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Abstract 

Thanks to the work of Anne Treisman and many others, the visual search paradigm has 

become one of the most popular paradigms in the study of visual attention. However, 

statistics like mean correct response time (RT) and percent error do usually not suffice to 

decide between the different search models that have been developed. Recently, to move 

beyond mean performance measures in visual search, RT histograms have been plotted, 

theoretical waiting time distributions have been fitted, and whole RT and error distributions 

have been simulated. Here we promote and illustrate the general application of discrete-

time hazard analysis to response times, and of micro-level speed-accuracy tradeoff analysis 

to timed response accuracies.  An exploratory analysis of published benchmark search data 

from feature, conjunction, and spatial configuration search tasks reveals new features of 

visual search behavior, such as a relatively flat hazard function in the right tail of the RT 

distributions for all tasks, a clear effect of set size on the shape of the RT distribution for the 

feature search task, and individual differences in the presence of a systematic pattern of 

early errors. Our findings suggest that the temporal dynamics of visual search behavior is 

resulting from a decision process that is temporally modulated by concurrently active 

recurrent object recognition, learning, and cognitive control processes, next to attentional 

selection processes.   
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Introduction 

The visual search paradigm is one of the most popular paradigms in the study of visual 

attention as it mimics real search tasks we perform every day (for reviews, see Eckstein, 

2011; Humphreys, 2016). In each trial of a standard visual search task a display is presented 

that contains a spatially arranged set of objects, and participants are asked to press one of 

two buttons to indicate whether the target (e.g., a red vertical bar) is present or not. The so-

called search functions relating the number of items in the display (set size) to the mean 

correct search response time (RT) are close to linear for both sets of target-present (TP) and 

target-absent (TA) trials, and their slopes seem to vary on a continuum depending on the 

difficulty of the search task (Cheal & Lyon, 1992; Liesefeld, Moran, Usher, Müller, & 

Zehetleitner, 2016). For example, search for a red vertical target among green vertical 

distractors (feature search; Figure 1A, left) is efficient, and results in search functions with 

slopes close to 0 ms/item (Figure 1B, left). In contrast, searching for a 2 among 5´s (spatial 

configuration search; Figure 1A, right) is inefficient, and results in search functions with large 

positive slopes (Figure 1B, right). Finally, searching for a red vertical target among green 

vertical and red horizontal distractors (conjunction search; Figure 1A, middle) is of 

intermediate efficiency, and results in search functions with intermediate slopes (Figure 1B, 

middle). 

 To explain visual search behavior, researchers have mainly focused on devising 

different accounts of the attentional selection process. According to serial search accounts a 

high-speed attentional spotlight is scanning each object one by one in order to bind its 

surface features and to recognize it as a target or distractor (Treisman and Gelade, 1980; 

Wolfe, Cave, & Franzel, 1989). When the target is so salient that it is always scanned first – 

for example when the target and distractors are very dissimilar in a single surface dimension 
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such as color – flat search slopes will result. Scanning continues until the target is found or 

all items are identified as distractors – a serial exhaustive search model (Wolfe, 1994). More 

recent developments have added grouping processes and feature inhibition processes 

(Treisman & Sato, 1990; Wolfe, 2007). 

According to parallel search accounts all items in the display are attended and 

identified in parallel. While some parallel search models are based on signal detection 

theory (Palmer, 1995), others are based on biased competition (Heinke & Backhaus, 2011; 

Heinke & Humphreys, 2003), similarity, grouping, and recursive rejection (Humphreys & 

Müller, 1993; Müller, Humphreys, & Donnelly, 1994), neural synchronization (Kazanovich & 

Borisyuk, 2017), or neurodynamical approaches (Deco & Zihl, 2006; Fix, Rougier, & 

Alexandre, 2011; Grieben, Tekülve, Zibner, Schneegans, & Schöner, 2018). However, mean 

correct RT and slopes are not sufficient to distinguish between serial versus parallel 

processing because both search mechanisms are able to generate efficient and inefficient 

searches (Townsend, 1990a).  

Because mean performance measures such as overall error-rate and mean correct RT 

can be accounted for by different computational models – the problem of model mimicry – 

Wolfe, Palmer, and Horowitz (2010) focused on the shape of the RT distributions. They 

collected very large data sets for three search tasks to set a benchmark: a feature search for 

a color, a spatial configuration search for a digit 2 among digit 5s, and a color-by-orientation 

conjunction search (see Figure 1A). Target presence (present or TP/absent or TA) and set size 

(3, 6, 12, 18) were manipulated for each task to give eight within-subject trial types (TP3, 

TA3, TP6, …, TA18). About 500 trials were administered to each participant for each trial 

type. In each trial, the search display remained visible until the observer pressed one of two 

keys to indicate target present or target absent.  
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Balota and Yap (2011) distinguish three general approaches for understanding the 

influences of variables on RT distributions. The first approach is to plot the shape of the RT 

distribution to determine how a manipulation changes the different regions of the 

distribution (e.g., histograms, quantile plots, delta plots, hazard plots). For example, Wolfe et 

al. (2010) plotted histograms by tabulating the RTs in 50 ms-wide bins (see Figure 1C). They 

found that all distributions were positively skewed, and that variance tracks mean RT (i.e., all 

distributions broaden as they shift rightward). Furthermore, for the conjunction and spatial 

configuration tasks, target-absent distributions are generally to the right of target-present 

distributions, and the variance of the target-absent trials is greater than that of the target-

present trials. They concluded that these distributional shapes reject classic, serial self-

terminating search models including the Guided Search 2.0 model (Wolfe, 1994) as shown in 

Figure 1D.  

The second approach is to fit a mathematical function to an RT distribution to assess 

how different parameters of the function are modulated by experimental manipulations 

(Balota & Yap, 2011). For example, Palmer, Horowitz, Torralba, and Wolfe (2011) fitted four 

psychologically motivated functions to these benchmark data sets (ex-Gaussian, ex-Wald, 

Gamma, and Weibull). They found that the three functions with an exponential component 

were all more successful at modeling the RT distributions than the Weibull. They proposed 

that these exponential components either reflect residual (non-decision) processes in the 

generation of response times, or that these residual components are actually encoding 

something important about the search process itself. However, they were unable to 

distinguish among these two options. 

The third and ultimately the preferred approach discussed by Balota and Yap (2011) 

is to use a computationally explicit process model that makes specific predictions about the 
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characteristics of RT distributions. For example, Moran, Zehetleitner, Müller, and Usher 

(2013) developed the Competitive Guided Search (CGS) model as an extension of the Guided 

Search 2.0 model (Wolfe, 1994). The main addition was a mechanism to quit searches 

prematurely in order to explain the large overlap between the empirical distributions in the 

target-absent conditions (see Figure 1C). Based on several model comparisons using the 

benchmark data sets from Wolfe et al. (2010), Moran et al. (2013) concluded that the CGS 

model meets the challenge of accounting for the shape of the RT distributions in the three 

benchmark search data sets. Furthermore, Moran, Zehetleitner, Liesefeld, Müller, and Usher 

(2016) found that CGS indeed fits the benchmark data sets better than a flexible, 

competitive parallel race model.  

However, based on another benchmark search data set, Narbutas, Kristan, and 

Heinke (2017) concluded that the CGS model suffers from a failure to generalize across all 

display sizes, as did a parallel search model developed by Heinke and Humphreys (2003). 

Indeed, Cheal and Lyon (1992) already concluded that none of the standard theories of 

visual search are completely adequate (see also Dutilh et al., 2018). 

The structure of this paper is as follows. First we will discuss event history analysis, 

the standard longitudinal technique to analyze time-to-event data in many scientific 

disciplines. Event history analysis allows one to study how the effect of an experimental 

manipulation (here: set size and target presence) on performance changes with the passage 

of time on one or more time scales. We end the Introduction section by listing our 

objectives. In the Methods section we explain how we applied the descriptive and inferential 

statistics from event history analysis to the benchmark data sets of Wolfe et al. (2010). In the 

Results section we show descriptive plots of the empirical distributions and compare 

different individuals. Because Balota and Yap (2011) do not discuss the statistical analysis of 
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RT distributions, we also illustrate how to fit a statistical model to RT distributions and what 

this reveals about behavioral dynamics. We discuss several new findings in light of existing 

visual search theories in the Discussion section. 

 

Event history analysis 

Event history analysis, a.k.a. survival, hazard, duration, transition, and failure-time analysis, 

is the standard set of statistical methods for studying the occurrence and timing of events in 

many scientific disciplines (Allison, 2010; Singer & Willett, 2003). Examples of time-to-event 

data include RT data, saccade latencies, fixation durations, time-to-force-threshold data, 

perceptual dominance durations, neural inter-spike durations, etc. To apply event history 

analysis one must be able to define the event-of-interest (any qualitative change that can be 

situated in time; here: a button-press response), to define time point zero (here: search 

display onset), and to measure the passage of time between time zero and event 

occurrence.  

 

Continuous-time hazard rate function 

Luce (1986) mentions that there are several different, but mathematically equivalent, ways 

to present the information about a continuous random variable T denoting a particular 

person´s response time in a particular experiment: the cumulative distribution function F(t) = 

P(T≤t), its derivative F´(t) known as the probability density function f(t), the survivor function 

S(t) = 1-F(t) = P(T>t), and the hazard rate function λ(t) = f(t) / [1-F(t)] = f(t) / S(t). “In principle, 

we may present the data as estimates of any of these functions and it should not matter 

which we use. In practice, it matters a great deal, although that fact does not seem to have 

been as widely recognized by psychologists as it might be” (Luce, 1986, p. 17). 
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Event history analysis (EHA) has been developed to describe and model the hazard 

function of response occurrence. Hazard quantifies the instantaneous risk that a response 

will occur at time t, conditional on its nonoccurrence until time t. In other words, it 

quantifies the likelihood that a response we are still waiting for at time t will occur within the 

next instant. There are at least five reasons why statisticians and mathematical psychologists 

recommend focusing on the hazard function in practice, when dealing with a finite sample. 

