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Key messages

¢ Malnutrition has long been researched and addressed in two distinct silos, focusing either on chronic
or acute undernutrition, energy inadequacy and micronutrient deficiencies, or on overweight, obesity
and dietary excess. The contemporary reality of the double burden of malnutrition is different, making it
impossible to separate these issues, but also indicating shared opportunities to address them.

¢ Malnutrition harms health throughout the life-course, but its emergence early in life has particularly
pernicious consequences. A variety of physiological mechanisms propagate effects of early-life
malnutrition across the life-course, while adolescent and adult malnutrition can transmit effects to the
next generation.

e Different forms of malnutrition can interact through the life-course and across generations. In some
settings, early stunting may predispose to a more central distribution of adiposity at later ages, while
the extent to which maternal obesity adversely affects early growth and development of the offspring
may be exacerbated if the mother herself was under-nourished in early life.

¢ Life-course exposure to the double burden of malnutrition (early undernutrition followed by later
overweight) increases the risk of non-communicable disease, by imposing a high metabolic load on a
depleted capacity for homeostasis. The health costs of adult obesity are therefore exacerbated among
those who previously experienced undernutrition. In women, life-course exposure to the double burden
of malnutrition increases the risk of childbirth complications.

¢ Exclusive and appropriate breast-feeding protects infants against all forms of malnutrition, and
protects mothers against diabetes and breast cancer, in part through healthy-weight benefits. However,
maternal obesity, diabetes and micronutrient deficiencies alter the biology of lactation, and should be
addressed to maximise the success of breast-feeding.

* Exposure to the double burden of malnutrition can only be fully understood in the context of broader
societal drivers acting across culture, behaviour and technology. Various groups are at high risk of the
double burden through elevated exposure to these drivers, often exacerbated by biological
susceptibility.

* Developmental responses to malnutrition in early life are shaped by ecological factors, such as
pathogen burden and extrinsic mortality risk. An evolutionary perspective, focusing on how our
biological plasticity was shaped in ancestral environments to promote survival and reproduction, may
help design interventions that promote linear growth and lean tissue accretion rather than excess
adiposity.

¢ Inter-generational cycles of malnutrition have proven difficult to disrupt through public health
interventions. Major societal shifts are required regarding nutrition and public health, in order to
implement comprehensive change that is sustained over decades, and scaled up into the entire global

food system.
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Abstract

Until recently, undernutrition and overweight were considered separate public health problems
affecting distinct populations, and with contrasting risk factors. However, it is increasingly recognised
that these two extremes of malnutrition are connected in complex ways. Numerous physiological
mechanisms contribute to long-lasting effects of malnutrition early in the life-course, while malnutrition
in adolescents and adults can propagate adverse effects to the next generation. Moreover, different
forms of malnutrition can interact through the life-course and across generations. Fetal undernutrition
and early stunting may predispose to a more central distribution of adiposity at later ages, while the
impact of maternal obesity on the offspring may be exacerbated if the mother herself was under-
nourished in early life. Life-course exposure to early undernutrition followed by later overweight
increases the risk of non-communicable disease, by imposing a high metabolic load on a depleted
capacity for homeostasis, and in women increases the risk of childbirth complications. These life-course
trajectories are shaped both by societal driving factors, that are rapidly changing diets, norms of eating
and physical activity patterns, and by broader ecological factors such as pathogen burden and extrinsic
mortality risk. Mitigation of the double burden of malnutrition will require major societal shifts
regarding nutrition and public health, in order to implement comprehensive change that is sustained

over decades, and scaled up into the entire global food system.
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Abbreviations

BMI — Body mass index

DBM — Double burden of malnutrition
DHS — Demographic and Health Survey
HIC — High-income country

LBW — low birthweight

LMIC — Low-/middle-income country

NCD — Non-communicable disease
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Introduction

Undernutrition and overweight have long been considered separate challenges affecting distinct
populations, and with contrasting risk factors. Undernutrition was linked with poverty, food insecurity
and infection, whereas obesity was linked with affluence, dietary richness and sedentary behaviour.
Increasingly, the two forms of malnutrition co-occur within communities, families and even individuals,
such as those both stunted and overweight." The current manifestation of this global ‘double burden’ of
malnutrition (DBM) is summarised by Popkin and colleagues.? Obesogenic environments are expanding,
while the causes of undernutrition persist,” and an increasing proportion of those currently overweight
were under-nourished earlier in life.> To understand the implications of the DBM for health at the

individual level, the explanatory framework must shift from descriptive epidemiology to biology.

