corresponds to a total readout doping density
of 1.5 ×1011 dopants per cm2. The bilayer case shows a
negligible increase in the density of readouts which are part
of SFG gates, for double the total density (3 ×1011 dopants
per cm2). The percentages of readouts involved in viable SFG
configurations in both the monolayer and bilayer cases remain
below 0.5%.

The maximum density of readout dopants (Si:As) which
are a part of viable excited-readout Heisenberg gates is 1.2 ×
109 dopants per cm2, corresponding to a total density of 8 ×
1010 dopants per cm2 and 1.5% active readouts. A very clear
increase can be seen in the bilayer case. The maximum density
of readout dopants, part of viable excited-readout Heisenberg
gates in bilayers separated by 13.2 nm, is 3.5 × 109 dopants
per cm2, corresponding to 2 × 1011 dopants per cm2 and 1.8%
active readouts.
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FIG. 7. Single-species Heisenberg gate for both polarizations in
a monolayer. The percentage of dopants which are a part of a gate
is far larger than in both other gate types discussed. Lines: Poisson
point process theory. Error bars: Monte Carlo simulation standard
deviation.

The control (Si:P) doping density that achieves maximum
density of active readouts is 1.79 × 1010 dopants per cm2

in the monolayer case and 3.91 × 1010 dopants per cm2 in
the bilayer case. It is possible to achieve up to 3.9% active
readouts in the monolayer case and 4.7% active readouts in
the bilayer case for low doping densities. Thus, using equal
total densities of Si:P and Si:As leads to some of the highest
active percentages of Si:As contributing to excited-ground
Heisenberg gates.

The 3D bulk doped results are shown in Fig. 6. The max-
imum density of readout dopants (Si:As) active in excited-

TABLE II. Analytical (matching simulation) results for total
densities of control (P) and readout (As or P) dopants which are part
of gates. Densities are in dopants per cm2 (in 2D) or cm3 (in 3D).
*Bilayer case: Si:As in a parallel plane 13.2 nm from Si:P plane.
Polarisation (linear): e‖ in plane, e⊥ out of plane.

Species Dqubits % DAs DP

2D e‖ P-As-As 6 × 108 <0.5 1.5 × 1011 1.8 × 1010

e‖ P-As 1.2 × 109 1.5 8 × 1010 1.8 × 1010

e‖ P-P 4.3 × 109 24 0 2.5 × 1010

e⊥ P-P 8.3 × 109 21 0 5.4 × 1010

* e⊥ P-As-As 6 × 108 <0.5 3 × 1011 3.9 × 1010

* e⊥ P-As 3.5 × 109 1.8 2 × 1011 3.9 × 1010

3D P-As-As 2 × 1014 <0.5 7 × 1016 3.2 × 1015

P-As 3 × 1014 0.8 3.5 × 1016 3.2 × 1015

ground Heisenberg type gates is 3 × 1014 dopants per cm3,
corresponding to a total doping density of readouts of 3.5 ×
1016 dopants per cm3 and 0.8% active readouts. Similar to the
2D case, the maximum active readout percentages of 2.1%
can be reached for total readout doping densities comparable
to that of the controls (3.2 × 1015 dopants per cm3). The
maximum density of readout dopants (Si:As) active in SFG
type gates is 2 × 1014 dopants per cm3 corresponding to
a total doping density of readouts of 7 × 1016 dopants per
cm3. It was possible to gain insights about the densities of
gates containing three or more readouts from the Monte Carlo
simulation, which may be of interest for different types of
quantum gate, e.g., Toffoli gates. Unsurprisingly, they peak
at far higher total readout doping densities, such as 7.5 ×
1016 dopants per cm3 for the three readout case (see Fig. 6),
but provide lower active readout densities, such as 7 × 1013

dopants per cm3 for the same case.
Finally, the single species excited-excited Heisenberg gate

in a 2D monolayer yields the highest densities and percentages
of active dopants. With in-plane light polarization, 24% of
dopants can be involved in viable excited-excited Heisenberg
gates! Active dopant densities of 4.3 × 109 dopants per cm2

can be reached for total doping densities of 2.5 × 1010 dopants
per cm2. Higher active dopant densities can be reached for
out of plane polarization: 8.3 × 109 dopants per cm2 for
total doping densities of 5.4 × 1010 dopants per cm2. Max-
imum percentages of 21% can be achieved with out-of-plane
polarization.

IV. PROOF OF PRINCIPLE EXPERIMENT: CONTROL OF
FAR-FROM-EQUILIBRIUM MAGNETIZATION DYNAMICS

BY ORBITAL EXCITATION

As a first step toward the implementation of the optically
excited exchange entangling gates, we propose a proof of
principle experiment to show the control of the magnetiza-
tion dynamics of the readout (Si:As) donor electrons by the
control (Si:P) electrons’ orbital state, due to enhancement
of exchange interactions from orbital excitations. This is the
most important building block of the SFG entangling gate. We
calculate the quantum many-body magnetization dynamics in
the thermodynamic limit using MACE [45], a diagonalization
method shown to be well suited for describing the dynamics
of randomly placed spins. Because deep donors in silicon
act according to the Heisenberg Hamiltonian, this experiment
can also be interpreted as a quantum simulation of the two-
species S = 1/2 Heisenberg antiferromagnet1 with quenched
disorder in the exchange couplings. Note, however, that due
to Ji j > 0 for all i, j, this model does not show spin-glass
phenomenology.

A. Sample fabrication and detection techniques

Starting from a spin-polarized state, we show below
that when all donors are in the orbital ground state, the

1This has been shown to be an effective low energy description
of the half-filled Hubbard model, in the case where the interaction
energy between the spins of the lattice is far greater than the hopping
strength [61–63].
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magnetization of Si:As stays constant on observable
timescales, while it changes to a vastly different value when
the control species is excited to the 2p state. This implies
that while exchange interactions are negligible in the orbital
ground state, they are large enough to mediate nontrivial
many-body dynamics when in the excited state. Realizing this
in experiment would at least partially prove the necessary
control over two-body interactions needed for the quantum
logic gates discussed in the previous sections.