First, “the hazard function itself is one of the most revealing plots because it displays 

what is going on locally without favoring either short or long times, and it can be strikingly 

different for f´s that seem little different.” (Luce, 1986, p. 19). To illustrate this Figure 2 

shows the F(t), f(t), S(t), and λ(t) for four theoretical waiting-time distributions. In contrast to 

λ(t), all F(t) and S(t) distributions look vaguely alike and one cannot describe easily salient 

features other than the mean and standard deviation. The problem with the density function 

f(t) is that it conceals what is happening in the right tail of the distribution (Luce, 1986). As 

discussed by Holden, Van Orden, and Turvey (2009) „Probability density functions can 

appear nearly identical, both statistically and to the naked eye, and yet are clearly different 

on the basis of their hazard functions (but not vice versa). Hazard functions are thus more 

diagnostic than density functions” (p. 331).  

Second, because RT distributions may differ from one another in multiple ways, 

Townsend (1990b) developed a dominance hierarchy of statistical differences between two 

arbitrary distributions A and B. For example, if FA(t) > FB(t) for all t, then both cumulative 

distribution functions are said to show a complete ordering. Townsend (1990b) showed that 

a complete ordering on the hazard functions – λ A(t) > λ B(t) for all t – implies a complete 

ordering on both the cumulative distribution and survivor functions – F A(t) > F B(t) and S A(t) 

< S B(t) – which in turn implies an ordering on the mean latencies – mean A < mean B. In 
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contrast, an ordering on two means does not imply a complete ordering on the 

corresponding F(t) and S(t) functions, and a complete ordering on these latter functions does 

not imply a complete ordering on the corresponding hazard functions. This means that 

stronger conclusions can be drawn from data when comparing the RT hazard functions using 

event history analysis. For example, when mean A < mean B, the hazard functions might 

show a complete ordering (i.e., for all t) or only a partial ordering (e.g., only for t < 600 ms). 

 Third, EHA does not discard right-censored observations (trials for which we do not 

observe a response during the data collection period so that we only know that the RT must 

be larger than some value)1. Discarding such trials and/or trials with very long RTs will 

introduce a sampling bias that results in underestimation of the mean. In fact, EHA includes 

the data from all trials when estimating the descriptive statistics. For inferential statistics, 

one might exclude some early bins with rarely occurring fast responses (see Methods). 

Fourth, hazard modeling allows incorporating time-varying explanatory covariates 

such as heart rate, EEG signal amplitude, gaze location, etc. (Allison, 2010) which is useful for 

cognitive psychophysiology (Meyer, Osman, Irwin, & Yantis, 1988)2. 

Fifth, hazard is more suited as a measure of the concept of processing capacity, i.e., 

the amount of work the observer is capable of performing within some unit of time (Wenger 

& Gibson, 2004). In the context of research on attention, the hazard function can capture 

the notion of the instantaneous capacity of the observer for completing the task in the next 

instant, given that the observer has not yet completed the task. 

 

Discrete-time hazard probability function 

Unfortunately, estimating the shape of the continuous-time hazard rate function for one 

observer in one experimental condition is not straightforward because one needs at least 
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1000 trials for example (Bloxom, 1984; Luce, 1986; Van Zandt, 2000). Furthermore, statistical 

modeling of continuous time-to-event data requires specialized software to either fit 

parametric hazard models that are rather restrictive in the shapes they allow (e.g., a Weibull 

hazard model), or semi-parametric hazard models that completely ignore the shape of the 

hazard function (e.g., Cox regression). Therefore, we promote the general application of 

discrete-time hazard analysis to RT data, which is straightforward, easy and intuitive, and 

allows for flexible statistical modeling by logistic regression which is highly familiar to 

psychologists (Allison, 1982, 2010; Singer & Willett, 1991, 2003; Willett & Singer, 1993, 

1995).  

To calculate the descriptive statistics – functions of discrete time – one has to set up 

a life table. A life table summarizes the history of event occurrences for a combination of 

subject and experimental condition. For illustrative purposes, we present in Table 1 a life 

table for the 530 trials of one participant in the feature search task for the trial type TP3 

(target present and set size 3).  

First, the first second after search display onset is divided into 10 contiguous bins of 

100 ms (column 1). Then, after counting the number of observed responses in each bin 

(column 4) the risk set must be determined for each bin (column 5). The risk set is equal to 

the number of trials that have not yet experienced a response at the start of the bin in 

question. The sample-based hazard estimate in bin t, or h(t) (column 6), is then simply 

obtained by dividing the number of observed responses in bin t (column 4) by the risk set of 

bin t (column 5).  In discrete time, hazard is defined as the conditional probability of a 

response occurring in time bin t given it has not yet occurred before, h(t) = P(T=t|T≥t). The 

discrete-time hazard function thus tells us the probability that a response we are still waiting 

for will actually occur in bin t.  
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Next to the hazard function, EHA also focuses on the survivor function S(t) = P(T>t) = 

1 - F(t), because S(t) provides a context for h(t+1) as it shows the proportion of trials not 

having experienced the response by the end of bin t. For completeness, Table 1 also 

tabulates the corresponding probability mass function P(t) = P(T=t).3 

For choice RT data such as the benchmark search data, we want to distinguish 

different types of events: correct versus incorrect responses. One approach is to assume that 

each event type has its own hazard function that describes the occurrence and timing of 

events of that type. One would thus model the h(t) of correct response occurrence 

separately from the h(t) of error response occurrence. Another approach is to first study the 

timing of events without distinguishing among event types, and then to study which type of 

event occurs while restricting the analysis to those cases that experienced an event. A major 

attraction of this latter approach is that there is no need to assume that the different kinds 

of events are uninformative for one another (Allison, 2010).4  

 We therefore take the latter, so-called conditional-processes approach (Allison, 2010, 

pp. 227-229) by extending the h(t) analysis of response occurrence with an analysis of the 

conditional accuracy function ca(t) = P(correct|RT = t). The ca(t) is estimated by dividing the 

number of correct responses in bin t by the total number of observed responses in bin t 

(Table 1)5. Note that P(t) provides a context for ca(t) as P(t) shows on which percentage of 

trials the ca(t) estimate is based.  

Thus, by using h(t) functions of response occurrence in combination with ca(t) 

functions one can provide an unbiased, time-varying, and probabilistic description of the 

latency and accuracy of responses based on all trials of any RT data set. Statistical models for 

h(t) and ca(t) can each be implemented as generalized linear mixed regression models 



12 
 

predicting event occurrence (1/0) and response accuracy (1/0) in each bin of a selected time 

range, respectively (Panis & Schmidt, 2016).  

There are also possible disadvantages of discrete-time event history analysis. First, 

the person-trial-bin oriented data set (see section Methods) can become very large. Second, 

one needs to explore a few bin sizes. The optimal bin size will depend on the censoring time, 

the rarity of event occurrence, and the number of repeated measures or trials. Note that the 

time bins do not have to be of equal size. Third, remember that in hierarchical data like ours, 

there are two sources of noise: within and between participants. For a distributional analysis 

it is important to have enough repeated measures per participant and condition (preferably 

at least 100) to minimize the influence of within-subject noise. Between-subjects variation is 

a different matter: it can be due to noise, but also due to characteristic differences between 

individuals (e.g., in speed, capacity, or strategy). Again, high measurement precision in single 

participants is the only way to deal with this. The analysis of single participants should be 

regarded as a safeguard against interpreting spurious effects in the pooled data that are 

actually only generated by a small minority of participants, while at the same time refraining 

from overinterpreting the individual data patterns. Note that systematic effects will be 

visible for a majority of participants, while occurrences due to noise will not.  

 

Objectives 

The current study is motivated by three goals. First, using a freely available data set we want 

to illustrate the descriptive and inferential statistics used by discrete-time EHA, and what we 

can learn from this. As discussed by Whelan (2008) the use of a more advanced analysis 

method can maximize the return from the obtained data, which is important in view of the 

time and costs required to run an experiment. Second, using an exploratory approach, we 
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want to see if the shapes of the diagnostic h(t) and ca(t) functions for the three benchmark 

data sets will reveal certain, as yet unknown, features of the time-dispersed behavior of 

searchers. Third, to collect the benchmark data set Wolfe et al. (2010) used a small-N design 

in which a large number of observations are made on a relatively small number of 

experimental participants. Smith and Little (2018) argue that, “if psychology is to be a 

mature quantitative science, then its primary theoretical aim should be to investigate 

systematic functional relationships as they are manifested at the individual participant level” 

(p. 2083). Therefore, we will pay attention to individual differences in the time-dispersed 

search behavior. As discussed below, our results reveal new features of visual search 

behavior, many – if not all – of which are not considered by current cognitive models of 

visual search, but can be helpful to inform future models. 

 

Methods 

Data sets 

We reanalyzed the benchmark data sets provided by Wolfe et al. (2010; http://search.bwh. 

harvard .edu/new/data_set_files.html). This group collected data in three tasks. In the 

feature search task (9 participants), participants searched for a red vertical rectangle among 

green vertical rectangles. In the conjunction search tasks (10 participants), they searched for 

a red vertical rectangle among green vertical and red horizontal rectangles. Finally, in the 

spatial configuration task (9 participants), they searched for a numerical digit 2 among 5s 

(see Figure 1). Four different set sizes (SS; distractors plus target, either 3, 6, 12, or 18) were 

randomly intermixed. Participants were young adults with corrected or normal acuity; their 

color vision was ascertained by Ishihara tests. They pressed one key if the target was present 

(which was the case in 50 % of trials) and another if the target was absent. They were 
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instructed to respond as quickly and correctly as possible and received feedback after each 

trial. Accuracy and RT in ms were recorded. Each participant provided approximately 10 

blocks of 400 trials, leading to about 500 trials per participant and search condition. For 

further information, see the website. 

For the descriptive statistics we downloaded the raw data from the website via the 

section named “Fitting Functions”. The raw feature, conjunction, and spatial configuration 

search data sets contained 35,941, 39,958, and 35,862 rows, respectively. For hazard model 

fitting we actually used the downloadable text files (via the section below the one named 

“Fitting Functions”) because these also contain information about trial and block numbers.  

 

Mean correct RT and percent error 

We used the same outlier criteria as Wolfe et al. (2010) in order to calculate the sample 

mean RT, mean correct RT, and error percentage for each combination of subject, target 

presence, and set size. Specifically, we excluded all trials (N=80) with RT < 200 ms or > 4,000 

ms for the feature and conjunction search tasks, and with RT < 200 ms or > 8,000 ms in the 

spatial configuration search task. 

