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Abstract

Financial networks are an important source of systemic risk, but often only partial
network information is available. In this paper, we use data on bank-firm credit
relationships in Japan and conduct a horse race between different network recon-
struction methods in terms of their ability to reproduce the actual credit networks.
We then compare the different reconstruction methods in terms of their implied
levels of systemic risk based on a standard model of price-mediated contagion. We
find that the observed credit network displays relatively high levels of systemic risk
compared with most reconstruction methods. Lastly, we explore whether different
policies can improve the robustness of the system.
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1 Introduction

The 2007-09 financial crisis has brought the interconnectedness of the financial system
to light, and financial networks have been identified as an important source of sys-
temic risk. Accordingly, the regulatory framework has taken a more macroprudential
perspective to maintain the stability of the system as a whole. For example, Basel III
includes capital surcharges for systemically important financial institutions.

Stress tests are an important tool to assess the vulnerability of a given financial
network. To this end, detailed data on (direct or indirect) interactions between indi-
vidual financial institutions is needed. However, it is difficult to collect such data in full
and to make them readily available to researchers (e.g., due to data confidentiality),
such that we generally do not have complete information about financial networks.
For example, Haldane (2015) suggests that even among the world’s largest banks the
collection of interbank exposure data is partial, and even regulators often do not have
complete information (Glasserman and Young (2016)). In response, several data col-
lection initiatives have been proposed, but granular interaction-specific data generally
remain unavailable (Anand et al. (2017)).

Finding accurate reconstruction methods for financial networks from partial infor-
mation is therefore an important topic. Most of the existing work focuses on the case of
interbank credit networks (Squartini et al. (2017); Gandy and Veraart (2017); Anand
et al. (2017)). Over the last decade, common asset holdings (or overlapping portfolios)
have been identified as an important source of systemic risk via price-mediated conta-
gion (Shleifer and Vishny (2011); Caccioli et al. (2014); Greenwood et al. (2015); Cont
and Wagalath (2016); Gualdi et al. (2016); Lillo and Pirino (2015); Fricke and Fricke
(2019)). The idea is (that, when they suffer a decline in their investment portfolios,
leveraged investors often have to liquidate (parts of) their investments (Adrian and
Shin (2010)). Such liquidations can have systemic effects when asset sales are syn-
chronized among many investors, potentially leading to fire sale contagion dynamics.
Empirical evidence suggests that fire sales occur in many different markets (see, e.g.,
Pulvino (1998) for real assets, Coval and Stafford (2007) for equities, and Ellul et al.
(2011) for corporate bonds), which can result in contagious dynamics between asset
classes (see, e.g., Manconi et al. (2012)).1 Hence, understanding the structure and
dynamics of common asset holdings is important (Fricke (2016)), but often hampered
by data availability.

In this paper, we focus on reconstructing and stress testing bipartite credit networks
using detailed micro-data on bank-firm credit interactions in Japan for the period
1980 - 2010. We explore the performance of several network reconstruction methods
at different aggregation levels along two different dimensions. First, we look at their
capability to reproduce the topological features of the observed credit networks. This
part of the paper is closest to some recent works on unipartite interbank networks
(e.g., BIS (2015), Anand et al. (2017), and Mazzarisi and Lillo (2017)). Different
reconstruction methods require different amounts of information as inputs, and we

1Fire sales are also dangerous because they provide an incentive for banks to hoard liquidity, a
behavior that can potentially lead to a complete freeze of the financial system (Diamond and Rajan
(2011); Gale and Yorulmazer (2013)).
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aim to understand how adding such information affects a method’s performance, since
one would expect that methods that take more information into account should be
able to reproduce the network more accurately. Interestingly, we find that this is not
always the case. Overall, there is no single ”best” reconstruction method - it depends
on the assumed criterion of interest.