Recently, Swinburn and colleagues reconceptualised the two extremes of malnutrition within a single
over-arching framework, relating them to common drivers that also underlie climate breakdown.” Here,
we develop this perspective, focusing on the biological interconnections between undernutrition and
overweight. First, we describe the aetiology of malnutrition across life-courses and generations. Both
undernutrition and overweight can propagate long-term effects, especially if they develop early in life,
and each form may increase risk of the other occurring. Second, we show that individuals who
experience the DBM through the life-course have increased risk of diverse forms of ill-health. Third, we
examine why the DBM is affecting growing numbers worldwide, and highlight populations with high
susceptibility. We provide an evolutionary perspective that can help understand these biological
interactions and their health consequences in different settings. Our framework may help identify
effective strategies for double-duty actions that address both forms of malnutrition, as addressed in

. . . 5,6
subsequent papers in this series.”™

Life-course manifestation of malnutrition

Malnutrition is a complex phenotype that manifests across the life-course in different ways (Appendix
1), yet its categorisation remains unsophisticated. Regarding undernutrition, simple anthropometry is
used to categorise low birthweight (LBW), stunting (low height-for-age) or wasting (low weight-for-age)
during infancy/childhood, and short stature or low body mass index (BMI) in adulthood. Assessed thus,
undernutrition is most prevalent among younger age-groups. Undernutrition can also be assessed in
terms of depleted stores or circulating levels of nutrients, reflecting dietary inadequacy. Micronutrient
deficiencies remain prevalent in adults, and are of particular concern among women of reproductive

7
age.
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Excess weight can likewise emerge in late fetal life (macrosomia), but usually develops from early
childhood through cumulative exposure to obesogenic factors acting on both individuals and societies.*
Many studies link elevated adiposity, especially abdominal fat, with ill-health, yet despite correlating
poorly with adiposity among individuals, the simple anthropometric index BMI provides a useful
metabolic risk-marker for populations.? Its main limitation is its inconsistent association with NCD risk
across populations.’ As with undernutrition, indices of ‘nutritional excess’ extend beyond the body to

traits such as diet composition and physical inactivity, both of which can perturb metabolism.

Our concept of malnutrition should also incorporate the gut microbiome, representing millions of genes
from micro-organisms. These generate a collective metabolic activity that impacts and responds to the
human host. Diverse forms of malnutrition are associated with dysbiosis, propagating adverse metabolic
consequences (Appendix 2), though findings for obesity are heterogeneous. The microbiome
demonstrates resilience within individuals, with implications for health maintenance and disease risk,°

but can also respond to interventions (Appendix 2)."*

Malnutrition harms health throughout life, but its early emergence has particularly pernicious
consequences. Development is characterised by a succession of sensitive periods or ‘critical windows’,
when phenotype is particularly responsive to nutritional influences. Physiological mechanisms
characterising these periods include the differential growth of organs and tissues, establishment of
hormonal set-points and epigenetic variability, telomere attrition and microbiome maturation (Panel 1).
Crucially, these mechanisms respond to both undernutrition and over-nutrition in early life. Such
physiological sensitivity explains why early nutrition and growth have major implications for both

immediate survival, and long-term health and human capital.>*3

Many ‘critical windows’ close early during development, reducing the sensitivity of specific traits to
environmental influences. For example, some epigenetic effects are restricted to the peri-conceptional
period,” others to early infancy.'® Likewise, from late infancy linear growth becomes less sensitive to
nutritional intake,?* hence short adult stature is primarily attributable to early stunting. However, other
traits subsequently become plastic, and adolescence represents a key period of sensitivity to nutritional

factors, especially relating to reproductive biology.”

At the individual level, the DBM can thus be assessed through diverse somatic, dietary and behavioural
traits, as well as the microbiome, all of which may be targeted by appropriate interventions. Through
the mechanisms of plasticity highlighted above, different forms of malnutrition interact through the life-

course and across generations.
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Inter-generational emergence of the DBM
While malnutrition manifests within life-courses, its aetiology spans generations. For example, early
sensitive periods fall within pregnancy and lactation, making maternal phenotype the key nutritional

factor shaping early development.?***%

Through nutrition transition, increasing numbers in low-
/middle-income countries (LMICs) are exposed to both nutritional deficiencies and fuel-excess at

. . . 27
different ages, a scenario termed ‘double teratogenesis’.

Many LMIC populations have experienced chronic undernutrition, characterised by inter-generational
‘cycles of disadvantage’. Maternal undernutrition compromises fetal growth and increases the risk of
childhood underweight, stunting and micronutrient deficiency (Figure 1 and Appendix 4). Stunting is a
cumulative process, often apparent by birth but worsening until ~2 years when growth becomes
canalized.” Linear growth faltering during infancy is exacerbated by episodes of wasting,”® which helps
explain why stunting is associated with elevated mortality risk. Such inter-generational cycles have
proven difficult to disrupt through interventions: maternal supplementation from mid-pregnancy to
term with macro-/micro-nutrients has modest effects on birthweight, but does not benefit growth in

30-32
the longer-term.

Inter-generational effects are equally relevant to mothers with obesity or perturbed metabolism.
Maternal obesity is associated with elevated fetal adiposity, especially when compounded by
gestational diabetes (Figure 1 and Appendix 4). More generally, a high plane of nutrition in early life
(greater gestational weight gain, higher birthweight, faster post-natal weight gain) is associated with

greater risk of obesity, abdominal adiposity and insulin resistance in adulthood.

Increasingly, however, changes in food systems are breaking down the separation between these inter-
generational cycles of nutritional deficiency and excess, hence Figure 1 and Appendix 4 also summarise
evidence for their interactions. Early undernutrition may predispose to later central adiposity and NCDs,
while the offspring of obese mothers may show poor growth and development in early life;*® though in

each case there is substantial heterogeneity.