In experiment, readout of the magnetization of the Si:As
is done via donor-bound exciton spectroscopy (D0X spec-
troscopy) [15,34]. This requires electrical detection, which
can be achieved in a dilute 2D layer of P and As donors
using STM hydrogen lithography to pattern highly conductive
metallic-doped phosphorus pads into the same plane and
overgrowing a protective thin film of crystalline silicon with
molecular beam epitaxy. The impurity sheet’s metallically
doped pads are electrically contacted using electron beam
lithography coupled to reactive ion etching to create features
which are filled with aluminium using a metal evaporator.
The metallic pads are in turn electrically contacted to obtain,
in conjunction with terahertz radiation from a FEL (λ =
31.6 μm for the Si:P 1s to 2p± transition) and D0X spec-
troscopy, an electrical signal from the 2D Si:As sheet which
is a response to the coherent and nonlinear excitations of the
Si:P electrons. The sample fabrication and electrical detection
technique briefly described above and which we have in mind
for the experiment we propose here are described in Ref. [64].
This detection technique enables the precision condensed-
matter samples to remain intact after exposure to a FEL pulse.

The contacted impurity layer in silicon is mounted on the
bore of a water-cooled Bitter magnet to Zeeman split the
ground state impurity electron spin energies, leading to six
pairs of dipole-allowed transitions (�m = 0, ±1). Electrical
detection of electron spin resonance using D0X spectroscopy
has been demonstrated for magnetic fields of around 0.35
Tesla [33]. A donor-bound exciton can be formed by a direct
1.15 eV photon (the silicon indirect bandgap is of 1.17 eV).
The photon excites an electron from the valence band, leaving
behind a hole. When the electron-hole pair recombine via
an Auger recombination process, their energy ejects another
electron from the donor site, leaving behind a positively
charged donor ion [33]. To relax all the electron spin states of
both donor species to the lower energy spin state, the sample
needs to be cooled down in a dilution fridge to milli-Kelvin
temperatures. D0X optical pumping then initializes all the
readouts to the opposite spin state from the controls (and later
to read out the occupation of one of the Si:As spin states).

B. Experimental proposal

Following the techniques described previously, each elec-
tron has the initial spin state |Si〉 with

|Si〉 =
{|↑〉 if i = readout

|↓〉 if i = control,
(10)

and the whole system is initially in a product state |ψ0〉 such
that

|ψ0〉 = |S1 S2 ...Sn〉 . (11)

When the terahertz frequency FEL is switched on, it illumi-
nates the entire sample and excites the control (Si:P) electrons
to the 2p± state. As mentioned previously, the experimentally
demonstrated decay time of 3D bulk doped Si:P in the 2p±
state in nonisotopic silicon is 200 ps [47], which gives the
timescale available to our experiment.

The dopants evolve in time according to the Heisenberg
Hamiltonian,

H = 1

2

∑
i 	= j

JAsAs
i j SAs

i SAs
j + 1

2

∑
i 	= j

JPAs
i j SP

i SAs
j

+ 1

2

∑
i 	= j

JPP
i j SP

i SP
j , (12)

where we made the species dependence of the interactions
explicit. The strength of the interaction JPAs, JPP depends
explicitly on the orbital state of the control species (Si:P) (see
Appendix A). If the densities are high enough, the Si:P wave
functions will overlap with the Si:As and lead to nontrivial
dynamics.

The average magnetization of the readouts (Si:As) is
given by

〈Sz As(t )〉 = 〈ψ0| 1

N

∑
i

Sz As
i (t )|ψ0〉 . (13)

The average spin flip probability is then defined as

PAs
sf (t ) = 1

N

∑
i

〈|↑〉 〈↑|i〉 (14)

= 1

2N
+ 〈Sz As(t )〉 , (15)

where |↑〉 〈↑|i is the projector onto the ith spin being in
spin up.

To make a differential measurement, we compare the av-
erage spin-flip probability of the readout dopants when the
control dopants are in the ground state with the average
spin flip probability when the control dopants are collectively
excited to the 2p± state. As a result, we then expect

PAs
sf (t ) →

{≈ 0 for control in 1s

	= 0 for control in 2p.
, for late times t (16)

We can deduce that the nontrivial dynamics of the spin-
flip probability must have been due to interactions between
species as the species themselves are in an eigenstate of their
respective Heisenberg Hamiltonian.

In the following, we will now predict the outcome of the
experiment using an exact diagonalization technique.

C. Dynamics of the arsenic spin flip probability
within MACE

To simulate the experimental outcome, i.e., the magnetiza-
tion dynamics, we use the MACE technique, which has been
shown to capture the magnetization dynamics in disordered
long-range interacting quantum spin systems realized by cold
dipolar molecules [45] and Rydberg atoms [65].

MACE assumes that in a system where spins are randomly
placed in space, contributions to the local magnetization
dynamics of a particular spin are only made by the spins
with which it has the largest interaction-exchange energies.
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FIG. 8. Average spin-flip probability of the Si:As for Si:P and
Si:As densities given by 7 × 109 dopants per cm2 as obtained with
MACE, where both species are in the same 2D layer. Si:As is always
in the 1s ground state. Light blue: P in the 1s ground state, dark blue:
P in the 2p± excited state, red: The absolute value of the difference
between both curves. The results are averaged over 400 clusters
of size 8 and the shaded areas around the curves are the standard
deviation estimated with a jackknife binning analysis of the cluster
sampling.

Therefore, it is enough to exactly diagonalize this cluster
and then average over all such clusters. Convergence is
then sought by increasing the cluster size. In our system,
convergence was found for cluster sizes 5 and above due to
the short-range nature of the interactions. This is in contrast
to the larger cluster sizes needed in algebraically decaying
interactions [66]. Plotted on Fig. 8 are results from cluster size
8 with jackknife error estimates from the quenched disorder
sampling in grey [67].

We calculated that there is no visible change in the mag-
netization of the arsenic for fields up to 10 Tesla. We have
also checked that there are no significant differences between
defining clusters with the largest exchange interactions or the
nearest neighbors of the spin of interest.

The difference in the dynamics of the Si:As spin-flip
probability between Si:P being in the orbital ground state or
the excited state can be seen in Fig. 8 to be 13% within the
200ps experimentally detected decoherence time of the Si:P
2p± excited state, for doping densities of both As and P of
7 × 109 dopants per cm2, which is accessible with current
doping techniques.

This shows that already with only global measurements
at hand, nontrivial quantum many-body dynamics could
be probed within this dual-doped system. Comparing
measurements where Si:P is in the ground and excited
state would furthermore show that substantial control over the
dynamics of the Si:As spins can be implemented within this
scheme, therefore showing that one of the prime requirements
of the SFG entangling gate are within reach of current
experimental platforms.