We then test each method’s ability to reproduce observed levels of systemic risk.
For this purpose, we use the fire-sale stress test of Huang et al. (2013) and apply it to
the actual and the reconstructed credit networks. To the best of our knowledge, this
is the first paper to conduct a horse race of bipartite network reconstruction methods
in terms of their implied levels of systemic risk.2 Our main findings are as follows:
first, we identify a significantly negative time trend for the observed systemic risk
levels of the Japanese banking system, suggesting that the system has become less
vulnerable to systemic asset liquidations over time. Second, in many instances the
actual credit networks display the highest levels of systemic risk, at least for the most
disaggregated bank-firm interactions. In other words, many reconstruction methods
tend to underestimate systemic risk. This is remarkable given that the reconstruction
methods under study here can generate completely different network architectures;
for example, the MaxEntropy (MinDensity) approach yields a maximally (minimally)
connected credit network. Moreover, we find that the network aggregation level can
affect the performance of the different reconstruction methods.

Lastly, given that the observed credit networks tend to display relatively high
levels of systemic risk compared to most reconstruction methods, we explore different
policies (such as merging or breaking-up banks, or leverage caps) in order to improve
the robustness of the system. Our main finding is that no single policy can reduce
the systemic risk level of the actual network to that of the most stable reconstruction
method. Nevertheless, we find that leverage caps and bank mergers could improve the
robustness of the network. This finding is driven by the fact that the largest banks in
our sample tend to be less leveraged. Therefore, merging those banks results in a very
large, but moderately leveraged bank which is less likely to spread shocks through the
system.

Overall, this paper contributes to different strands of literature: first, we add to
the growing literature on reconstructing financial networks from partial information
(Squartini et al. (2017); Gandy and Veraart (2017); Anand et al. (2017); Squartini
et al. (2018)). For the case of bipartite networks we are only aware of the works of
Di Gangi et al. (2018) and Squartini et al. (2017). Given that most reconstruction
methods have been designed for the case of unipartite credit networks, we adjust
some of these methods to the case of bipartite networks. Second, we contribute to
the literature on systemic risk assessment by performing stress tests both for the
actual and the reconstructed credit networks in Japan. Lastly, we contribute to the
literature that explores the effects of aggregation on stress test results. For example,
Hale et al. (2015) study the optimal aggregation level for stress testing models on
macroeconomic variables, and they find that the aggregation level matters. We obtain
a similar conclusion based on a completely different stress testing approach.

2Some related papers for the case of unipartite interbank networks are Mistrulli (2011), Anand
et al. (2015), and Gandy and Veraart (2017).
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The remainder of this paper is structured as follows: Section 2 defines the credit
network at different aggregation levels, and section 3 briefly describes the dataset. In
section 4, we explore the performance of network reconstruction methods in terms of
their ability to match the observed credit network topology. In section 5, we look at
the capability of each methods to reproduce the observed levels of systemic risk. In
section 6, we analyze different policy measures in order to improve the robustness of
the system. Section 7 summarizes the main findings and concludes.

2 The Credit Network

Let us start by defining the credit network at different aggregation levels. The most
granular data (disaggregated level) is the credit interaction network between banks
and firms. The baseline credit network consists of two distinct sets of nodes, where
the first set contains a total number of nB nodes (banks), and the second set a total
of nF nodes (firms). A link exists between a bank and a firm when there is a credit
relationship between the two. The network is bipartite, since links can only arise
between banks and firms.

This credit network can be represented as a rectangular matrix of size (nB × nF ),
which we denote by W. An element wij of this matrix represents the total value of
credit extended by bank i to firm j at a given point in time.3 The value of wij can
thus be seen as a measure of link intensity. The total loan volume can be calculated
as

v =
∑

i

∑

j

wij.

For what follows, it is also useful to define the strengths of banks and firms as their
corresponding loan volumes:

sBi =
∑

j

wij

and
sFj =

∑

i

wij

for bank i and firm j, respectively.

We also define the binary adjacency matrix, B, where each element bij = 1 if
wij > 0 and zero otherwise. From the binary network matrix, we calculate the total
number of links

m =
∑

i

∑

j

bij.