Whether early undernutrition predisposes to later adiposity depends on post-natal patterns of growth
and nutrition, including complementary feeding patterns. Growth faltering in early pregnancy may
induce ‘catch-up’ in fat mass before birth,>* while those born small often undergo accelerated weight
gain in infancy or childhood.*® This catch-up may likewise induce elevated adiposity, and in high-income

countries (HICs), rapid infant weight gain is associated with later obesity.*® However, LMIC studies
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typically associate faster infant weight gain with greater adult height and lean mass,®” and in these
settings it is broadly after two years that rapid weight gain promotes adiposity,” though the situation

may change in concert with nutrition transition.

Associations between stunting and body composition are likewise complex. Compensatory weight gain
following undernutrition typically prioritises accretion of fat over lean, through mechanisms of ‘energy-
sparing’.®® In some South American studies, for example, early stunting predicts excess abdominal
adiposity, mediated by changes in fuel metabolism (Panel 2).** However, stunting was not associated
with impaired fat oxidation in young children from Cameroon,* while in Peru, children's height was
positively associated with adiposity at low altitude, but inversely associated at high altitude.** In
malnourished young children from Burkino Faso, 93.5% of weight gained during a food supplementation
programme comprised lean tissue.”” These findings indicate complex developmental links between
growth patterns and adiposity, where growth may either be accelerated across all traits, or
characterised by trade-offs between traits. Regardless of whether early stunting elevates abdominal
adiposity, a consistent finding is that early undernutrition permanently reduces lean mass and its

functional correlates such as grip strength.”**

Although maternal obesity correlates with higher birthweight, it is also associated with micronutrient
deficiencies that may impair offspring development, while maternal hypertension is associated with
increased risk of LBW offspring, a scenario exacerbated by anti-hypertensive pharmaceutical agents.*
Obesity is generically associated with poorer micronutrient status,”® mediated by chronic inflammation

and nutrient-poor diets, while maternal obesity may also contribute to dysbiosis in the offspring.>*

Using Demographic and Health Survey (DHS) data from 12 LMICs, we analysed how markers of maternal
malnutrition (short stature, overweight/obesity) interact in association with the risk of stunting in the
offspring. While short maternal stature increases the risk of stunting, maternal overweight/obesity
typically reduce this risk relative to normal BMI, providing the mother is of normal height. However, this
protective effect disappears if the overweight mother is also short (Figure 2a). The consequences of
maternal obesity for the next generation therefore depend on the mother’s own developmental
experience. In a Swedish study, the inter-generational transmission of obesity was threefold greater

among obese mothers born small-for-gestational-age, compared to mothers of normal birthweight.>

Though evidence remains scarce, paternal metabolic phenotype can also impact offspring development.
For example, paternal smoking and dietary intake during adolescence have been associated with

offspring BMI,>®> mediated by imprinting of the sperm.>® Paternal genes may be especially relevant in
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early life as they contribute to placental function. Bariatric surgery in men has been associated with
remodelling of sperm DNA methylation, in particular of genes associated with appetite control.>*
However, beyond father-child correlations in height and BMI,>® there is currently minimal understanding

of paternal biological contributions to the DBM in LMICs.

The life-course and inter-generational physiological pathways that we have summarized above underlie

associations of the DBM with several forms of ill-health, as we discuss next.

The DBM and NCD risk
Associations of adult obesity and unhealthy lifestyle with NCDs are well-recognised,”® but there is
compelling evidence that exposure to undernutrition in early life exacerbates these relationships. To

elucidate this, we present a ‘capacity-load’ conceptual model.*”®

Initially, associations of NCD risk with birthweight were attributed to long-term consequences of fetal
undernutrition. The ‘thrifty phenotype’ hypothesis proposed that inadequate fetal nutrition reduced
growth of some organs (eg pancreas, liver, kidney) to protect the brain. Later, such individuals would
have lower tolerance of obesity and energy-dense diets, elevating NCD risk.*® However, birthweight

59,60 . .
> while macrosomic

demonstrates inverse dose-response with NCD risk across most of its range,
infants have increased NCD risk.®" This variability refutes the notion that fetal undernutrition is the

primary developmental mechanism.

The capacity-load model addresses continuous associations of both developmental and adult traits with
NCD risk, and can be applied to diverse traits through the life-course and to various NCD outcomes
(Appendix 7). ‘Metabolic capacity’ refers to traits, strongly contingent on growth and metabolic
exposures during early life, that have life-long implications for the capacity for homeostasis.”” Relevant
traits include pancreatic beta cell mass/function, nephron number, organ/tissue mass, airway and blood
vessel diameter, and cardiac structure. All of these scale with the magnitude of growth during the
period of hyperplasic growth. Environmentally-induced epigenetic variability and microbiome
development can be considered within the same conceptual framework,*>® though the extent to which
early variability in these traits persists long-term remains uncertain.® Size at birth and early post-natal

growth patterns act as useful, though imperfect, composite markers of metabolic capacity.

‘Metabolic load’ refers to traits that challenge homeostasis, including excess adiposity, physical

57,58

inactivity, lipogenic diet, smoking, infection and psychosocial stress.”””* These traits broadly show dose-

response associations with NCD risk, and are all associated with increased oxidative damage. Metabolic
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load can increase early in life in association with catch-up growth, which elevates not only adiposity but
also molecular markers of NCD risk (epigenetic effects, telomere attrition).®> Macrosomic infants already

have elevated adiposity (high load), and potentially also low capacity, by birth.