V. CONCLUSION

In this paper, we have established the optimum densities of
optically controlled entangling gates achievable in randomly

doped silicon. To determine which spacing between dopant
electrons can realistically create entangling gates, we created
spatial maps of the Heisenberg interaction exchange energy
between same-species and dual-species dopants. We focused
on Si:P and Si:As because they are, to date, the most well-
understood dopants for diffusion onto a silicon surface in
ultrahigh vacuum.

Respecting these conditions, we obtained matching results
in both the nearest-neighbor treatment of a Poisson point pro-
cess and a Monte Carlo simulation. The maximally achievable
densities of entangling gates in 2D are in the low 109 dopants
per cm2 and in 3D are in the low 1014 dopants per cm3. This
corresponds to relatively low percentages of active dopants.
An increase was found in the density of gates when the
dopants are divided into two parallel layers. Furthermore,
by considering same-species Heisenberg gates, up to 24% of
dopants could be involved in viable gate structures. We also
showed that in 3D there arise situations in which gates with
three and four qubits reach significant densities.

We proposed a proof of principle experiment aimed at
demonstrating the onset of two-body (entangling) interactions
caused by the optical excitation of one of the species in a 2D
randomly doped sample. The far-from-equilibrium magneti-
zation dynamics of the Si:As donor electron spins were cal-
culated using the MACE technique, depending on the orbital
state of the Si:P donor electrons. For low but equal densities
of Si:P and Si:As, we found a large difference in the time
evolution of the spin-flip probability of around 13% between
the cases where phosphorus was in the ground or excited state,
showing that such an experiment would indeed be feasable.

This work can be extended in various ways. Single-donor
placement techniques such as hydrogen lithography could
be used to create two or three dopant structures in silicon to
verify the maps of the exchange interaction energy calculated
here. The theory we have developed can be applied to
different dopant species such as selenium or acceptors such
as boron, and could be modified to accommodate hard-sphere
configurations and would be relevant for Rydberg atoms
which deviate from pure Poissonian statistics in the blockaded
regime [68].
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APPENDIX A: EXCHANGE CALCULATION
WITH MULTIVALLEY WAVE FUNCTIONS

To calculate the exchange interaction between two donors,
we use the Heitler-London approximation [36]

J =
∫

dr1dr2 ψ∗
1 (r1)ψ∗

2 (r2 − R)
e2

4πε0εr |r1 − r2|
×ψ2(r1 − R)ψ1(r2), (A1)
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FIG. 9. Schematic representations of geometric considerations
for readout dopants surrounding the control dopant. The first- and
second-nearest neighbors of a random point chosen in the readout
distribution must be separated by Rrr , which is calculated using the
exclusion angle α and the hashed areas referred to as δ.

where R = R2 − R1 is the separation vector between the two
donors and εr = 11.4 is the dielectric constant of silicon. The
wave function of each donor can be either the 1sA1 ground
state, the 2p0 or 2p± excited states. In the multivalley effective
mass theory, all of these wave functions can be expanded as

ψ ( j)(r) =
∑

μ

F ( j)
μ (r)φμ(r), (A2)

where j = 1, 2, 3 indicates the 1sA1 ground state, the 2p0 and
2p± excited states, respectively; μ = ±x,±y,±z indicates
the valleys of silicon’s conduction band minima, φμ(r) =
eikμ.ruμ(r) are the Bloch functions at the minima, |kμ| =
0.84 × 2π/a0 where a0 = 0.543 nm is the lattice constant.
The Fμ(r) are the envelope functions. For the 1sA1 state, the
envelope function of the +z valley is [69]

F (1)
+z (r) =

exp

[
−

(
x2+y2

(αa1 )2 + z2

(αb1 )2

)1/2
]

√
6π (αa1)2(αb1)

, (A3)

where a1 = 2.42 nm and b1 = 1.39 nm. The factor α accounts
for the contraction of the ground state [70] due to the central
cell correction (CCC) and is given by α = √

ESV/EB where

FIG. 10. Monte Carlo simulation isolation checking algorithm
described in Algorithm 1.

Algorithm 1 Check isolation of a point by Rv(squares are
labeled in Fig. 10).

Require: D: Array containing coordinates of all points in
distribution

Require: P: Array containing coordinates of point being
tested for isolation

a ← Rv cos 45
i ← 0
Mark all elements of D as viable
while i < length(D) do

if P is marked as viable then
if Px − a < D[i]x < Px + a then

if Py − a < D[i]y < Py + a then
Mark D[i] and P as nonviable
i = i + 1

end if
end if
if Px − Rv < D[i]x < Px + Rv then

if Py − Rv < D[i]y < Py + Rv then
b ← Sqrt ((D[i]x − Px )2 + (D[i]y − Py )2)
if b < Rv then

Mark D[i] and P as nonviable
i = i + 1

end if
end if

end if
i = i + 1

end if
end while

ESV = 29.7 meV is the binding energy obtained from a single-
valley theory without the CCC, as in Ref. [69], and EB is the
experimental binding energy which is 45.58 meV for Si:P and
53.77 meV for Si:As [51]. The other envelope functions are
obtained by using Fμ = F−μ and cyclic permutations of x, y, z.

The excited state energies and wave functions of Si:P are
identical to those of Si:As [51,71], and are dependent on the
polarization of the light field. For polarization with the unit
vector ε = [εx, εy, εz], the excited states are also given by
Eq. (A2) but the envelope functions are now

F (2)
+z (r = εzz√

2πa2
2b3

2

exp

[
−

√
x2 + y2

a2
2

+ z2

b2
2

]
,

F (3)
+z (r = εxx + εyy√

4πa4
3b3

exp

[
−

√
x2 + y2

a2
3

+ z2

b2
3

]
, (A4)

where a2 = 3.68 nm, b2 = 2.23 nm, a3 = 5.45 nm, and b3 =
3.35 nm. The other envelope functions can again be derived
using Fμ = F−μ and cyclic permutations of x, y, z.