 

Event history analysis: descriptive statistics 

Starting from the raw data sets without removing outliers, life tables were constructed using 

software package R (R Core Team, 2014) for each combination of subject, target presence, 

and set size (see Table 1). We used a bin size of 40 ms for the feature and conjunction search 

tasks, and a bin size of 80 ms for the spatial configuration search task, to provide high 

temporal resolution when visually studying the shape of the empirical distributions (and to 

still have an acceptable level of stability in the estimates). We used a censoring time of 1,600, 
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2,400, and 3,600 ms for the feature, conjunction, and spatial configuration search data sets, 

respectively, since most events had occurred by this time in all search conditions. Standard 

errors for h(t), P(t), and ca(t) can be estimated using the formula for a proportion p – the 

square root of {p(1-p) / N} – where N equals the risk set for bin t, the total number of trials, 

and the number of observed responses in bin t, respectively. The standard errors for S(t) 

were estimated using the recurrent formula on page 350 of Singer and Willett (2003). 

 

Event history analysis: inferential statistics 

To test whether and when the main and interaction effects including target presence and set 

size are significant across participants, we fitted discrete-time hazard models to aggregated 

data by implementing generalized linear mixed-effects regression models in R (R Core Team, 

2014; function glmmPQL of package MASS) using the complementary log-log (cloglog) link 

function (Allison, 2010).6 An example discrete-time hazard model with three predictors can 

be written as follows: cloglog[h(t)] =ln(-ln[1-h(t)]) = [α0ONE+ α1(TIME – 1) + α2(TIME – 1)2 + α3(TIME 

– 1)3] + [β1X1 + β2X2 + β3X2(TIME – 1)]. The main predictor variable TIME is the time bin index t 

(see Table 1) which is centered on value 1 in this example. The first set of terms within 

brackets, the alpha parameters multiplied by their polynomial specifications of (centered) 

time, represents the shape of the baseline cloglog-hazard function (i.e., when all predictors 

Xi take on a value of zero). The second set of terms (the beta parameters) represents the 

vertical shift in the baseline cloglog-hazard for a 1 unit increase in the respective predictor. 

For example, the effect of a 1 unit increase in X1 is to vertically shift the whole baseline 

cloglog-hazard function with β1 cloglog-hazard units. However, if the predictor interacts 

linearly with time (see X2 in the example) then the effect of a 1 unit increase in X2 is to 

vertically shift the predicted cloglog-hazard in bin 1 with β2 cloglog-hazard units (when TIME-
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1 = 0), in bin 2 with β2+ β3 cloglog-hazard units (when TIME-1 = 1), etc. To interpret the 

effects of the predictors, the parameter estimates are anti-logged, resulting in a hazard ratio.  

We proceeded as follows. First, for each search task we aggregated the raw data 

across all subjects, except for the conjunction search task where one observer was ignored 

(see section Results). 

Second, for each task we selected a time range where all subjects provide enough 

data in each condition, and created between 10 and 20 bins for modeling purposes. For the 

feature search data we therefore used a censoring time of 800 ms and a bin size of 40 ms. 

After ignoring the first 240 ms (i.e., the first six 40-ms bins) in which no (or only few) 

responses occurred, we end up with 14 bins to model. For the conjunction search data we 

used a censoring time of 1000 ms and a bin size of 50 ms. After ignoring the first 350 ms (i.e., 

the first seven 50-ms bins) in which no (or only few) responses occurred, we end up with 13 

bins to model. For the spatial configuration data we used a censoring time of 2000 ms and a 

bin size of 80 ms. After ignoring the first 400 ms (i.e., the first five 80-ms bins) in which no (or 

only few) responses occurred, we end up with 20 bins to model. 

Third, trial type TP3 was chosen as the baseline condition in each search task. The 

main predictor variable TIME was centered on value 10 or bin (360,400], 10 or bin (450,500], 

and 8 or bin (560,640] for the feature, conjunction, and spatial configuration search task, 

respectively. For each task, the intercept and the linear effect of TIME were treated as 

random effects to deal with the correlated data resulting from the repeated measures on 

the same subjects. Next to dummy-coding the levels of our experimental factors (target 

presence and set size) we also included TRIAL and BLOCK number as continuous predictors 

to model across-trial and across-block learning effects in the speed of responses. TRIAL was 

centered on value 350 (and rescaled by dividing by 10) and BLOCK on value 8 for each task. 
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Thus, for the feature search task for example, with all effects set to zero, the h(t) model´s 

intercept refers to the estimated cloglog[h(t)] for bin (360,400] in trial 350 of block 8 when 

the target is present and set size equals three (see Table 2, column 5, effect nr. 1). 

Fourth, to estimate the parameters of the h(t) model, we must create a dataset 

where each row corresponds to a time bin of a trial of a participant (a person-trial-bin 

oriented data set). Specifically, each time bin that was at risk for event occurrence in a trial 

was scored on the dependent variable EVENT (0 = no response occurred; 1 = response 

occurred), the centered covariates TIME, TRIAL, and BLOCK, the variable SUBJECT, and the 

dummy-coded dichotomous experimental predictor variables (TA, SS6, SS12, SS18). Thus, for 

the feature search task for example, all trials with observed RTs > 800 ms were treated as 

right-censored observations; they provide the information that the response did not occur 

during the first 800 ms or 20 bins after search display onset (i.e., each of these trials 

contributes 20 rows, and each row has a value 0 for EVENT).  

Just before running glmmPQL, we deleted the rows corresponding to the first 6, 7, 

and 5 bins for the feature, conjunction and spatial configuration search task, respectively, as 

mentioned above under step 2. The resulting person-trial-bin oriented data set contained 

168,996, 219,762, and 355,261 rows for the feature, conjunction and spatial configuration 

search task, respectively. 

Fifth, for each task, we started with a full multi-level EHA model (46 parameters; with 

bins at level 1 nested within observers at level 2) encompassing the following effects at level 

1: (a) a 7th order polynomial for the shape of the baseline cloglog-hazard function (8 

parameters), (b) the effects of Target Absence (TA), SS6, SS12 and SS18 were allowed to 

interact with time in a quartic fashion (20 parameters), (c) the interaction effects between 

TA and each of the three set sizes could vary over time in a cubic fashion (12 parameters), 
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and (d) the linear effects of Trial and Block were allowed to interact with time in a quadratic 

fashion (6 parameters). For each task we used an automatic backward selection procedure 

to select a final model. Specifically, during each iteration, the effect with the largest p-value 

that was not part of any higher-order effect was deleted, and the model refitted. This 

continued until each of the remaining effects that was not part of any higher-order effect 

had a p < .05 (see highlighted p-values in Tables 2, 3, and 4).  

Finally, after model selection, we refitted the final model a number of times with 

TIME centered each time on another bin, to see explicitly what values the parameter 

estimates take on according to the final model in these other bins, and whether they 

represent a significant effect or not (see Tables 2, 3, and 4). 

 

Results 

Feature search: Descriptive statistics 

In Figure 3 we present the data from one participant in the feature search task. In each 

experimental condition the hazard function (top row) rises to a peak and then declines 

before hitting the value 1. We denote time bins by the endpoint of the interval they span, so 

that “bin 280” refers to bin (240,280]. For example, in condition SS3 the estimated h(280) 

equals 0.42 for TP and 0.014 for TA for this participant. In other words, if the waiting time 

has increased until 240 ms after display onset without response occurrence, then the 

(conditional) probability that the (first) response will occur somewhere in bin (240,280] 

equals 0.42 for TP but only 0.014 for TA; Similarly, if the waiting time has increased until 320 

ms after display onset then the estimated h(360) equals .76 for TP and .74 for TA. The effect 

of Target Presence on h(t) is clearly visible for each set size in the left tail of the distribution 

(i.e., when hazard is rising), and this effect is decreasing somewhat with increases in set size. 



19 
 

The ca(t) functions show that the fastest responses in the target-absent conditions tend to 

be errors (false alarms) while the slowest responses are error-free. In contrast, in the target-

present conditions most emitted responses tend to be correct, except for a small dip in the 

ca(t) functions that reveals a temporarily increased miss rate around the time when the ca(t) 

functions in the target-absent conditions reach 1. This particular participant, however, was 

the only one in the sample who emitted a response before 800 ms in each trial of each 

condition. 

 In Figure 4 we compare the h(t) and ca(t) estimates between this and three other 

participants. Comparing individuals reveals that there are two subgroups of observers that 

show qualitatively different ca(t) behavior. Three observers (2, 3, and 7; see Figure 4, top 8 

panels) show early false alarms when responses are emitted around 240 ms after search 

display onset. We define early false alarms as “ca(t) ≤ .50 for the earliest emitted responses, 

for at least two set sizes when the target is absent”. At the same time, they show “small 

dips” in early ca(t) for target present, i.e., small temporary increases in the miss rate (early 

misses) at the time when ca(t) for target-absent trials reaches 1. The remaining observers 

show no systematic errors (see Figure 4, bottom 8 panels). Note that the latter observers 

emit their fastest responses a bit later compared to those individuals who do show early 

errors. Interestingly, 8 out of 9 subjects showed a small but systematic effect of set size (i.e., 

SS3 > SS6 > SS12 > SS18) on h(t) for target-present trials in one or more bins before or 

around the time when hazard reaches its peak (see Figure 4, left h(t) panels). Finally, for 

those subjects who were not as fast as subject number 3 the hazard functions peaked and 

then declined toward, and stayed hoovering for some time around a non-zero value. Note 

that as time passes on the standard errors for the h(t) estimates automatically increase 

because the risk set becomes smaller and smaller. 
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Feature search: Inferential statistics  

Table 2 shows the selected hazard model for the feature task (columns 5 to 8). Figure 5 

presents the predicted (i.e., model-based) hazard functions (first column), cloglog-hazard 

functions (second column), and the corresponding survivor (third column) and probability 

mass functions (fourth column), for each set size in target-present (top row) and -absent 

trials (bottom row) for trial 350 in block 8.  

Because TRIAL and BLOCK are centered, the first six parameter estimates (PE) in 

Table 2 model the shape of the cloglog[h(t)] function for TP3 (the chosen baseline condition) 

in trial 350 of block 8 using a 5th order polynomial function of TIME (Figure 5, first row, 

second column, green line). Because TIME is centered on bin 400, the intercept of our 

regression model refers to the predicted cloglog[h(400)] value for TP3 in trial 350 of block 8. 