According to this conceptual model, NCD risk decreases in association with metabolic capacity, and
increases in association with metabolic load. Substantial evidence supports the model,*>®® but the
majority is from studies in HICs. Evidence from Asian and sub-Saharan African populations is
summarised in Appendix 8. One caveat is that the specific role of linear growth in this model varies by
outcome. For cardiovascular disease, diabetes and hypertension, linear growth promotes metabolic
capacity, indicated by elevated NCD risk among those with poor early growth or short adult stature
(Appendix 9a). This is likely because height is a good proxy for organ growth and development through
the life-course. However, for many forms of cancer, linear growth may better be considered a
component of metabolic load, as faster growth and taller height are associated with elevated risk
(Appendix 9b).%*%” These associations indicate that efforts to reduce LBW and stunting in LMICs may

increase future cancer incidences.

This conceptual model helps explain why the DBM is strongly associated with NCD risk. LBW, child
stunting and wasting all deplete components of metabolic capacity, while overweight and unhealthy
environmental exposures exacerbate metabolic load. Importantly, the extent to which early
undernutrition leads to overt NCDs depends strongly on subsequent nutritional status. For example,
survivors of severe malnutrition during early life in Malawi had long-term deficits in height, lean mass
and grip strength, however NCD risk was negligibly affected, most likely because these children
remained relatively thin and had low metabolic load.* It is the combination of poor early growth and

subsequent elevated BMI that appears key to adult NCD risk.%®

Figure 3 illustrates how nutrition transition is driving the NCD epidemic in Pune, India, combining data
from three cohorts at different stages of economic development. Following multi-generational exposure
to energy-scarcity and micronutrient deficiencies, the rural cohort has experienced a modest secular
increase in adult size, but a quarter of young adults have developed pre-diabetes, and 12% of the young
mothers have gestational diabetes. These trends are more extreme in a matching urban cohort, with
some of the offspring developing child obesity, and higher rates of gestational diabetes among young
overweight mothers. Finally, among an urban cohort born to diabetic mothers, 40% have themselves
developed pre-diabetes at 15 years, while 15% of the young mothers have produced large-for-

gestational-age neonates.

1n
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That the ‘toxicity’ of obesity is exacerbated among those initially under-nourished has been shown in

diverse populations (Appendix 8).>%%

Studies in Brazil have revealed some of the physiological
mechanisms through which childhood stunting may predispose to central fat deposition and NCD risk
(Panel 2). Notably, however, a combination of better diet quality and prevention of infections appears

able to reverse these effects.’

Likewise, nutritional supplementation in early life may potentially promote metabolic capacity and thus
reduce NCD risk. Supplementation during pregnancy reduces the risk of LBW**"° but propagates few
beneficial effects into childhood,**’* whereas a community food supplementation programme provided
to both pregnant women and their offspring in early childhood improved childhood growth and was
associated with greater height and lean mass but not adiposity in early adulthood.”” However, the
longer-term consequences of this intervention for NCD risk were mixed,”®> possibly because the
intervention spanned several different developmental stages and may have impacted both metabolic

capacity and load.

The optimal timing for interventions to prevent the DBM therefore remains in need of further research.
We suggest that alongside the pre-conception period and pregnancy,? early infancy may be another
crucial window of opportunity.’ For example, the period of exclusive breast-feeding is simultaneously a
developmental period when many mechanisms of plasticity respond to nutritional influences (Appendix
10), an important period for the development of metabolic capacity, and a period when metabolic load
can be suppressed.”® However, the success of breast-feeding is itself threatened by maternal
malnutrition (Panel 3), indicating that interventions targeting breast-feeding mothers may

simultaneously improve maternal health while also mitigating the DBM in the next generation.

While malnutrition damages health in all populations, its manifestation and physiological consequences

also vary. First, the two sexes often differ in the prevalence and consequences of malnutrition. Low

adult BMI and childhood stunting tend to be slightly more common in males than females in LMICs, %!

82,83

whereas adult women show higher prevalences than men of obesity and anaemia. Moreover, the

life-course development of NCD risk also differs by sex.*

Second, ethnicity contributes to variability in the health consequences of the DBM. Human morphology
and physiology vary with geography, in ways that also change through the life-course.®®> For example,
South Asian populations demonstrate high rates of LBW and stunting and relatively short adult stature,
all indicative of reduced metabolic capacity, but also a high fat-lean ratio and abdominal adiposity,

86,87

indicative of elevated metabolic load for a given BMI value. These traits are strongly implicated in

11
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the elevated NCD susceptibility of South Asian populations, however, they are overlaid by economic and

cultural factors, including diet preferences, migration patterns and social inequality.

Malnutrition and inflammation

The life-course manifestation of malnutrition varies markedly across ecological settings. In HICs, the
obesity epidemic developed in the context of low burdens of communicable disease and child
undernutrition. In LMICs, however, both extremes of malnutrition co-exist with persistent burdens of

88,89

infections. Both undernutrition and overweight are associated with inflammation, effectively

generating a triple challenge to metabolic health with major implications for NCD risk.