We can further expand the Bloch function in Eq. (A2)
in terms of plane waves as φμ(r) = ∑

G cGeiG.r where G is
the reciprocal lattice vector. Substituting this into Eq. (A2)
and then Eq. (A1), neglecting the fast oscillating terms in the
resulting integrand, and using the equality

∑
G |cG|2 = 1, we
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FIG. 11. Schematic explanation of the haystack algorithm de-
scribed in Algorithm 2. In the case of there being many readouts
in one shell, this method of recording reciprocal nonviability cuts
calculation time approximately in half.

arrive at

J = 2
∑
μ,ν

jμ,ν cos(kμ.R) cos(kν .R), (A5)

where

jμ,ν =
∫

dr1dr2 F ∗
1,μ(r1)F ∗

2,ν (r2 − R)
e2

4πε0εr |r1 − r2|
× F2,ν (r1 − R)F1,μ(r1). (A6)

These highly oscillating integrals are evaluated numerically
with the VEGAS PACKAGE [72].

APPENDIX B: READOUT CUMULATIVE PROBABILITY
DENSITY FUNCTION CALCULATION

Let S(r) = dV (r)
dr be the surface area of the n-dimensional

sphere of radius r [i.e., S(r) = 2πr in 2D and S(r) = 4πr2 in
3D].

If the readout density is Dr , the probability of finding the
first- and second-nearest neighbors between Rmin and Rmax is∫ Rmax

Rmin

dr1

∫ Rmax

r1

dr2 S(r1)S(r2)D2
r e−V (Rmax )Dr . (B1)

However, the number of viable configurations is reduced
by the additional requirement that the second-nearest neigh-
bor must be at least Rrr from the first. If r2 < (r1 + Rrr ),
the sphere of radius r2 defining the viable positions for
the second-nearest neighbor must therefore have a spherical
cap removed from it (see Fig. 9) subtending an angle α =
cos−1 ( r2

1 +r2
2 −R2

rr

2r1r2
). This gives rise to a new surface of smaller

Algorithm 2 Find which controls and readouts are active
(squares are labeled in Fig. 11).

Require: Cv: Array containing all viable controls (isolated
by Rcc within the control distribution: the output of Algorithm 1)

Require: Mark all elements of C as active
Require: R: Array containing all readouts
Require: Mark all elements of R as nonactive

i ← 0
while i < Length(Cv) do

array H ← elements of R located within square 1 of Cv[i]
if H does not contain elements within square 3 then

Mark Cv[i] as nonactive
i = i + 1

else
if H contains any element within square 2 then

Mark Cv[i] as nonactive
i = i + 1

else
for k indexing elements of H within square 4 do

if R[k] within Rmin (Pythagoras calculation) then
Mark Cv[i] as nonactive
i = i + 1

else
Check R[k] for isolation within H (Algorithm 1) and,
if isolated, mark R[k] as active. If active, array
Ra ← + R[k]

end if
end for
for k indexing of elements within square 5 and not
within square 4 do

Check R[k] for isolation within H (Algorithm 1) & if
isolated, mark R[k] as active. If active, array
Ra ← + R[k]

end for
for k indexing elements of H between squares 3 and 5 do

if R[k] within Rmax (Pythagoras calculation) then
Check R[k] for isolation within H (Algorithm 1) and,
if isolated, mark R[k] as active. If active, array
Ra ← + R[k]

end if
end for
if Size(Ra) >0

Mark Cv[i] as having Length(Ra) readouts
i = i + 1

end if
end if

end if
end while

area S̃(r2) = 2(π − α)r2 in 2D and S̃(r2) = 4(π − α)r2
2 in

3D. In the bilayer case, Rmin = 0 which further constrains α

to be π if r1 < (Rrr − Rmax), i.e., if α is complex.
Finally, cases where further readout donors lie outside the

sphere of radius Rmax but within a volume δ defined as being
within radius Rrr of the first- or second-nearest neighbors must
be excluded; this corresponds to reducing the probability by a
factor

e−δ Dr . (B2)
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In the SFG case, if δ1(r1) and δ2(r2) are the volumes of the
spheres of radius Rrr centered on the first- and second-nearest
neighbors which lie outside the sphere of volume Rmax, and
δov (r1, r2, θ ) is the overlap between these two volumes where
θ is the angle between the readouts, δSFG = δ1(r1) + δ2(r2) −
δov (r1, r2, θ ). In both the other gate types, δ = δ1(r1). This
three-circle overlap configuration and area calculation has
been made into a Wolfram Demonstrations Project [73] and
the functions corresponding to the overlap of two and three
circles case were taken from Ref. [74].

APPENDIX C: MONTE CARLO SIMULATION

The MonteCarlo simulation was written in PHP with a
MySQLi database. The front end is written in HTML/CSS so
simulations can be run through a browser and made available
on the internet. It scales optimally with the number of dopants,
i.e., O(nc + nr), where nc is the number of control dopants
and nr is the number of readout dopants, such that it allows
for computations on large densities and such that the wait

time is minimal. Optimal scaling stems principally from the
avoidance of full Pythagoras computations. This is achieved
with four different techniques. In regard to the first step in the
whole algorithm, which is to analyze the controls to identify
all viable controls, the avoidance of Pythagoras is achieved
by first partitioning the space according to the expected mean
nearest-neighbor distance, second by using Pythagoras only
for points lying between the enclosing squares (Fig. 10), third
by skipping to the next point as soon as conditions are found to
be breached, and fourth by reciprocating information between
adjacent points.

With regard to the second step, which is to work within the
viable control distribution and the full readout distribution,
avoidance of Pythagoras is achieved by using the search
sequence represented diagrammatically in Fig. 11, referred to
as a haystack search.

Only the readouts close enough to a viable control and
which might therefore constitute or interfere with an entan-
gling gate are analyzed. Consequently, slightly more than half
the readout dopants are never involved in the algorithm.
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Vuletić, and M. D. Lukin, Nature (London) 551, 579 (2017).

[7] J. Sau, Physics 10, 68 (2017).
[8] V. Lahtinen and J. K. Pachos, Sci. Post. Phys. 3, 021 (2017).
[9] M. H. Devoret, A. Wallraff, and J. M. Martinis, arXiv:cond-

mat/0411174.
[10] R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey,

T. C. White, J. Mutus, A. G. Fowler, B. Campbell, Y. Chen,
Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P. O’Malley,
P. Roushan, A. Vainsencher, J. Wenner, A. N. Korotkov,
A. N. Cleland, and J. M. Martinis, Nature (London) 508, 500
(2014).