Converting back from cloglogs to hazards, h(400) = .42 (= 1 - exp[-exp(-0.61)]) as shown in 

Figure 5 (top left). Parameters 2-6 show a significant linear, quadratic, cubic, quartic, and 

quintic effect of TIME on this intercept estimate, such that the predicted response hazard 

first quickly increases with increasing waiting time until around 440 ms after display onset, 

and then decreases toward a non-zero value: h(280) = 0.04, h(400) = 0.42, h(520) = 0.39, and 

h(640) = 0.16. This shows that the hazard of response occurrence changes in a particular 

fashion on the across-bin/within-trial time scale.  

 With respect to the manipulations of interest, we see that in bin 400 and relative to 

the reference condition TP3, there is a main effect of removing the target (parameter 7, 

column 5, PE = -0.2483, p < .0001). A measure of effect size for a discrete-time cloglog-

hazard model can be obtained by exponentiating the parameter estimates which gives us 

hazard ratios (HR; Allison, 2010, p. 242). Thus, compared to the cloglog[h(400)] estimate in 

the reference condition, removing the target decreases the estimated cloglog[h(t)] by 0.2483 
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units, which corresponds to a decrease in response hazard by a factor of 0.78 (HR(400) = 

exp[-0.2483] = 0.78). There are also main effects in bin 400 of changing the set size to 6 

(parameter 12, PE = -0.11, HR = 0.90, p < .0001), to 12 (parameter 14, PE = -0.14, HR = 0.87, p 

< .0001), and to 18 (parameter 18, PE = -0.2, HR = 0.83, p < .0001). The fact that all these 

effects are negative indicates that response occurrence slows down.  

All these main effects change significantly with TIME (parameters 7 to 20). For 

example, the effect of Target Absent changes in quartic fashion (parameters 7 to 11) so that 

it equals -1.70 in bin 280 (HR = 0.18, p < .0001), -0.25 in bin 400 (HR = 0.78, p < .0001), -0.21 

in bin 520 (HR = 0.81, p < .0001), and only 0.09 in bin 640 (HR = 1.09, p = .173). The effect of 

SS6 changes in a linear fashion that is marginally significant (parameter 13, p = .0506). The 

effect of SS12 changes in a linear and cubic fashion (parameters 15 to 17). The effect of SS18 

changes in a linear fashion (parameters 19 to 20). Increasing the set size leads to a 

systematic decrease in the estimated h(t) in bins < 500 ms when the target is present (see 

Figure 5, top left panel). Bins after 500 ms show no significant effects of set size anymore in 

the target-present conditions. Thus, the h(t) functions show a partial ordering with respect 

to the systematic effects of target presence (i.e., only for t < 600 ms) and set size when the 

target is present (i.e., only for t <  500 ms). In other words, once the waiting time has 

increased until 600 ms after display onset, then set-size and target presence have no 

influence anymore on the hazard of response occurrence. 

As expected, there are also interaction effects in bin 400 between Target Absent and 

each of the 3 set sizes, which change over TIME (parameters 21-28). These positive 

interaction effects counteract the negative main effects of set size when the target is 

present. Note that for each set size (SS6, SS12, and SS18) the interaction effect with Target 

Absent is larger in absolute value than the main effect of each set size (i.e., parameter 21 
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versus 12, 23 versus 14, and 26 versus 18), both in bin 280 and in bin 400. Thus, increasing 

the set size up to 12 leads to a systematic increase in the estimated h(t) in bins < 500 ms 

when the target is absent; This can be seen most clearly for bin 280 of the cloglog-hazard 

functions in Figure 5 (second row and column). Bins after 500 ms show no significant 

interaction effects involving set size anymore.  

One advantage of a discrete-time hazard model is that you can incorporate multiple 

time scales. Parameters 29 to 32 show that hazard also varies on the across-trial/within-

block time scale, and on the across-block/within-experiment time scale. First, in bin 400, 

each additional series of 10 trials will increase the estimated cloglog[h(t)] value with -0.0023 

units (parameter 29, column 5, p < .0001), and this effect increases linearly with TIME 

(parameter 30, PE = .0009, p < .0001). Thus, while the effect of Trial is negative for the left 

tail of the distribution (see Table 3, row 29) it is positive for the right tail (e.g., in bin 640). 

Second, each additional block will increase the estimated cloglog[h(t)] value with 0.0275 

units in bin 400 (parameter 31, column 5, p < .0001), and this effect decreases linearly with 

TIME (parameter 32, PE = -.0057, p < .0001). Figure 6A shows how learning effects operating 

on the block-wide and experiment-wide time scales affect the shape of the hazard function 

in the baseline condition TP3. 

 

Conjunction search: Descriptive statistics 

In Figure 7 we present the data from one participant in the conjunction search task. In each 

condition the hazard function rises to a peak, then declines, and finally keeps hoovering 

around a non-zero value temporarily. The effect of Target Presence on h(t) is clearly present 

in the left-tail of the distributions (i.e., when hazard is rising), and this effect is now clearly 

increasing with increases in set size. The ca(t) functions show that responses emitted before 
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400 ms in the target-absent condition tend to be false alarms. At the same time, they show 

“small dips” in early ca(t) for target-present trials, i.e., small temporary increases in the miss 

rate (early misses) at the time when ca(t) for target-absent trials reaches 1. 

 Inspection of the descriptive functions h(t) and ca(t) showed that individuals can 

differ in at least three aspects (see Figure 8). First, three observers show a lot of early false 

alarms (subjects 4, 5, 6), while the remaining observers show few-to-no early false alarms. 

Those subjects who show early false alarms also show an early, temporary increase in the 

miss rate (early misses; i.e., a small dip in ca(t) for TP) at the time when ca(t) for target-

absent trials reaches 1. Second, three observers (subjects 3, 6, 10) show a very large effect of 

target presence on h(t) and S(t) for set sizes 12 and 18, while the remaining observers show 

a smaller effect (compare subjects 10, 2, 4, and 5 in Figure 8). Third, those subjects that 

show few-to-no early errors tend to emit the earliest responses a bit later compared to 

those who do show early false alarms. Note that subject 4 was very fast overall. Regardless 

of these individual differences, for each participant target-present responses were faster on 

average than target-absent responses and this difference increased with set size. Also, for 

many subjects misses started to emerge in the later bins for the larger set sizes, while there 

were few-to-no late false alarms. Finally, the effect of set size on h(t) was visible only in the 

left tail of the distribution, and not in the flat right tail. Note that the location of the sample 

means is not systematically related to any feature of the shape of the RT distributions. 

 

Conjunction search: Inferential statistics 

Table 3 (columns 3 to 6) shows the selected hazard model for the conjunction task based on 

the aggregated data of 9 subjects (subject number 4 was ignored because of a lot of missing 

data in the later bins which led to model fitting failures). Figure 9 presents the predicted 
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(i.e., model-based) hazard functions (top row), cloglog-hazard functions (second row), and 

the corresponding survivor (third row) and probability mass functions (bottom row), for each 

set size in target-present and -absent trials for trial 350 in block 8. The first seven parameter 

estimates in Table 3 model the shape of the cloglog[h(t)] function for TP3 (the reference 

condition) in trial 350 of block 8 (Figure 9, top left, green line) using a 6th order polynomial 

function of TIME. Parameters 2-7 show a significant linear, quadratic, cubic, quartic, quantic, 

and sextic effect of TIME on this intercept estimate, such that the predicted response hazard 

first increases with increasing waiting time, and then decreases towards a non-zero 

asymptote (Figure 9).  

With respect to the manipulations of interest, we see that in bin 500 and relative to 

the reference condition TP3, there is a main effect of removing the target (parameter 8, PE = 

-0.44, HR = 0.64, p < .0001), and main effects of changing the set size to 6 (parameter 13, PE 

= -0.25, HR = 0.78, p < .0001), to 12 (parameter 17, PE = -0.74, HR = 0.48, p < .0001), and to 

18 (parameter 21, PE = -1.13, HR = 0.32, p < .0001). All these main effects change 

significantly with TIME (parameters 8 to 23). For example, the effect of Target Absent 

changes in quartic fashion (parameters 9 to 12) so that it equals -0.44 in bin 500 (HR = 0.64, 

p < .0001), 0.11 in bin 650 (HR = 1.12, p < .001), 0.18 in bin 800 (HR = 1.20, p < .005), and 

only 0.01 in bin 950 (HR = 1.01, p = .92). The effect of SS6 changes in a cubic fashion 

(parameter 14 to 16), the effect of SS12 changes in a cubic fashion (parameters 18 to 20), 

and the effect of SS18 changes in a quadratic fashion (parameters 22 to 23).  

There are also interaction effects between Target Absent and each of the three set 

sizes, which change over TIME (parameters 24-33). In contrast to the feature search data, 

these interaction effects are now negative, and their absolute size in each bin increases with 

increasing set size. Furthermore, both these interaction effects and the three main effects of 
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set size are (a) negative in bin 500, (b) decrease in absolute size over time, (c) are larger for 

larger set sizes, and (d) remain significant for a longer time after display onset for larger set 

sizes. In other words, the h(t) functions show a partial ordering with respect to the 

systematic effects of set size and target presence (i.e., in general only for t < 1000 ms). 

Finally, hazard also varies on the across-trial/within-block time scale, and on the 

across-block/within-experiment time scale. First, each additional series of 10 trials will 

increase the estimated cloglog[h(t)] value with 0.0021 units (parameter 34, column 3, p < 

.0001) in each bin. Second, each additional block will increase the estimated cloglog[h(t)] 

value with 0.048 units in bin 500 (parameter 35, column 3, p < .0001), and this effect 

decreases linearly with TIME (parameter 36, PE = -.0021, p < .0001). Figure 6B shows how 

the effect of Trial affects the shape of the hazard function in the baseline condition within 

Blocks 1 and 8 when changing from trial 10 to trial 350. 

 

Spatial configuration search: Descriptive statistics 

In Figure 10 we present the data from one participant in the spatial configuration search 

task. Instead of only peaked hazard functions, we now see also monotonically increasing 

hazard functions for the larger set sizes. The effect of Target Presence on h(t) is clearly 

present in the left tail of the distributions and the difference between the target-present and 

-absent hazard functions is lasting longer for larger set sizes. The ca(t) functions show that 

many responses emitted before 1000 ms in the target-absent condition tend to be false 

alarms. At the same time, they show “small dips” in early ca(t) for target-present trials. 