Poor nutrition in early life (fetal growth faltering, post-natal stunting, sub-optimal breast-feeding) has
been associated with elevated markers of inflammation in childhood and young adulthood, while

88,90-92

obesity is also a chronic inflammatory condition. Although research from LMICs is lacking, studies

from HICs indicate that the inflammatory load of obesity may be exacerbated by early-life

P 93,94
undernutrition.”™

An unfavourable gut microbiome may contribute to these associations (Appendix 2). Microbiota
immaturity, increased enteropathogen burden and gut barrier dysfunction are interrelated factors
associated with inflammation in early life.”® The microbiota of stunted Indian children was depleted in
probiotic species and enriched in inflammogenic taxa, relative to control children.”® At later ages,
dysbiosis contributes to associations of obesity with insulin resistance and systemic inflammation.””*

Among obese adults with similar BMI, those with greater dysbiosis have higher NCD risk,*® while

dysbiosis also contributes to inflammatory process associated with sarcopenia.’®

Manipulation of the microbiome, for example by providing probiotics or fecal transplantation, might
beneficially modify NCD risk markers (Appendix 2), but further research is needed to understand how

this could achieve long-lasting effects mitigating both forms of malnutrition.

The DBM and childbirth complications

While much emphasis has been placed on the implications of the DBM for NCD risk, both short stature
and overweight are also independent risk factors for obstructed labour, related to maternal mortality.'**
The DBM may therefore impact health outcomes of mothers and offspring related to childbirth. For
short women, the primary underlying mechanism is likely to be reduced pelvic dimensions while, for
overweight women, a key mechanism is perturbed fuel metabolism, increasing birthweight.’® Globally,

many mothers stunted in early life become overweight before reproducing, while overweight women

17
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d.

are also more likely to develop gestational diabetes if previously stunte The combined effect is

predicted to increase the risk of obstructed labour.

We analysed DHS surveys from 11 LMICs, demonstrating that while both maternal stunting and
overweight each increase risk of caesarean delivery (a correlate of obstructed labour), the risk tends to
be further amplified among stunted-overweight and stunted-obese women (Figure 2b). While increases
in caesareans have been linked with indices of wealth, the financial incentives of health care providers,

102,103

and defensive medicine to minimise litigation, the emerging DBM may therefore be an additional

factor.?

Given the profound health penalties of the DBM in individuals, we need to understand what is driving
the global epidemic. We show below that biological susceptibility interacts with societal factors, and
provide an evolutionary perspective to help understand how we might combat the DBM most

effectively.

Societal driving factors

The biological inter-linkages described above can only be fully understood in the context of broader
societal drivers, which mediate differential exposure to the causes of malnutrition. The global DBM is
closely associated with rapid economic development and increases in per capita income,” but also
incorporates a constellation of societal trends acting across culture, behaviour and technology.* Many of
those most exposed to these trends are not the wealthiest, but rather those least empowered to resist

. . 5,58
adverse societal and corporate influences.™

The metabolic consequences of unhealthy diets that are
both energy-dense and micronutrient-poor’® are exacerbated by increases in sedentary behaviour,'®
while exposure to psychosocial stress has been associated with unhealthy food choices and eating

patterns, and with perturbed appetite, weight gain and central adiposity.*%®*%’

At a societal level, gender inequality exacerbates female exposure to the DBM.%3%

From a political
perspective, governments struggle to restrain commercial activities in the interests of population health,
but may also contribute to the DBM through the promotion of international trade and national
economic development, and the opening of domestic markets to multi-national corporations. Policy-
makers are increasingly exploring strategies to reduce malnutrition that place less emphasis on
economic growth, by addressing issues as food sovereignty, gender equality, education and healthy

108,110-112
food systems.”

Nevertheless, the emerging DBM is a stark indication of how a large proportion of
the global population, especially in LMICs, is poorly protected from multiple factors driving malnutrition

in all its forms.

12
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High-risk groups
While the DBM affects many countries,>* various groups are at high risk and merit particular attention.

This susceptibility relates to diverse factors spanning both biology and environmental stressors.

In HICs such as Canada, Australia and the UK, for example, first-nation, aboriginal and ethnic minority
populations typically show higher levels of LBW and child undernutrition compared to the general
population, but also increased risk of obesity and NCDs in later life (Appendix 12). Similarly, African
Americans show persisting deficits in birthweight relative to those of European ancestry, while Hispanic
and African Americans have greater prevalence of adult obesity than Europeans.'*® Similar patterns

increasingly apply to minority groups within LMICs, such as tribal populations in India.***

To track such population-specific susceptibility, ethnic differences in physique and metabolism should
be addressed. In the UK, for example, adjusting for ethnic differences in the BMI-adiposity relationship
reveals that obesity is most prevalent and increasing fastest in south Asian children compared to other
groups.' Moreover, body fat is ‘more toxic’ in south Asian than European children, having a stronger

6

association with insulin resistance."™® These patterns help explain why some groups show high

susceptibility to NCDs in early adulthood, even at relatively low BMI thresholds.