[11] J. Kelly, R. Barends, A. G. Fowler, A. Megrant, E. Jeffrey, T. C.
White, D. Sank, J. Y. Mutus, B. Campbell, Y. Chen, Z. Chen, B.
Chiaro, A. Dunsworth, I.-C. Hoi, C. Neill, P. J. J. O’Malley,
C. Quintana, P. Roushan, A. Vainsencher, J. Wenner, A. N.
Cleland, and J. M. Martinis, Nature 519, 66 (2015).

[12] L. Childress and R. Hanson, MRS Bull. 38, 134 (2013).
[13] X. Mi, J. V. Cady, D. M. Zajac, J. Stehlik, L. F. Edge, and J. R.

Petta, Appl. Phys. Lett. 110, 043502 (2017).
[14] C. D. Hill, E. Peretz, S. J. Hile, M. G. House, M. Fuechsle, S.

Rogge, M. Y. Simmons, and L. C. L. Hollenberg, Sci. Adv. 1,
e1500707 (2015).

[15] G. W. Morley, Electron Paramagnetic Resonance: Volume 24
(The Royal Society of Chemistry, 2015), pp. 62–76.

[16] P. W. Shor, Proceedings of the 35th Annual Symposium on
Foundations of Computer Science SFCS ’94 (IEEE, Piscataway,
NJ, 1994), p. 124.

[17] L. K. Grover, Proceedings of the 28th Annual ACM Symposium
on Theory of Computing STOC ’96 (ACM, New York, 1996),
p. 212.

[18] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe,
and S. Lloyd, Nature (London) 549, 195 (2017).

[19] R. P. Feynman, Int. J. Theor. Phys. 21, 467 (1982).
[20] A. D. King, J. Carrasquilla, J. Raymond, I. Ozfidan, E.

Andriyash, A. Berkley, M. Reis, T. Lanting, R. Harris, F.
Altomare, K. Boothby, P. I. Bunyk, C. Enderud, A. Fréchette, E.
Hoskinson, N. Ladizinsky, T. Oh, G. Poulin-Lamarre, C. Rich,
Y. Sato, A. Y. Smirnov, L. J. Swenson, M. H. Volkmann, J.
Whittaker, J. Yao, E. Ladizinsky, M. W. Johnson, J. Hilton, and
M. H. Amin, Nature (London) 560, 456 (2018).

[21] J. Braumüller, M. Marthaler, A. Schneider, A. Stehli, H.
Rotzinger, M. Weides, and A. V. Ustinov, Nat. Commun. 8, 779
(2017).

[22] L. Lamata, A. Parra-Rodriguez, M. Sanz, and E. Solano, Adv.
Phys.: X 3, 1457981 (2018).

[23] D. DiVincenzo and D. Loss, Superlattices Microstruct. 23, 419
(1998).

[24] B. E. Kane, Nature (London) 393, 133 (1998).
[25] J. J. L. Morton, A. M. Tyryshkin, R. M. Brown, S. Shankar,

B. W. Lovett, A. Ardavan, T. Schenkel, E. E. Haller, J. W. Ager,
and S. A. Lyon, Nature (London) 455, 1085 (2008).

[26] A. M. Stoneham, A. J. Fisher, and P. T. Greenland, J. Phys.:
Condens. Matter 15, L447 (2003).

[27] R. Rodriquez, A. J. Fisher, P. T. Greenland, and A. M.
Stoneham, J. Phys.: Condens. Matter 16, 2757 (2004).

[28] J. J. Pla, K. Y. Tan, J. P. Dehollain, W. H. Lim, J. J. L. Morton,
F. A. Zwanenburg, D. N. Jamieson, A. S. Dzurak, and A.
Morello, Nature (London) 496, 334 (2013).

[29] K. Saeedi, S. Simmons, J. Z. Salvail, P. Dluhy, H. Riemann,
N. V. Abrosimov, P. Becker, H.-J. Pohl, J. J. L. Morton, and
M. L. W. Thewalt, Science 342, 830 (2013).