Furthermore, for the larger set sizes 12 and 18 the miss rate starts to increase over time 

around 1500 ms after display onset.  
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 Comparing individuals (Figure 11) shows that four individuals show many early false 

alarms coupled with early misses (subjects 1, 7, 8, and 9). The remaining subjects show few-

to-no false alarms and their fastest responses appear somewhat later compared to the other 

subjects. Also, subjects 3 and 7 showed very slow behavior when the target is absent for set 

sizes 12 and 18 (i.e., hazard functions that start to rise late and at a very low rate). 

Regardless of these individual differences, for each subject target-present responses were 

on average faster than target-absent responses and this difference increased with set size. 

Finally, all subjects show late misses for the larger set sizes, appearing around 1500 ms after 

display onset.  

 

Spatial configuration search: Inferential statistics 

Table 4 (columns 3 to 6) shows the selected hazard model for the spatial configuration task. 

Figure 12 presents the predicted (i.e., model-based) hazard functions (top row), cloglog-

hazard functions (second row), and the corresponding survivor (third row) and probability 

mass functions (bottom row), for each set size in target-present and -absent trials for trial 

350 in block 8. In the baseline condition (TP3) the predicted response hazard first increases 

with increasing waiting time, and then decreases to a non-zero value (Figure 12).  

With respect to the manipulations of interest, we see that in bin 640 and relative to 

the reference condition TP3, there is a main effect of removing the target (parameter 8, PE = 

-0.55, HR = 0.58), and main effects of changing the set size to 6 (parameter 13, PE = -0.76, HR 

= 0.47), to 12 (parameter 18, PE = -1.52, HR = 0.22), and to 18 (parameter 23, PE = -2.05, HR 

= 0.13) and interaction effects between Target Absent and set size 6 (parameter 28, PE = -

0.83, HR = 0.43), set size 12 (parameter 31, PE = -2.06, HR = 0.13), and set size 18 (parameter 

34, PE = -1.99, HR = 0.14), with all p < .0001.  
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Furthermore, all these effects interact with TIME in a significantly linear, quadratic, 

cubic and/or quartic fashion (see Table 4). As a result, the effect of target presence and the 

systematic effect of set size on h(t) in the target-present condition (i.e., SS3 > SS6 > SS12 > 

SS18) are gone around 1500 ms after search display onset (parameter rows 8, 13, 18, and 23 

in Table 4). In contrast to the conjunction search task, the interaction effects between Target 

Absent and each set size (parameter rows 28, 31, and 34) do not quickly decrease in 

absolute size over time (before 1600 ms). In sum, the h(t) functions show a partial ordering 

with respect to the systematic effects of set size and target presence. 

Finally, as shown in Figure 6C, each additional series of 10 trials increases the 

estimated cloglog[h(t)] value in bin 640 with only 0.00001 units (parameter 38, column 3, p = 

.98) but this effect increases linearly with TIME (parameter 39, PE = .00028, p < .01), so that 

each additional series of 10 trials increases the estimated cloglog[h(t)] in bin 1600 with 

0.00342 units (parameter 38, column 11, p < .001).  Second, each additional block will 

increase the estimated cloglog[h(t)] value with 0.054 units in bin 640 (parameter 40, column 

3, p < .0001), and this effect decreases linearly with TIME (parameter 41, PE = -.00145, p < 

.0001).   

 

Discussion 

To study the temporal dynamics of visual search behavior we applied descriptive and 

inferential discrete-time event history analyses to published benchmark RT data from three 

search tasks. To study whether correct or error responses occur we also plotted the ca(t) or 

micro-level speed-accuracy tradeoff functions, next to the discrete-time h(t) or hazard 

functions of response occurrence.  
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Based on the results we draw four conclusions. First, event history analysis is a useful 

statistical technique to analyze RT data as it can detect differences that remain hidden when 

comparing mean RTs, such as the systematic but temporary effect of set size on h(t) in the 

feature search task. It is now clear that many – if not all – experimental manipulations lead 

to effects that change over time, whether in the context of masked response priming (Panis 

& Schmidt, 2016), simultaneous masking (Panis & Hermens, 2014), or object recognition 

(Panis, Torfs, Gillebert, Wagemans, & Humphreys, 2017; Panis & Wagemans, 2009; Torfs, 

Panis, & Wagemans, 2010). While many assume that RTs reflect the cumulative duration of 

all time-consuming cognitive operations involved in a task (e.g., Liesefeld, 2018; Song & 

Nakayama, 2009) our results show that fast, medium, and slow RTs can actually index 

different sets of cognitive operations. Due to the advantages of this method (illustrated in 

the current work) we recommend that it is used more often in future empirical and 

simulated RT studies7. Second, there are clear individual differences in the presence of a 

systematic pattern of early false alarms and early misses. Third, the hazard modeling results 

suggest differences between the underlying processes in the three search tasks, and provide 

strong constraints for future cognitive modeling efforts. Fourth, there is only a partial 

ordering of the hazard functions with respect to the effects of set size and target presence, 

and the hazard functions are relatively flat for the right tail of the RT distributions in all three 

search tasks.  

 

No pop-out in h(t) for the feature search task 

Why is there a systematic but temporary effect of set size (i.e., SS3 > SS6 > SS12 > SS18) on 

early h(t) for feature search when the target is present (Figure 5) although there is no effect 

of set size on mean correct RT (Figure 1)? At least three factors related to object recognition 
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that were not controlled by Wolfe et al. (2010) might be at play. First, the eccentricity of the 

target varies from trial to trial, and it is known that peripheral targets take a longer time to 

be recognized than foveal ones. Second, differences in set size are confounded with 

differences in density. This means that the receptive field of a single high-level visual neuron 

might only contain 1 or 2 objects for set size 3, but much more objects for set size 18. As 

color sensitivity is lower in the periphery, it is likely that visual crowding of the eccentric 

target occurred with large set sizes in many target-present trials. Third, because the search 

display was presented until response, more eye-movements could have been made with 

larger set sizes. If this is the case then the distance between the target location and the eye 

gaze location will have varied across the within-trial time (i.e., gaze-to-target distance is a 

time-varying covariate).  

A small trend for the reversed effect of set size (i.e., SS3 < SS6 < SS12 = SS18) on early 

h(t) for feature search was found when the target is absent. This finding is consistent with 

the proposal that distractor-distractor feature similarity, next to target-distractor feature 

similarity, plays a role in visual search (Duncan & Humphreys, 1989). Because homogeneous 

distractors tend to group perceptually based on their high feature similarity they can be 

rejected together and this can explain why target-absent mean RTs sometimes decrease 

with increasing set size (Cheal & Lyon, 1992; Duncan & Humphreys, 1989; Humphreys & 

Müller, 1993). 

 

Attentional capture and cognitive control processes in visual search 

We noted that a subset of the observers in each task – those who tended to respond very 

early on some trials – showed early false alarms coupled with early misses. More specifically, 

we can distinguish at least three states in the ca(t) behavior of these fast-onset responders, 
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as can be seen clearly in the lower panels of Figures 3, 7, and 10. First, the very fast 

responses show false alarms (ca(t) ≤ .50) when the target is absent coupled with perfect 

performance (ca(t) = 1) when the target is present. In other words, these very fast responses 

display a strong yes-bias, independent from target presence. Second, after this initial ca(t) 

state the slower – but still relatively fast – responses show perfect accuracy when the target 

is absent, and a small but temporary increase in the miss-rate when the target is present. 

Third, after this second ca(t) state responses with intermediate latencies show high accuracy 

for both target-present and target-absent trials. In the conjunction and spatial configuration 

search tasks the slower responses in a fourth ca(t) state display a developing “no”-response 

bias especially for the larger set sizes. In other words, when the search task is difficult, the 

slower responses show virtually no false alarms and a gradual increase over time of the miss 

rate.  

The results of Kiss, Grubert, and Eimer (2012) provide a likely explanation for the 

initial yes-bias in the first ca(t) state (see also Lee, Leonard, Luck, & Geng, 2018). They 

concluded that the attentional selection of targets that are defined by a combination of 

features – here: “red” and “vertical” in the feature and conjunction search tasks – is a two-

stage process: Attention is initially captured by all target-matching features, but is then 

rapidly withdrawn from distractor objects that share some but not all features with the 

current target. This means that at the end of the feedforward sweep of the initial neural 

responses along the ventral and dorsal pathways right after display onset, all elements in the 

search display will have captured attention to some extent, each signaling the presence of 

target feature(s) such as red and vertical in the feature and conjunction search tasks, or 

combinations of left and right curvature in the spatial configuration task. This explains the 

presence of the early “yes”-response bias in the first ca(t) state of the fast-onset responders.  
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 But why are these early false alarms followed by early temporary misses in the 

second ca(t) state? If we assume that online error-monitoring processes can detect the task-

interfering “yes”-response bias in the earliest response tendencies, then reactive cognitive 

control processes can kick in (Braver, 2012)8. Panis and Schmidt (2016) used EHA to show 

that RT and accuracy distributions are shaped by active and selective response inhibition of 

premature response tendencies. Thus, it seems that for those participants that display early 

overt false alarms, this premature “yes”-response tendency is actively (i.e., top-down) and 

selectively inhibited – resulting in a temporary disinhibition of the competing “no”-response 

which would lead to an overt no-response if a momentary threshold is crossed –, which 

explains the observed small, early and temporary increase in the miss rate in target-present 

trials, and the concurrent almost complete absence of false alarms in the target-absent trials 

during the second ca(t) state. Crucially, the early difference in h(t) between target-present 

and -absent conditions might then be caused partially by a response competition process 

because both responses will be activated in target-absent trials, and not completely by the 

fact that target absence is confirmed slower on average than target presence as assumed in 

serial exhaustive search models. 

In other words, at any point in time the hazard of response occurrence and 

conditional accuracy are not only determined by information from the search process but 

also by cognitive control processes (see Panis & Schmidt, 2016). As time passes on without 

response occurrence then the chance that target presence is correctly confirmed or rejected 

increases and this search information is additionally influencing the ongoing decision process 

(Cisek & Kalaska, 2010). Responses during the third ca(t) state are therefore dominated by 

information from the search process (i.e., selective response inhibition signals are 

overridden by response activation signals from the search outcome) and they thus show high 
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accuracy in both target-present and target-absent trials. Finally, as time passes on response-

free and target presence is not yet confirmed or rejected, then search is aborted and a no-

bias is developing for the slower responses during a fourth ca(t) state in the conjunction and 

spatial configuration tasks. 