As noted by Popkin et al.,> within LMICs, rural-urban migration exposes increasing numbers to drastic
changes in diet, physical activity and living conditions. Rural populations demonstrate high rates of
childhood stunting,'” while migration to cities is typically associated with rapid increases in BMI and
abdominal fat. This adiposity elevates NCD risk in comparison to the rural population, but typically to
lower levels compared to established urban populations.** These health penalties may increase through
lengthier urban residence and at older ages, however research on malnutrition in the elderly in LMICs

f 119,120
remains very scarce.” ™

Because of their imminent reproduction, adolescents are another particularly important group. Surveys
indicate high prevalences of underweight, overweight and anaemia in adolescents, though varying by

121122 Agolescents are also among the first groups to adopt new diets and lifestyles, in part

country.
through their tendency to migrate in search of new economic opportunities. The combination of
overweight and anaemia in adolescent women is difficult to address, as obesity-mediated inflammation
may impede iron absorption and reduce the efficacy of supplementation programmes.** Finally, infants

are susceptible to complementary foods that are fattening while also micro-nutrient deficient.'*®

14



415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448

An evolutionary perspective

The profound health risks associated with life-course exposure to the DBM may seem puzzling. First,
why does nutrition transition not resolve the effects of multi-generational undernutrition? Why do
stunted children often remain short in adulthood and become overweight, rather than growing tall and
remaining lean? Second, why is the combination of early stunting and later overweight so detrimental to
health? An evolutionary perspective may help explain why different forms of malnutrition interact and
shape NCD risk. Evolutionary life history theory assumes that every organism allocates energy between
four competing functions: maintenance, growth, reproduction and defence, resulting in ‘trade-offs’
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between these functions.™ The optimal allocation strategy for maximising reproductive fitness is

expected to vary in association with developmental trajectory and ecological conditions.'*

A key factor influencing these ‘allocation decisions’ comprises extrinsic mortality risk. In high-risk
environments, selection favours ‘discounting the future’, diverting energy away from maintenance and
growth towards defence (short-term survival) and reproduction. This insight helps understand the
combination of high fertility and lower birthweights in chronically undernourished populations with high
infectious burdens: fitness is maximised by producing more offspring, but investing less in each. Sub-
optimal fetal nutrition not only constrains the development of metabolic capacity, but is also associated
with long-term central adiposity and inflammation, promoting immune function through the life-

cou FSE.58'92

Economic development increases dietary energy availability and alters life history strategy, however the
nature of this change depends on both extrinsic mortality risk and diet composition. In high-pathogen
food-insecure environments, if energy supply increases during childhood it is too late to allocate it to
‘maintenance’ as the physiological critical windows already closed. Instead, the surplus is primarily
diverted to survival (pro-inflammatory state, energy stores) and reproduction (gaining weight during
adolescence). This helps understand why those initially under-nourished do not entirely resolve their

growth deficit, and are prone to central adiposity and elevated inflammation.**°*!%

Reduced fertility
among obese women'?’ suggest that these trade-offs evolved in ancestral environments characterised
by energy scarcity, and in contemporary settings they may be exacerbated through exposure to
processed foods high in energy but low in protein/micronutrients. Inflammation disrupts many
components of homeostasis relevant to NCD risk, such as appetite, sleep, insulin metabolism, arterial
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health and oxidative balance.”™ The result is a high metabolic load superimposed on a depleted

capacity, provoking NCDs at relatively low thresholds of age/overweight.
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In food-secure low-pathogen settings, conversely, lower infant mortality means that mothers can
maximise fitness by producing fewer offspring, and investing more in each during early life. This allows
each offspring to divert more energy to maintenance and early growth, promoting life-long homeostasis

and health, and a likely lengthier reproductive career.

This perspective helps explain why in HICs with long-term efforts to reduce infectious disease, economic
development has induced prolonged secular increases in height and lifespan,*?® whereas in many LMICs
where poor quality diets and high infectious burdens persist, economic development is more strongly
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associated with trends in BMI,” and an escalating NCD burden. Secular trends in stature in LMICs

. 130,131
remain weak,

instead a secular decline in menarchal age has occurred, especially in urban settings
(Appendix 13).%® The mechanisms of developmental plasticity described in Panel 1 may play a key role

orchestrating such life history trade-offs in association with ecological conditions.

Trade-offs between biological functions may prove especially rewarding targets for interventions aiming
to reduce malnutrition and its adverse health effects. In particular, whether efforts to reduce adult NCD
risks in LMICs are successful may be contingent on reducing both early undernutrition and the burden of
infection. This proposition is supported by evidence that, independent of nutritional supply, childhood

. . . . 132
vaccination benefits linear growth.

Conclusion

Examining the DBM from the perspective of individual health is very different from approaching it at the
population level. Beyond their common driving factors,” undernutrition and overweight show multiple
physiological connections and interactions. As LMICs undergo economic development and nutrition
transition, the resulting DBM is exposing growing numbers of individuals to various forms of ill-health,
including growth retardation, dysbiosis, inflammation, obesity, NCDs and childbirth complications.
Recognising these inter-connections may open up new, shared opportunities to improve metabolic

health.

Our evolutionary perspective helps understand why the DBM is so harmful to health. Exposure to
malnutrition during early ‘critical periods’ results in the body reducing its valuation of the future,
diverting energy from growth and health to survival and potential reproduction. If the only significant
environmental change through the life-course comprises increased dietary energy, these trade-offs may
simply intensify. This could explain why some programmes aiming to prevent undernutrition have
inadvertently increased obesity and NCD risk.”” High-energy diets that are low in protein and
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micronutrients may drive over-consumption of fat and carbohydrate.”™ High burdens of infectious
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disease also constrain linear growth and favour inflammation, which is further exacerbated by

overweight.