064201-12

https://doi.org/10.1016/j.physrep.2008.09.003
https://doi.org/10.1016/j.physrep.2008.09.003
https://doi.org/10.1016/j.physrep.2008.09.003
https://doi.org/10.1016/j.physrep.2008.09.003
https://doi.org/10.1038/nature24654
https://doi.org/10.1038/nature24654
https://doi.org/10.1038/nature24654
https://doi.org/10.1038/nature24654
https://doi.org/10.1038/415039a
https://doi.org/10.1038/415039a
https://doi.org/10.1038/415039a
https://doi.org/10.1038/415039a
https://doi.org/10.1126/science.aal3837
https://doi.org/10.1126/science.aal3837
https://doi.org/10.1126/science.aal3837
https://doi.org/10.1126/science.aal3837
https://doi.org/10.1038/nature22362
https://doi.org/10.1038/nature22362
https://doi.org/10.1038/nature22362
https://doi.org/10.1038/nature22362
https://doi.org/10.1038/nature24622
https://doi.org/10.1038/nature24622
https://doi.org/10.1038/nature24622
https://doi.org/10.1038/nature24622
https://doi.org/10.1103/Physics.10.68
https://doi.org/10.1103/Physics.10.68
https://doi.org/10.1103/Physics.10.68
https://doi.org/10.1103/Physics.10.68
https://doi.org/10.21468/SciPostPhys.3.3.021
https://doi.org/10.21468/SciPostPhys.3.3.021
https://doi.org/10.21468/SciPostPhys.3.3.021
https://doi.org/10.21468/SciPostPhys.3.3.021
http://arxiv.org/abs/arXiv:cond-mat/0411174
https://doi.org/10.1038/nature13171
https://doi.org/10.1038/nature13171
https://doi.org/10.1038/nature13171
https://doi.org/10.1038/nature13171
https://doi.org/10.1038/nature14270
https://doi.org/10.1038/nature14270
https://doi.org/10.1038/nature14270
https://doi.org/10.1038/nature14270
https://doi.org/10.1557/mrs.2013.20
https://doi.org/10.1557/mrs.2013.20
https://doi.org/10.1557/mrs.2013.20
https://doi.org/10.1557/mrs.2013.20
https://doi.org/10.1063/1.4974536
https://doi.org/10.1063/1.4974536
https://doi.org/10.1063/1.4974536
https://doi.org/10.1063/1.4974536
https://doi.org/10.1126/sciadv.1500707
https://doi.org/10.1126/sciadv.1500707
https://doi.org/10.1126/sciadv.1500707
https://doi.org/10.1126/sciadv.1500707
https://doi.org/10.1038/nature23474
https://doi.org/10.1038/nature23474
https://doi.org/10.1038/nature23474
https://doi.org/10.1038/nature23474
https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF02650179
https://doi.org/10.1038/s41586-018-0410-x
https://doi.org/10.1038/s41586-018-0410-x
https://doi.org/10.1038/s41586-018-0410-x
https://doi.org/10.1038/s41586-018-0410-x
https://doi.org/10.1038/s41467-017-00894-w
https://doi.org/10.1038/s41467-017-00894-w
https://doi.org/10.1038/s41467-017-00894-w
https://doi.org/10.1038/s41467-017-00894-w
https://doi.org/10.1080/23746149.2018.1457981
https://doi.org/10.1080/23746149.2018.1457981
https://doi.org/10.1080/23746149.2018.1457981
https://doi.org/10.1080/23746149.2018.1457981
https://doi.org/10.1006/spmi.1997.0520
https://doi.org/10.1006/spmi.1997.0520
https://doi.org/10.1006/spmi.1997.0520
https://doi.org/10.1006/spmi.1997.0520
https://doi.org/10.1038/30156
https://doi.org/10.1038/30156
https://doi.org/10.1038/30156
https://doi.org/10.1038/30156
https://doi.org/10.1038/nature07295
https://doi.org/10.1038/nature07295
https://doi.org/10.1038/nature07295
https://doi.org/10.1038/nature07295
https://doi.org/10.1088/0953-8984/15/27/102
https://doi.org/10.1088/0953-8984/15/27/102
https://doi.org/10.1088/0953-8984/15/27/102
https://doi.org/10.1088/0953-8984/15/27/102
https://doi.org/10.1088/0953-8984/16/16/001
https://doi.org/10.1088/0953-8984/16/16/001
https://doi.org/10.1088/0953-8984/16/16/001
https://doi.org/10.1088/0953-8984/16/16/001
https://doi.org/10.1038/nature12011
https://doi.org/10.1038/nature12011
https://doi.org/10.1038/nature12011
https://doi.org/10.1038/nature12011
https://doi.org/10.1126/science.1239584
https://doi.org/10.1126/science.1239584
https://doi.org/10.1126/science.1239584
https://doi.org/10.1126/science.1239584


OPTICALLY CONTROLLED ENTANGLING GATES IN … PHYSICAL REVIEW B 100, 064201 (2019)

[30] I. K. Saeedi, Optical NMR study of 31P donor spins in iso-
topically enriched 28Si, Ph.D. thesis, Simon Fraser University,
2014.

[31] A. Morello, J. J. Pla, F. A. Zwanenburg, K. W. Chan, K. Y.
Tan, H. Huebl, M. Möttnöen, C. D. Nugroho, C. Yang, J. A.
van Donkelaar, A. D. C. Alves, D. N. Jamieson, C. C. Escott,
L. C. L. Hollenberg, R. G. Clark, and A. S. Dzurak, Nature
(London) 467, 687 (2010).

[32] M. Fuechsle, J. A. Miwa, S. Mahapatra, H. Ryu, S. Lee,
O. Warschkow, L. C. L. Hollenberg, G. Klimeck, and M. Y.
Simmons, Nat. Nanotechnol. 7, 242 (2012).

[33] C. C. Lo, M. Urdampilleta, P. Ross, M. F. Gonzalez-Zalba, J.
Mansir, S. A. Lyon, M. L. W. Thewalt, and J. J. L. Morton, Nat.
Mater. 14, 490 (2015).

[34] K. Saeedi, M. Szech, P. Dluhy, J. Z. Salvail, K. J. Morse, H.
Riemann, N. V. Abrosimov, N. Notzel, K. L. Litvinenko, B. N.
Murdin, and M. L. W. Thewalt, Sci. Rep. 5, 10493 (2015).

[35] S. Lloyd, Science (London) 273, 1073 (1996).
[36] B. Koiller, X. Hu, and S. Das Sarma, Phys. Rev. Lett. 88,

027903 (2001).
[37] M. C. Hersam, N. P. Guisinger, and J. W. Lyding,

Nanotechnology 11, 70 (2000).
[38] J. L. O’Brien, S. R. Schofield, M. Y. Simmons, R. G. Clark,

A. S. Dzurak, N. J. Curson, B. E. Kane, N. S. McAlpine, M. E.
Hawley, and G. W. Brown, Smart Mater. Structures 11, 741
(2002).

[39] M. A. Broome, S. K. Gorman, M. G. House, S. J. Hile, J. G.
Keizer, D. Keith, C. D. Hill, T. F. Watson, W. J. Baker, L. C. L.
Hollenberg, and M. Y. Simmons, Nat. Commun. 9, 980 (2018).

[40] G. Tosi, F. A. Mohiyaddin, V. Schmitt, S. Tenberg, R. Rahman,
G. Klimeck, and A. Morello, Nat. Commun. 8, 450 (2017).

[41] P. T. Greenland, S. A. Lynch, A. F. G. van der Meer, B. N.
Murdin, C. R. Pidgeon, B. Redlich, N. Q. Vinh, and G. Aeppli,
Nature (London) 465, 1057 (2010).

[42] A. M. Stoneham, Physics 2, 34 (2009).
[43] K. J. Morse, P. Dluhy, J. Huber, J. Z. Salvail, K. Saeedi, H.

Riemann, N. V. Abrosimov, P. Becker, H.-J. Pohl, S. Simmons,
and M. L. W. Thewalt, Phys. Rev. B 97, 115205 (2018).

[44] K. Stockbridge, S. Chick, E. Crane, A. J. Fisher, and B. N.
Murdin (unpublished).

[45] K. R. A. Hazzard, B. Gadway, M. Foss-Feig, B. Yan, S. A.
Moses, J. P. Covey, N. Y. Yao, M. D. Lukin, J. Ye, D. S. Jin,
and A. M. Rey, Phys. Rev. Lett. 113, 195302 (2014).