 Those observers who show no early errors probably have better proactive control in 

terms of global (or aselective) response inhibition (Panis & Schmidt, 2016)8. In other words, 

these observers are proactively and globally inhibiting both the correct and incorrect 

response channels until reliable information about the search outcome is available. This 

hypothesis is consistent with the observation that the earliest responses of these observers 

are emitted somewhat later in time compared to the earliest responses of the observers 

who show early errors. 

 

Serial versus parallel selection 

While there is a general consensus that the current color feature task relies on parallel 

selection, and that the current spatial configuration task relies on serial selection, this is not 

the case for the color-orientation conjunction task. According to feature integration theory 

(Treisman & Gelade, 1980) attentional selection is serial because of the need to bind both 

surface features for recognition. However, there are many studies that suggest that certain 

feature conjunctions can actually be detected in parallel (Eckstein, 1998; McElree & 

Carrasco, 1999; Mordkoff, Yantis, & Egeth, 1990; Pashler, 1987; Sung, 2008). Although our 

hazard modeling results provide no answer to this issue, they do show task differences. First, 

the effect of trial number on hazard was similar for the conjunction and spatial configuration 

task, and different for the feature search task. Second, the interactions involving set size and 

time became more complex with task difficulty. These observations argue against the 
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proposal that differences between search tasks might be due to purely quantitative 

differences in target discriminability (Haslam, Porter, & Rothschild, 2001; Liesefeld et al., 

2016; Wolfe, 1998). 

Perhaps the question whether search is parallel or serial is ill-posed. It is possible that 

search actually involves parallel selection early in time as reflected in fast responses < ~500 

ms, and serial selection later in time as reflected in slower responses > ~500 ms. Indeed, Li, 

Kadohisa, Kusunoki, Duncan, Bundesen, and Ditlevsen (2018) found that neurons show 

parallel processing early after search display onset (related to the initial feedforward sweep 

of neural activity after display onset), whereas they show serial processing later on (related 

to attentional effects in recurrent feedback connections where all processing capacities are 

focused on the attended object; see also Gabroi and Lisman, 2003). It is also possible that 

sequences of discrete attentional shifts emerge automatically from a parallel neural dynamic 

architecture that operates in continuous time (Grieben et al., 2018).  

 

Effects of set size due to recurrent object recognition and cognitive control processes 

According to Reverse Hierarchy Theory (Hochstein & Ahissar, 2002) feature search "pop-out" 

is attributed to high-level areas where large receptive fields underlie spread attention 

detecting categorical differences. Search for conjunctions or fine discriminations depends on 

reentry to low-level specific receptive fields using focused attention. Similarly, Nakayama 

and Martini (2011) proposed that visual search relies on object recognition processes, with 

high level processing occurring very rapidly and often unconsciously. They consider object 

recognition as a problem of linear classification where high-level areas have to disentangle 

the representations of different object classes by extracting diagnostic feature dimensions. 

They propose that search tasks vary on a continuum depending on the computational trade-
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off between detail of description (number of feature dimensions) and scope (number of 

objects). Feature search can be performed in a single glance for many objects (a large 

attentional window) as only one feature dimension is relevant. Configuration search takes 

time because many feature dimensions have to be extracted for each display element 

separately and the small attentional window thus moves serially from element to element. 

For example, to solve the current spatial configuration task spatial attention has to be 

focused on each stimulus to extract object-centered spatial reference frame information to 

distinguish a digit 2 from a digit 5. For conjunction search a few feature dimensions are 

relevant and therefore an intermediate-sized attentional window is used. For example, to 

solve the current conjunction task a time-consuming attention-based coupling between two 

neuronal populations might be necessary (one sensitive to color-position and the other to 

orientation-position) while only one population is necessary for the feature task (color-

position; Grieben et al., 2018). Next to theories based on a strategically modifiable 

attentional window (Humphreys & Müller, 1993; Theeuwes, 1994; Treisman & Souther, 

1985) others have proposed that the size of the attentional window is determined by 

inherent limitations of the system (Engel, 1977; Geisler & Chou, 1995; Hulleman & Olivers, 

2017). 

 Palmer (1995) distinguished between four causes of a set size effect: (a) preselection 

factors such as target eccentricity and display density, (b) selection factors such as whether 

only one object or a group of objects can be selected, (c) postselection factors, and (d) 

decision processes (see also Liesefeld and Müller, 2019). We can add a fifth cause: increases 

in set size might result in stronger automatic response activation of the yes-response and a 

stronger selective response inhibition response due to reactive cognitive control. Similarly, if 

target recognition during search performance depends on reentry to lower-level populations 
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then set size will affect performance due to the link between the complexity of the feature 

that distinguishes the target from distractors and the receptive field size of the neurons 

coding for that feature (VanRullen, Reddy, & Koch, 2004). Future studies can use event 

history analysis to study when and how these different factors affect the shape of the hazard 

function of response occurrence. Temporally distinguishing the contributions from these 

factors to h(t) can be done by adding relevant predictors like target eccentricity, density, 

gaze-to-target distance, target-distractor similarity, feature complexity, working memory 

capacity, etc. to a hazard model. In other words, by adding the necessary predictors to a 

hazard model one can control for variation due to variables irrelevant to the research 

question. 

 

Search is aborted rather early 

The systematic effect of set size (i.e., SS3 > SS6 > SS12 > SS18) on response hazards lasted 

longer for more difficult search tasks. However, the systematic effects of both target 

presence and set size on hazard are rather limited in time. That is, we observed a partial 

ordering on the hazard functions (i.e., set size and target presence affected only the left tail 

of the distributions). For example, for the feature, conjunction, and spatial configuration 

search tasks the systematic effects of set size and target presence are gone around 500 ms, 1 

s, and 2s after search display onset, respectively.  

Thereafter, the system transitions to a state with flat hazard functions without 

systematic effects of set size and target presence (see Figures 4, 8, and 11). Horizontally 

shaped hazard functions point to exponentially distributed RTs (see Figure 2). Because this is 

observed for every search task including feature search, it suggests that the constant hazards 

in the right tail of the RT distributions are not related to the visual search process per se, but 
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to a decision-making process in general (Palmer et al., 2011). Hazard functions that show a 

peak and a flat right tail have been observed before (Holden et al., 2009). Based on the 

findings of Shenoy, Sahani, and Churchland (2013) we assume that these flat right tails 

reflect RT outliers during decision making. Shenoy et al. (2013) described neuronal motor 

activity from a dynamical systems perspective by studying single-trial neural trajectories in a 

state-space. They found that the neural state wanders before falling back on track in RT 

outlier trials so that the monkey hesitated for an abnormally long time before movement 

onset. Interestingly, Thompson, Hanes, Bichot, and Schall (1996) found that much of the RT 

variance in search tasks is due to postperceptual motor processing, perhaps to provide the 

adaptive advantage of allowing for subsequent visual processing and cognitive factors to 

alter the response choice (e.g., explicitly comparing the presumed target with a few 

surrounding distractors to confirm target presence) before an irrevocable commitment is 

made. 

 

Recommendations for experimental design of RT and other time-to-event data studies 

Two general recommendations can be made from the viewpoint of event history analysis 

when designing RT studies. First, always use the same fixed response deadline in each trial, 

for example 500 ms for single-button detection, and 800 ms for an easy two-button 

discrimination task. Because hazard analysis deals with right-censored observations, there is 

no need to wait for very slow responses that are considered meaningless and would be 

trimmed anyway. As a consequence, event history analysis also allows analyzing RT data in 

masking paradigms, attentional blink paradigm, etc., that is, in paradigms for which RT is 

typically not measured, let alone analyzed and reported (because typically no differences in 

mean RT are found for example). Also, using rather short and fixed response deadlines will 
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lead to individual distributions that overlap in time, which is important for h(t) and ca(t) 

modeling (Panis & Schmidt, 2016). Furthermore, if you wait for a response in each trial and 

let the overt response end the trial, then you allow subjects to have control over the trial 

(and experiment) duration, which should be avoided unless this is part of the research 

question. Second, try to design as many trials as possible per condition because then you can 

use small bins and still obtain stable h(t) and ca(t) estimates (i.e., use a small-N design; Smith 

& Little, 2018). Also, designing 100 trials per condition, for example, will not result in a large 

increase in experiment duration since the response deadline and thus trial duration can be 

kept short (see Panis & Schmidt, 2016).  

 

Conclusions 

RT and accuracy distributions are a rich source of information on the time course of 

cognitive processing. The changing effects of our experimental manipulations with increases 

in waiting time become strikingly clear when looking at response hazards and micro-level 

speed-accuracy tradeoff functions. An event history analysis of time-to-event data can 

strongly constrain the choice between cognitive models of the same phenomenon. We 

suggest that future inclusion of recurrent object recognition, learning, and cognitive control 

processes in computational models of visual search will improve the ability of such models to 

account for RT distributions and to explain the differences in the time-dispersed behavior of 

individual searchers.  
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Footnotes 

 

1 Left censoring occurs when all you know about an observation on a variable T is that it is 

less than some value. Interval censoring combines right and left censoring: An observation 

on a variable T is interval censored if all you know about T is that a<T<b, for some values of a 

and b (Allison, 2010). The most common type of right-censoring is “singly Type I censoring” 

which applies when the experiment uses a fixed response deadline for all trials. Type I means 

that the censoring time is fixed and under the control of the experimenter, and singly refers 

to the fact that all observations have the same censoring time (Allison, 2010). 

2 As explained in the section Methods, fitting discrete-time hazard models requires an 

expansion of the standard person-trial oriented data set into a person-trial-bin oriented data 

set where each bin (of each trial of each participant) that is at risk of event occurrence 

contributes a single row. Predictors like set size do not vary over time within a trial and 

therefore will have the same value for each of the rows (i.e., bins) that belong to the same 

trial. Time-varying predictors like heart rate and EEG time-series data will have different 

values for each of the rows (e.g., the average of all physiological measurements obtained 

during a RT bin, possibly lagged to take into account a transmission delay). For more 

information see Singer and Willett (2003), pp. 426-442, and Allison (2010), pp. 243-246. 

3 S(t) = [1-h(t)]*[1-h(t-1)]*...*[1-h(1)], and P(t) = h(t) * S(t-1). At time point zero, S(0) = 1, P(0) 

= 0, and h(0) is undefined. 