The programme of treatment for child malnutrition in Brazil (Panel 2) highlights where efforts should be
directed to break this cycle.”” The programme improves dietary quality while also cutting the burden of
infection. This composite improvement makes the long-term future more attainable, and the body
responds by promoting linear growth rather than adiposity, whilst restoring metabolism to lower levels

of NCD risk.

To be effective, the double-duty actions proposed in this series by Hawkes et al.” should achieve two
goals. First, they need to impact each generation early in life, so that the trajectory of development can
be shifted beneficially through the physiological mechanisms listed in Panel 1. This highlights the
importance of optimising nutrition among adolescents, whose metabolism constitutes the
developmental niche for the next generation. Secondly, interventions need to be sufficiently
comprehensive to impact the functional trade-offs outlined above. Successful interventions may need to
begin before conception and continue through pregnancy and lactation. A cautionary note is that these
interventions still need to balance health benefits and costs. For example, research is required to
optimise the balance between promoting fetal growth and maintaining maternal metabolic health
during pregnancy. Such interventions should be supported by the sustained provision of healthy

complementary foods, and effective reductions in the burden of infection during childhood.

No single intervention can solve the DBM, and efforts must also be sustained over decades to realise
their full benefits. Even if stunting is reduced, adults already overweight will bear additional health
penalties if they were under-nourished during development. On the positive side, effective double-duty
actions™® may benefit health across the lifespan and into the next generation. To achieve these goals,
major societal shifts are required regarding nutrition and public health. Ultimately, the global DBM
reflects many adverse trends through which individuals are disempowered and their nutritional status
and health undermined. Paper 4 in this series shows that specific interventions to reduce the DBM can
be cost-effective,’® but significant progress requires that this approach be scaled up into the entire global

food system, while also meeting the need for human food systems to maintain planetary health.”*
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Panel 1. Physiological mechanisms through which nutrition during early life is associated with long-
term phenotypic variability

¢ Early nutrition generates long-term effects on organ size, structure and function. Mammalian growth
in fetal life and early infancy comprises hyperplasia (cell proliferation), crucial for the development of
organ structure, whereas from late infancy, growth comprises hypertrophy (increases in cell size).** Early
growth variability has long-term effects, for example, LBW infants have altered cardiac structure and

- . 15,16
small liver, kidneys and spleen,™

while macrosomic infants may demonstrate organomegaly.

¢ Early nutrition impacts hormonal axes regulating growth and appetite. For example, both under- and
excess nutrition in the perinatal period affect insulin metabolism and hypothalamic circuits regulating
food intake.'” LBW infants may be insulin-sensitive at birth, but are susceptible to insulin-resistance in
association with faster childhood weight gain.

e Both inter-uterine growth retardation and maternal diabetes expose the fetus to oxidative stress,
impacting cardiac and vascular structure, haemodynamics and endothelial function.

* Offspring gene expression is shaped by maternal nutrition in pregnancy and by nutritional experience
after birth. For example, peri-conceptional exposure to maternal famine has been associated with
epigenetic changes in IGF1 expression that persisted into early old-age,'® while season of conception in
rural Africa was associated with diverse epigenetic effects in infancy.'® Gestational diabetes is associated
with epigenetic effects on genes associated with metabolic disease. Some epigenetic changes may have
adverse long-term health effects.

* Early exposure or lack of exposure to different tastes may shape food preferences and diet choices at
later ages.

e Telomere length provides a marker of cellular aging that is sensitive to early nutritional experience.
For example, placental and/or neonatal telomere length is associated with some components of
maternal nutritional status, and predicts post-natal body composition,?® while exclusive breast-feeding
may reduce telomere attrition.”*

¢ The gut microbiome rapidly matures in early life, and early malnutrition can disrupt this process. For
example, among twins discordant for kwashiorkor, the affected sibling developed narrower gut
microbiome diversity, and transplanting this biota to germ-free mice induced weight loss de novo.?

¢ Collectively, these mechanisms contribute to a profound imprint of early malnutrition on later

phenotype, impacting both the risk and the metabolic effects of subsequent overweight.

An expanded, fully referenced version of this panel is available in Appendix 3
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Panel 2: Developmental links between stunting, obesity and cardio-metabolic risk in Brazil
¢ Undernutrition in early life promotes survival by energy-sparing, selectively preserving some tissues

38,46
and organs over others.”™

This adaptation is achieved by endocrine changes impacting growth, energy
expenditure and body composition, which then interact with the composition and energy content of the
diet.

e Among children from Brazilian shanty-towns, stunting is associated with reduced lean mass but
greater adiposity, especially central abdominal fat. These physical traits are associated with increased
insulin sensitivity, reduced insulin production, higher cortisol, and a reduced capacity for fat oxidation.*’
¢ By adulthood, the adverse effects of overweight on cardio-metabolic traits are exacerbated among
those also stunted. Stunting is associated with lower T3, higher insulin resistance, and higher glycated
haemoglobin. In women, stunting is also associated with dyslipidaemia and higher blood pressure.*®

¢ Adequate treatment of undernutrition during childhood with recovery in height and weight leads to
normalization of insulin activity, leptin, cortisol stress response, body composition and bone mineral
density.”’