[46] N. Q. Vinh, P. T. Greenland, K. Litvinenko, B. Redlich, A. F. G.
van der Meer, S. A. Lynch, M. Warner, A. M. Stoneham, G.
Aeppli, D. J. Paul, C. R. Pidgeon, and B. N. Murdin, Proc. Natl.
Acad. Sci. USA 105, 10649 (2008).

[47] K. Litvinenko, E. Bowyer, P. Greenland, N. Stavrias, J. Li,
R. Gwilliam, B. Villis, G. Matmon, M. Pang, B. Redlich,

A. F. G. van der Meer, C. Pidgeon, G. Aeppli, and B. Murdin,
Nat. Commun. 6, 6549 (2015).

[48] J. Levy, Phys. Rev. Lett. 89, 147902 (2002).
[49] R. W. Keyes, Computer 38, 65 (2005).
[50] W. Wu and A. J. Fisher, Phys. Rev. B 77, 045201 (2008).
[51] A. K. Ramdas and S. Rodriguez, Rep. Prog. Phys. 44, 1297

(1981).
[52] T. Trappmann, C. Surgers, and H. Lohneysen, Europhys. Lett.

38, 177 (1997).
[53] S. Torquato, B. Lu, and J. Rubinstein, J. Phys. A: Math. Gen.

23, L103 (1990).
[54] D. K. Pickard, J. Appl. Probability 19, 444 (1982).
[55] T. F. Cox, Biometrics 37, 367 (1981).
[56] M. F. Dacey, Geographical Analysis 1, 385 (2010).
[57] T. Monz, K. Kim, W. Hansel, M. Riebe, A. S. Villar, P.

Schindler, M. Chwalla, M. Hennrich, and R. Blatt, Phys. Rev.
Lett. 102, 040501 (2009).

[58] D. Scott and C. A. Tout, Mon. Not. R. Astron. Soc. 241, 109
(1989).

[59] D. Moltchanov, Ad Hoc Networks 10, 1146 (2012).
[60] J. N. Bahcall and R. M. Soneira, Astrophys. J. 246, 122 (1981).
[61] A. Auerbach, Interacting Electrons and Quantum Magnetism,

Graduate Texts in Contemporary Physics (Springer, New York,
2012).

[62] K. Kubo and M. Uchinami, Prog. Theor. Phys. 54, 1289 (1975).
[63] G. Polatsek and K. W. Becker, Phys. Rev. B 54, 1637 (1996).
[64] E. Crane, A. Kolker, T. J. Z. Stock, N. Stavrias, K. Saeedi,

M. A. W. van Loon, B. M. Murdin, and N. J. Curson, J. Phys.
Conf. Series 1079, 012010 (2018).

[65] A. P. Orioli, A. Signoles, H. Wildhagen, G. Günter, J. Berges,
S. Whitlock, and M. Weidemüller, Phys. Rev. Lett. 120, 063601
(2018).

[66] A. Schuckert, A. P. Orioli, and J. Berges, Phys. Rev. B 98,
224304 (2018).

[67] V. Ambegaokar and M. Troyer, Am. J. Phys. 78, 150 (2010).
[68] M. Saffman, T. G. Walker, and K. Mølmer, Rev. Mod. Phys. 82,

2313 (2010).
[69] W. Kohn and J. M. Luttinger, Phys. Rev. 98, 915 (1955).
[70] G. A. Thomas, M. Capizzi, F. DeRosa, R. N. Bhatt, and T. M.

Rice, Phys. Rev. B 23, 5472 (1981).
[71] J. Li, N. H. Le, K. L. Litvinenko, S. K. Clowes, H. Engelkamp,

S. G. Pavlov, H.-W. Hübers, V. B. Shuman, L. Portsel, A. N.
Lodygin, Y. A. Astrov, N. V. Abrosimov, C. R. Pidgeon, A.
Fisher, Z. Zeng, Y.-M. Niquet, and B. N. Murdin, Phys. Rev. B
98, 085423 (2018).

[72] T. Hahn, Comput. Phys. Commun. 168, 78 (2005).
[73] E. Crane, Wolfram Demonstrations Project (unpublished).
[74] M. Fewell, Australian Government, Department of Defense

Technical Report DSTO-TN-0722 (2006).