4 Random censoring occurs when observations are terminated for reasons that are not 

under the control of the experimenter. Standard methods require that random censoring be 

noninformative: for example, a trial that is censored at time rc should be representative of 

all those trials with the same values of the explanatory variables that survive to rc (Allison, 

2010). For example, an equipment error during a trial will introduce random censoring that 
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is uninformative. However, when estimating the hazard of correct response occurrence, 

error responses introduce random censoring (and vice versa) that is very likely informative, 

because response channels are known to compete with one another (Burle, Vidal, 

Tandonnet, & Hasbroucq, 2004; Eriksen, Coles, Morris, & O’Hara, 1985; Praamstra & Seiss, 

2005). In other words, a trial with an error response at time rc is not representative of all 

trials with the same values of the explanatory variables that survive to rc as the probability 

of correct response occurrence will be lower for the former than the latter around time rc 

(and the probability of correct response occurrence can be larger right after an error 

response due to error detection and error correction). Informative censoring can lead to 

severe biases (Allison, 2010).  

5 The ca(t) function is identical to the micro-level speed-accuracy trade-off (SAT) function 

based on partitioning RT in bins, as discussed by Wickelgren (1977) and Pachella (1974) in 

the psychological literature. 

6 The complementary log-log link is preferred over the logit link for a discrete-time hazard 

model when the events can in principle occur at any time during each time bin (Allison, 

2010), which is the case for RT data: cloglog[h(t)] = ln{-ln[1-h(t)]}. Inverse of the link: h(t) = 1 - 

exp{-exp{cloglog[h(t)]}}. 

7 R code to calculate the descriptive statistics and the inferential statistics used by event 

history analysis can be downloaded here (see Supplementary resources): 

https://www.researchgate.net/publication/304069212_What_Is_Shaping_RT_and_Accuracy

_Distributions_Active_and_Selective_Response_Inhibition_Causes_the_Negative_Compatibi

lity_Effect 

8 Braver (2012) discusses a dual-mechanisms framework for cognitive control. On the one 

hand, proactive control is about the anticipation and prevention of interference before it 



51 
 

occurs. This happens on a long (across-trial) time scale as goal-relevant information is 

actively maintained in a sustained manner in the prefrontal cortex in order to bias attention, 

perception and action. On the other hand, reactive control is about the detection and 

resolution of interference after stimulus onset. This occurs on a shorter (within-trial) time 

scale in a transient manner, for example when response and/or stimulus conflict is detected 

early in time in the anterior cingulate cortex. 
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Tables 

 

Table 1. A life table for the 530 trials of subject 1 for condition TP3 in the feature task. The 

censoring time and bin size equal 1000 ms and 100 ms, respectively.  

bin ID 
bin rank 

t #cens #events 
Risk 
set h(t) S(t) P(t) #corr ca(t) 

(0,100] 1 0 0 530 0 1 0 NA NA 

(100,200] 2 0 0 530 0 1 0 NA NA 

(200,300] 3 0 3 530 0.006 0.994 0.006 3 1 

(300,400] 4 0 147 527 0.279 0.717 0.277 137 0.93 

(400,500] 5 0 255 380 0.671 0.236 0.481 248 0.97 

(500,600] 6 0 84 125 0.672 0.077 0.158 84 1 

(600,700] 7 0 18 41 0.439 0.043 0.034 17 0.94 

(700,800] 8 0 9 23 0.391 0.026 0.017 8 0.89 

(800,900] 9 0 4 14 0.286 0.019 0.008 3 0.75 

(900,1000] 10 8 2 10 0.200 0.015 0.004 2 1 
 

Note. #cens = number of observations right-censored at the end of bin t. #events = number 

of observed responses in bin t. #corr = number of observed correct responses in bin t. NA = 

undefined. Note that h(t) = P(t) only until the first bin with observed responses. Because 8 

trials were right-censored at 1000 ms, h(t) does not reach 1, S(t) does not reach 0, and P(t) 

does not sum to 1 (Chechile, 2003). 
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Table 2. Parameter estimates and test statistics for the selected hazard model in the feature 

search task. The selected model was refitted three times with TIME centered on bin 280, bin 

520, and bin 640, respectively.  

  
(240,280] 

 
(360,400] 

   
(480,520] 

 
(600,640] 

 
Nr. effect PE p PE std. err. t p PE p PE p 

1 (Intercept)                   -3.3239 0.0000 -0.6147 0.2147 -2.862 0.0042 -0.7098 0.0000 -1.7293 0.0000 

2 TIME                      
  

 0.2405 0.0734  3.276 0.0011 
    

3 TIME2                      
  

-0.1333 0.0033 39.880 0.0000 
    

4 TIME3                      
  

 0.0204 0.0010 20.338 0.0000 
    

5 TIME4                      
  

-0.0024 0.0002 10.776 0.0000 
    

6 TIME5 
  

 0.0001 0.0000  8.902 0.0000 
    

7 TA                 -1.6956 0.0000 -0.2483 0.0240 10.323 0.0000 -0.2060 0.0000  0.0895 0.1734 

8 TIME:TA        
  

 0.0934 0.0138  6.764 0.0000 
    

9 TIME2:TA        
  

-0.0676 0.0037 18.164 0.0000 
    

10 TIME3:TA        
  

 0.0171 0.0012 13.854 0.0000 
    

11 TIME4:TA        
  

-0.0011 0.0001 11.254 0.0000 
    

12 SS6                       -0.1641 0.0000 -0.1095 0.0215 -5.083 0.0000 -0.0549 0.0996 -0.0002 0.9959 

13 TIME:SS6                
  

 0.0182 0.0093  1.954 0.0506 
    

14 SS12                      -0.2735 0.0000 -0.1373 0.0249 -5.514 0.0000  0.0266 0.4717  0.0583 0.3911 

15 TIME:SS12              
  

 0.0589 0.0118  4.971 0.0000 
    

16 TIME2:SS12                
  

 0.0015 0.0037  0.413 0.6794 
    

17 TIME3:SS12                
  

-0.0009 0.0004 -2.383 0.0171 
    

18 SS18                         -0.4380 0.0000 -0.1950 0.0230 -8.450 0.0000 -0.0153 0.6557  0.1012 0.0935 

19 TIME:SS18                
  

 0.0704 0.0118  5.965 0.0000 
    

20 TIME2:SS18                
  

-0.0035 0.0021 -1.657 0.0975 
    

21 TA:SS6             0.2926 0.0000  0.1703 0.0306  5.548 0.0000  0.0479 0.2763 -0.0744 0.3334 

22 TIME:TA:SS6  
  

-0.0407 0.0128 -3.167 0.0015 
    

23 TA:SS12           0.5966 0.0000  0.2069 0.0326  6.340 0.0000  0.0142 0.7658  0.0186 0.8260 

24 TIME:TA:SS12  
  

-0.0970 0.0176 -5.506 0.0000 
    

25 TIME2:TA:SS12 
  

 0.0109 0.0031  3.444 0.0006 
    

26 TA:SS18            0.7403 0.0000  0.2631 0.0324  8.112 0.0000 -0.0171 0.7168 -0.1005 0.2102 

27 TIME:TA:SS18  
  

-0.1262 0.0174 -7.218 0.0000 
    

28 TIME2:TA:SS18  
  

 0.0109 0.0030  3.621 0.0003 
    

29 Trial -0.0050 0.0000 -0.0023 0.0004 -4.902 0.0000  0.0004 0.4731  0.0032 0.0054 

30 TIME:Trial            
  

 0.0009 0.0001  4.713 0.0000 
    

31 Block  0.0449 0.0000  0.0275 0.0018 14.693 0.0000  0.0102 0.0001 -0.0071 0.1300 

32 TIME:Block         
  

-0.0057 0.0007 -7.322 0.0000 
     

Note.  TIME2 = TIME*TIME; TIME3 = TIME*TIME*TIME; etc. Highlighted p-values indicate 

effects that had to be significant to stay in the model. PE = parameter estimate. 
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Table 3. Parameter estimates and test statistics for the selected hazard model in the 

conjunction search task. The selected model was refitted three times with TIME centered on 

bin 650, bin 800, and bin 950, respectively. Same conventions as in Table 2. 

  
(450,500] 

   
(600,650] 

 
(750,800] 

 
(900,950] 

 
Nr. effect PE std. err. t p PE p PE p PE p 

1 (Intercept)                   -0.83067 0.1529 -5.429 0.0000 -0.79880 0.0000 -1.26129 0.0000 -1.73059 .0000 