An expanded, fully referenced version of this panel is available in Appendix 5
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Panel 3: The pivotal role of breast-feeding in mitigating the DBM

* Breast-feeding highlights the potential of maternal phenotype to reduce the risk of both components
of malnutrition in the offspring, whilst also promoting maternal health. First, breast-feeding is strongly
protective against diarrhoea and infections in the offspring, and therefore reduces the risk of mortality,
stunting and wasting in early life.”* Second, breast-feeding constrains excess BMI in the offspring during
early sensitive periods, and there is suggestive evidence that it protects against later obesity, as well as
NCDs such as diabetes, though it is not associated with all NCD risk markers.”* Third, breast-feeding may
be considered to mitigate some of the maternal metabolic stresses induced by pregnancy. For example,
prolonged breast-feeding is associated with increased insulin sensitivity that persists at least two years
post-weaning, and reduces long-term diabetes risk of mothers as well as the risk of breast cancer.”
Given these beneficial effects, breast-feeding represents an ideal target for interventions, as explored in
Paper 3 in this series.’

e However, successful breast-feeding is challenged not only by societal constraints on women’s
autonomy and employment, but also by both forms of maternal malnutrition. Among severely under-
nourished mothers, low breast-milk volume and micronutrient status may affect growth and
micronutrient status of the offspring.”® Poor maternal diet reduces the diversity of the maternal
microbiome, which is then transmitted to the offspring where it is associated with increased risk of
severe malnutrition. Human milk oligosaccharides, unique to our species, play a key role in the
establishment of a healthy gut microbiome. Animal studies have already demonstrated that promoting
certain types of oligosaccharides increases lean tissue accretion in early life.”’

¢ At the other extreme, maternal obesity has been associated with lower likelihood of breast-feeding, as
well as reduced duration of any/exclusive breast-feeding. At the level of physiology, glucose intolerance
during pregnancy may impede milk synthesis and contribute to delayed lactogenesis, while excessive
gestational weight gain is associated with raised inflammatory markers in breast-milk.”® Recent studies
of diabetic women show that a longer duration of breastfeeding is necessary, compared to non-diabetic
women, to achieve the beneficial protective effects against childhood obesity (Appendix 11).”

¢ Both social support and metabolic health of the mother are therefore crucial to maximising the
success of breast-feeding, and capturing the health benefits to both mother and offspring. Maternal
dietary intake, NCD status and the composition of the maternal microbiome are all potential targets for
interventions, but further work is required to better understand the mechanisms and to develop

effective solutions.

21



615
616
617
618
619
620
621
622
623
624
625
626

627
628

629
630
631
632
633
634

635
636

637
638
639
640
641
642
643
644
645
646
647
648
649
650

Legends for illustrations

Figure 1. Complex inter-connections between inter-generational cycles of undernutrition and nutritional
excess and the impact of nutrition transition. The inter-generational cycle of undernutrition (blue)
associated with energy-inadequate diets and micro-nutrient deficiencies constrains growth and reduces
the metabolic capacity for homeostasis, while the inter-generational cycle of over-nutrition (red)
associated with energy-dense diets is characterized by excess metabolic fuel and elevated adiposity,
each of which challenges homeostasis. Both cycles of malnutrition contribute to a wide range of adverse
health outcomes (grey), while specific diseases also increase the risk of malnutrition (black). Through
nutrition transition, individuals shift between these cycles within the life-course, both increasing the risk
and exacerbating the magnitude of health penalties. This framework helps identify connections
between many different forms of ill-health — eg LBW, stunting, central obesity, diabetes, and caesarean

delivery.

Figure 2. (a) Associations of stunting in 12 populations with maternal nutritional phenotype. Maternal
short stature elevates the risk of stunting, whereas maternal overweight or obesity tend to reduce the
risk. However, these protective effects vanish if overweight/obese mothers are also short. (b)
Associations of caesarean section risk in 11 populations with maternal nutritional phenotype. Maternal
short stature and overweight/obesity both tend to elevate the risk, and more so when they occur in
combination. Based on DHS survey data. All models adjust for wealth, parity and offspring sex, full

details are given in Appendix 6.

Figure 3. Rapid transition and evolution of the DBM in India over the last 40 years, based on data from
rural and urban cohorts in Pune. Rural mothers (FO generation) show the legacy of multigenerational
undernutrition (stunting and underweight during reproductive years, low energy intake and excess
physical activity from subsistence farming, multiple micronutrient deficiencies and low rates of
gestational diabetes). The contemporary urban cohort shows improved nutrition, lower physical activity
and moderate rates of gestational diabetes (GDM). The urban cohort of GDM women are
overweight/obese and have diets providing excessive energy though inadequate micronutrients,
coupled with very low physical activity. Babies born to rural mothers had low average weight and a
characteristic ‘thin-fat’ composition (low lean mass but high fat mass compared to European babies).
Babies in the urban cohort had somewhat higher birthweight but were still ‘thin-fat’. Though the babies
born in GDM pregnancies were the heaviest, a fourth were still SGA and 11% LGA by INTERGROWTH
criteria.” The rural F1 young adults were still thin though adipose, and 25% have prediabetes and 15%
GDM, representing a DBM within one lifetime. Their babies were 200g heavier at birth than their
mothers, highlighting an intergenerational effect of the DBM. The urban and GDM cohorts highlight the

progressively increasing burden of adiposity and glucose intolerance at younger age.
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