064201-13

https://doi.org/10.1038/nature09392
https://doi.org/10.1038/nature09392
https://doi.org/10.1038/nature09392
https://doi.org/10.1038/nature09392
https://doi.org/10.1038/nnano.2012.21
https://doi.org/10.1038/nnano.2012.21
https://doi.org/10.1038/nnano.2012.21
https://doi.org/10.1038/nnano.2012.21
https://doi.org/10.1038/nmat4250
https://doi.org/10.1038/nmat4250
https://doi.org/10.1038/nmat4250
https://doi.org/10.1038/nmat4250
https://doi.org/10.1038/srep10493
https://doi.org/10.1038/srep10493
https://doi.org/10.1038/srep10493
https://doi.org/10.1038/srep10493
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1103/PhysRevLett.88.027903
https://doi.org/10.1103/PhysRevLett.88.027903
https://doi.org/10.1103/PhysRevLett.88.027903
https://doi.org/10.1103/PhysRevLett.88.027903
https://doi.org/10.1088/0957-4484/11/2/306
https://doi.org/10.1088/0957-4484/11/2/306
https://doi.org/10.1088/0957-4484/11/2/306
https://doi.org/10.1088/0957-4484/11/2/306
https://doi.org/10.1088/0964-1726/11/5/318
https://doi.org/10.1088/0964-1726/11/5/318
https://doi.org/10.1088/0964-1726/11/5/318
https://doi.org/10.1088/0964-1726/11/5/318
https://doi.org/10.1038/s41467-018-02982-x
https://doi.org/10.1038/s41467-018-02982-x
https://doi.org/10.1038/s41467-018-02982-x
https://doi.org/10.1038/s41467-018-02982-x
https://doi.org/10.1038/s41467-017-00378-x
https://doi.org/10.1038/s41467-017-00378-x
https://doi.org/10.1038/s41467-017-00378-x
https://doi.org/10.1038/s41467-017-00378-x
https://doi.org/10.1038/nature09112
https://doi.org/10.1038/nature09112
https://doi.org/10.1038/nature09112
https://doi.org/10.1038/nature09112
https://doi.org/10.1103/Physics.2.34
https://doi.org/10.1103/Physics.2.34
https://doi.org/10.1103/Physics.2.34
https://doi.org/10.1103/Physics.2.34
https://doi.org/10.1103/PhysRevB.97.115205
https://doi.org/10.1103/PhysRevB.97.115205
https://doi.org/10.1103/PhysRevB.97.115205
https://doi.org/10.1103/PhysRevB.97.115205
https://doi.org/10.1103/PhysRevLett.113.195302
https://doi.org/10.1103/PhysRevLett.113.195302
https://doi.org/10.1103/PhysRevLett.113.195302
https://doi.org/10.1103/PhysRevLett.113.195302
https://doi.org/10.1073/pnas.0802721105
https://doi.org/10.1073/pnas.0802721105
https://doi.org/10.1073/pnas.0802721105
https://doi.org/10.1073/pnas.0802721105
https://doi.org/10.1038/ncomms7549
https://doi.org/10.1038/ncomms7549
https://doi.org/10.1038/ncomms7549
https://doi.org/10.1038/ncomms7549
https://doi.org/10.1103/PhysRevLett.89.147902
https://doi.org/10.1103/PhysRevLett.89.147902
https://doi.org/10.1103/PhysRevLett.89.147902
https://doi.org/10.1103/PhysRevLett.89.147902
https://doi.org/10.1109/MC.2005.13
https://doi.org/10.1109/MC.2005.13
https://doi.org/10.1109/MC.2005.13
https://doi.org/10.1109/MC.2005.13
https://doi.org/10.1103/PhysRevB.77.045201
https://doi.org/10.1103/PhysRevB.77.045201
https://doi.org/10.1103/PhysRevB.77.045201
https://doi.org/10.1103/PhysRevB.77.045201
https://doi.org/10.1088/0034-4885/44/12/002
https://doi.org/10.1088/0034-4885/44/12/002
https://doi.org/10.1088/0034-4885/44/12/002
https://doi.org/10.1088/0034-4885/44/12/002
https://doi.org/10.1209/epl/i1997-00222-0
https://doi.org/10.1209/epl/i1997-00222-0
https://doi.org/10.1209/epl/i1997-00222-0
https://doi.org/10.1209/epl/i1997-00222-0
https://doi.org/10.1088/0305-4470/23/3/005
https://doi.org/10.1088/0305-4470/23/3/005
https://doi.org/10.1088/0305-4470/23/3/005
https://doi.org/10.1088/0305-4470/23/3/005
https://doi.org/10.2307/3213499
https://doi.org/10.2307/3213499
https://doi.org/10.2307/3213499
https://doi.org/10.2307/3213499
https://doi.org/10.2307/2530424
https://doi.org/10.2307/2530424
https://doi.org/10.2307/2530424
https://doi.org/10.2307/2530424
https://doi.org/10.1111/j.1538-4632.1969.tb00632.x
https://doi.org/10.1111/j.1538-4632.1969.tb00632.x
https://doi.org/10.1111/j.1538-4632.1969.tb00632.x
https://doi.org/10.1111/j.1538-4632.1969.tb00632.x
https://doi.org/10.1103/PhysRevLett.102.040501
https://doi.org/10.1103/PhysRevLett.102.040501
https://doi.org/10.1103/PhysRevLett.102.040501
https://doi.org/10.1103/PhysRevLett.102.040501
https://doi.org/10.1093/mnras/241.2.109
https://doi.org/10.1093/mnras/241.2.109
https://doi.org/10.1093/mnras/241.2.109
https://doi.org/10.1093/mnras/241.2.109
https://doi.org/10.1016/j.adhoc.2012.02.005
https://doi.org/10.1016/j.adhoc.2012.02.005
https://doi.org/10.1016/j.adhoc.2012.02.005
https://doi.org/10.1016/j.adhoc.2012.02.005
https://doi.org/10.1086/158905
https://doi.org/10.1086/158905
https://doi.org/10.1086/158905
https://doi.org/10.1086/158905
https://doi.org/10.1143/PTP.54.1289
https://doi.org/10.1143/PTP.54.1289
https://doi.org/10.1143/PTP.54.1289
https://doi.org/10.1143/PTP.54.1289
https://doi.org/10.1103/PhysRevB.54.1637
https://doi.org/10.1103/PhysRevB.54.1637
https://doi.org/10.1103/PhysRevB.54.1637
https://doi.org/10.1103/PhysRevB.54.1637
https://doi.org/10.1088/1742-6596/1079/1/012010
https://doi.org/10.1088/1742-6596/1079/1/012010
https://doi.org/10.1088/1742-6596/1079/1/012010
https://doi.org/10.1088/1742-6596/1079/1/012010
https://doi.org/10.1103/PhysRevLett.120.063601
https://doi.org/10.1103/PhysRevLett.120.063601
https://doi.org/10.1103/PhysRevLett.120.063601
https://doi.org/10.1103/PhysRevLett.120.063601
https://doi.org/10.1103/PhysRevB.98.224304
https://doi.org/10.1103/PhysRevB.98.224304
https://doi.org/10.1103/PhysRevB.98.224304
https://doi.org/10.1103/PhysRevB.98.224304
https://doi.org/10.1119/1.3247985
https://doi.org/10.1119/1.3247985
https://doi.org/10.1119/1.3247985
https://doi.org/10.1119/1.3247985
https://doi.org/10.1103/RevModPhys.82.2313
https://doi.org/10.1103/RevModPhys.82.2313
https://doi.org/10.1103/RevModPhys.82.2313
https://doi.org/10.1103/RevModPhys.82.2313
https://doi.org/10.1103/PhysRev.98.915
https://doi.org/10.1103/PhysRev.98.915
https://doi.org/10.1103/PhysRev.98.915
https://doi.org/10.1103/PhysRev.98.915
https://doi.org/10.1103/PhysRevB.23.5472
https://doi.org/10.1103/PhysRevB.23.5472
https://doi.org/10.1103/PhysRevB.23.5472
https://doi.org/10.1103/PhysRevB.23.5472
https://doi.org/10.1103/PhysRevB.98.085423
https://doi.org/10.1103/PhysRevB.98.085423
https://doi.org/10.1103/PhysRevB.98.085423
https://doi.org/10.1103/PhysRevB.98.085423
https://doi.org/10.1016/j.cpc.2005.01.010
https://doi.org/10.1016/j.cpc.2005.01.010
https://doi.org/10.1016/j.cpc.2005.01.010
https://doi.org/10.1016/j.cpc.2005.01.010