2 TIME                       0.31784 0.0335  9.460 0.0000 
      

3 TIME2                      -0.16165 0.0062 25.758 0.0000 
      

4 TIME3                       0.02151 0.0028  7.619 0.0000 
      

5 TIME4                      -0.00003 0.0010 -0.034 0.9724 
      

6 TIME5 -0.00022 0.0001 -1.635 0.1020 
      

7 TIME6  0.00001 0.0000  2.262 0.0236 
      

8 TA                 -0.44065 0.0277 15.898 0.0000  0.11170 0.0008  0.18047 0.0032  0.01110 .9168 

9 TIME:TA         0.38436 0.0188 20.403 0.0000 
      

10 TIME2:TA        -0.09695 0.0097 -9.899 0.0000 
      

11 TIME3:TA         0.01177 0.0020  5.795 0.0000 
      

12 TIME4:TA        -0.00057 0.0001 -4.468 0.0000 
      

13 SS6                         -0.25043 0.0264 -9.467 0.0000  0.02804 0.4185  0.26464 0.0000  0.08835 .5171 

14 TIME:SS6                 0.05858 0.0161  3.621 0.0003 
      

15 TIME2:SS6                  0.01828 0.0067  2.697 0.0070 
      

16 TIME3:SS6                 -0.00229 0.0006 -3.329 0.0009 
      

17 SS12                         -0.73870 0.0272 27.115 0.0000 -0.25413 0.0000  0.13561 0.0177  0.27681 .0122 

18 TIME:SS12                 0.16024 0.0183  8.730 0.0000 
      

19 TIME2:SS12                0.00327 0.0067  0.484 0.6279 
      

20 TIME3:SS12               -0.00094 0.0006 -1.535 0.1246 
      

21 SS18                        -1.12963 0.0280 40.245 0.0000 -0.55897 0.0000 -0.11059 0.0200  0.21551 .0262 

22 TIME:SS18                0.21059 0.0159 13.206 0.0000 
      

23 TIME2:SS18               -0.00679 0.0021 -3.108 0.0019 
      

24 TA:SS6           -0.41021 0.0406 10.087 0.0000 -0.31111 0.0000 -0.23745 0.0038  0.22465 .1574 

25 TIME:TA:SS6    0.08325 0.0312  2.663 0.0077 
      

26 TIME2:TA:SS6   -0.02440 0.0110 -2.209 0.0271 
      

27 TIME3:TA:SS6   0.00255 0.0009  2.608 0.0091 
      

28 TA:SS12          -1.03899 0.0530 19.572 0.0000 -0.71853 0.0000 -0.61508 0.0000 -0.26466 .0397 

29 TIME:TA:SS12  0.19453 0.0428  4.536 0.0000 
      

30 TIME2:TA:SS12  -0.03783 0.0125 -3.021 0.0025 
      

31 TIME3:TA:SS12   0.00286 0.0009  2.937 0.0033 
      

32 TA:SS18         -1.17587 0.0555 21.154 0.0000 -0.99663 0.0000 -0.81739 0.0000 -0.63816 .0000 

33 TIME:TA:SS18  0.05974 0.0153  3.892 0.0001 
      

34 Trial  0.00210 0.0005  3.537 0.0004  0.00210 0.0004  0.00210 0.0004  0.00210 .0004 

35 Block  0.04790 0.0019 25.204 0.0000  0.04160 0.0000  0.03529 0.0000  0.02899 .0000 

36 TIME:Block             -0.00210 0.0005 -4.007 0.0001 
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Table 4. Parameter estimates and test statistics for the selected hazard model in the spatial 

configuration search task. The selected model was refitted three times with TIME centered 

on bin 960, bin 1280, and bin 1600, respectively. Same conventions as in Table 2.  

  
(560,640] 

   
(880,960] 

 
(1200,1280] 

 
(1520,1600] 

 
Nr. effect PE std. err. t p PE p PE p PE p 

1 (Intercept)                   -1.07600 0.2361 -4.556 0.0000 -0.43265 0.0302 -0.69074 0.0001 -1.79917 0.0000 

2 TIME                       0.32380 0.0158 20.425 0.0000 
      

3 TIME2                      -0.06204 0.0046 13.255 0.0000 
      

4 TIME3                       0.00842 0.0015  5.598 0.0000 
      

5 TIME4                      -0.00095 0.0002 -4.049 0.0001 
      

6 TIME5  0.00004 0.0000  3.100 0.0019 
      

7 TIME6 -0.00000 0.0000 -2.191 0.0284 
      

8 TA                 -0.54943 0.0261 21.022 0.0000 -0.32379 0.0000 -0.11251 0.0553  0.57951 0.0000 

9 TIME:TA         0.15184 0.0144 10.480 0.0000 
      

10 TIME2:TA        -0.03992 0.0048 -8.264 0.0000 
      

11 TIME3:TA         0.00456 0.0005  7.811 0.0000 
      

12 TIME4:TA        -0.00013 0.0000 -6.801 0.0000 
      

13 SS6                         -0.75653 0.0281 26.903 0.0000 -0.75585 0.0000 -0.20832 0.0004  0.76806 0.0000 

14 TIME:SS6                 -0.04975 0.0141 -3.510 0.0004 
      

15 TIME2:SS6                  0.00782 0.0058  1.336 0.1812 
      

16 TIME3:SS6                  0.00145 0.0008  1.785 0.0742 
      

17 TIME4:SS6                 -0.00007 0.0000 -2.332 0.0197 
      

18 SS12                         -1.51813 0.0326 46.565 0.0000 -1.68899 0.0000 -1.12858 0.0000  0.19046 0.1336 

19 TIME:SS12                -0.07066 0.0175 -4.015 0.0001 
      

20 TIME2:SS12             -0.00604 0.0068 -0.877 0.3801 
      

21 TIME3:SS12              0.00389 0.0008  4.377 0.0000 
      

22 TIME4:SS12                -0.00015 0.0000 -4.823 0.0000 
      

23 SS18                  -2.05118 0.0377 54.352 0.0000 -2.15339 0.0000 -1.52742 0.0000 -0.19681 0.1253 

24 TIME:SS18               -0.06195 0.0211 -2.933 0.0034 
      

25 TIME2:SS18                -0.00244 0.0077 -0.315 0.7525 
      

26 TIME3:SS18                 0.00347 0.0009  3.528 0.0004 
      

27 TIME4:SS18                -0.00014 0.0000 -4.020 0.0001 
      

28 TA:SS6     -0.83385 0.0458 18.193 0.0000 -0.50727 0.0000 -0.47555 0.0000 -0.73869 0.0000 

29 TIME:TA:SS6   0.11850 0.0209  5.655 0.0000 
      

30 TIME2:TA:SS6   -0.00921 0.0020 -4.465 0.0000 
      

31 TA:SS12           -2.05803 0.0869 23.670 0.0000 -1.29614 0.0000 -0.99413 0.0000 -1.15197 0.0000 

32 TIME:TA:SS12  0.24795 0.0294  8.410 0.0000 
      

33 TIME2:TA:SS12 -0.01437 0.0023 -6.046 0.0000 
      

34 TA:SS18           -1.98806 0.1155 17.204 0.0000 -1.40328 0.0000 -1.39360 0.0000 -1.67945 0.0000 

35 TIME:TA:SS18  0.24138 0.0551  4.379 0.0000 
      

36 TIME2:TA:SS18  -0.02670 0.0076 -3.488 0.0005 
      

37 TIME3:TA:SS18   0.00072 0.0003  2.406 0.0161 
      

38 Trial  0.00001 0.0008  0.020 0.9835  0.00115 0.0496  0.00228 0.0004  0.00342 0.0003 

39 TIME:Trial               0.00028 0.0001  2.603 0.0092 
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40 Block  0.05400 0.0019 27.109 0.0000  0.04819 0.0000  0.04238 0.0000  0.03656 0.0000 

41 TIME:Block              -0.00145 0.0002 -5.342 0.0000 
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Figure captions 

 

 

Figure 1. Benchmark visual search data set from Wolfe, Palmer, and Horowitz (2010). (A) 

Example visual search displays for three search tasks (copy of Fig. 1 in Wolfe et al., 2010). 

Participants search for the red vertical bar in the feature (left) and conjunction (middle) 

search tasks, and for a digital 2 among digital 5´s in the spatial configuration search task 

(right). (B) Mean correct RT for target-present (solid lines) and target-absent trials (dashed 

lines). Lighter lines show data for individual observers and darker lines show mean data 

(copy of Fig. 2 in Wolfe et al., 2010). (C) Empirical RT distributions for one observer in the 

spatial configuration search task. Set size is coded by lightness from the lightest lines, set size 

3, through set sizes 6 and 12 to the darkest, set size 18 (copy of the lower panel in Fig. 4 in 

Wolfe et al., 2010). (D) Simulated RT distributions from a serial, self-terminating search 

model for target-present (solid) and target-absent (dashed) trials. Lighter lines represent 

smaller set sizes (copy of Fig. 7 in Wolfe et al., 2010). 

 

Figure 2. Four views on waiting-time distributions. The cumulative distribution function (top 

left), the density function (top right), the survivor function (bottom left) and the hazard rate 

function (bottom right) are shown for each of four theoretical probability distributions 

(exponential, Weibull, gamma, log-normal). While the hazard function for the exponential is 

flat, it keeps increasing for the Weibull, it increases to an asymptote for the gamma, and it 

reaches a peak and then gradually decreases to an asymptote for the log-normal. 
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Figure 3. Descriptive statistics for subject number 3 in the feature search task. Top to 

bottom: h(t), S(t), P(t), and ca(t) for each set size (columns) and target presence 

(green=Target Present, red=Target Absent). Vertical lines in the h(t), S(t), and P(t) plots 

represent the sample mean RT, the estimated median RT or S(t).50, and the sample mean 

correct RT, respectively. Horizontal lines in the ca(t) plots represent overall accuracy.  

 

Figure 4. Inter-individual differences in feature search. Estimates of h(t) and ca(t) for four 

participants in the feature search task, for Target-Present (left column) and Target-Absent 

(right column) trials and each set size (green=SS3, red=SS6, black=SS12, blue=SS18). Vertical 

lines in the h(t) plots represent the sample mean RT. (A) Subject 2. (B) Subject 3. (C) Subject 

4. (D) Subject 8. 

 

Figure 5. Hazard model predictions for feature search. Predicted h(t) functions for trial 350 in 

block 8 (first column) and the corresponding cloglog-hazard functions (second column), S(t) 

(third column) and P(t) (right column) functions, for Target-Present (top row) and Target-

Absent (bottom row) trials. Vertical lines in the S(t) plots represent the estimated median RT 

or S(t).50. 

 

Figure 6. Effect of practice on event occurrence. The model-based effects of Trial (T) and 

Block (B) are shown for the baseline condition (TP3) for the feature (A), conjunction (B) and 

spatial configuration (C) search tasks. 

 

Figure 7. Descriptive statistics for subject number 5 in the conjunction search task. Same 

conventions as in Figure 3. 
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Figure 8.  Inter-individual differences in conjunction search. Estimates of h(t) and ca(t) for 

four participants in the conjunction search task. (A) Subject 4. (B) Subject 5. (C) Subject 2. (D) 

Subject 10. Same conventions as in Figure 4. 

 

Figure 9. Hazard model predictions for conjunction search. Predicted h(t) functions for trial 

350 in block 8 (top row) and the corresponding cloglog-hazard functions (second row), S(t) 

(third row) and P(t) (bottom row) functions, for Target-Present (left column) and Target-

Absent (right column) trials. Vertical lines in the S(t) plots represent the estimated median 

RT or S(t).50. 

 

Figure 10. Descriptive statistics for subject number 8 in the spatial configuration search task. 

Same conventions as in Figure 3. 

 

Figure 11. Inter-individual differences in spatial configuration search. Estimates of h(t) and 

ca(t) for four participants in the spatial configuration search task. (A) Subject 1. (B) Subject 8. 

(C) Subject 3. (D) Subject 4. Same conventions as in Figure 4. 

 

Figure 12. Hazard model predictions for spatial configuration search. Same conventions as in 

Figure 9. 
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