In addition, we define the degrees of banks and firm as their corresponding number of
connections:

kBi =
∑

j

bij

3We drop time subscripts in the following, but it should be clear that matrix W changes over
time.
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and
kFj =

∑

i

bij.

Following Fricke and Roukny (2018), we also look at an aggregated version of the
credit (bank-industry) network, which we denote by WI. In this case, the second
set of nodes is defined based on firms’ industry affiliations, with a total number of
nI industries. We can represent firms’ industry affiliations using a new matrix A of
dimension (nF × nI), where ajk = 1 if firm j is affiliated with industry k.4 Given this,
WI can be obtained by multiplying W with A. In line with the definitions for the
original bank-firm credit network, we can define the same network indicators (strength
and degree sequences, respectively) for the aggregated network.

Note that an important reason for also exploring the aggregated networks is that
(at least some rough) information on banks’ investments in different industries/asset
classes should be more easily available than detailed microdata on asset-specific in-
vestments. From this perspective, the analyses based on the aggregated networks are
likely to be most relevant for researchers that have only relatively coarse information
on banks’ asset portfolios.

Finally, we consider an intermediate level in which we apply the network reconstruc-
tion methods at the disaggregated level (bank-firm) and then aggregate the network
according to firms’ observed industry affiliations (thus giving us a different bank-
industry credit network). This particular aggregation level is of interest in the case
when there is sufficient data to perform network reconstruction at a more granular
level (e.g., firm level), but the network needs to be analyzed at a more aggregated
level (e.g., sector level), for instance because of confidentiality issues that prevent re-
porting results associated with individual institutions. We denote the intermediate
aggregation level as W → WI and calculate the same network indicators also as for
the other levels. We summarize the three different aggregation levels in Table 1.

Aggregation
level

Network
reconstruction

Systemic risk
analysis

Disaggregated disaggregated disaggregated

Aggregated aggregated aggregated

Intermediate disaggregated aggregated

Table 1: Summary of the three different aggregation levels. At the intermediate level,
we perform the network reconstruction at the disaggregated data, and conduct the
systemic risk analysis at the aggregated version of that reconstructed network.

4In our dataset, each firm is only affiliated with its major industry. In principle, one could allow
for multiple industry affiliations, in which case ajk would represent the fraction of firm j’s sales in
industry j.
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3 Data

In this paper we use historical data on bank-firm credit interactions in Japan from
the Nikkei NEEDS database for the period 1980 - 2013.5 The database provides
extensive accounting and loan information for all listed companies in Japan, and since
1996 it also covers firms traded in the JASDAQ (OTC) market. The dataset contains
information on firms outstanding loan volumes from each lender at the end of the firms
fiscal year, based on survey data (compiled by Nikkei Media Marketing, Inc.). We use
the sum of short- and long-term borrowing in everything that follows. Table 2 shows
some summary statistics in terms of the size and connectivity of the credit network at
different aggregation levels over time.6 Given that our analyses are computationally
intensive, we restrict ourselves to the years of data as shown in the first column of
Table 2.7

Panel A - Disaggregated

Year Size
v

(×1013)
Density k̄B k̄F r

C
(×10−2)

NODF

1980 151 × 1386 3.395 0.093 128.377 13.986 -0.299 0.272 0.441
1985 148 × 1443 4.350 0.088 127.770 13.105 -0.290 0.251 0.437
1990 148 × 1443 6.249 0.081 125.762 12.236 -0.306 0.218 0.427
1995 145 × 1734 7.031 0.081 140.938 11.785 -0.302 0.212 0.444
1996 147 × 2523 7.525 0.070 175.782 10.242 -0.292 0.141 0.406
2000 135 × 2607 5.987 0.061 160.304 8.301 -0.273 0.091 0.387
2005 123 × 2569 2.469 0.042 109.423 5.184 -0.272 0.029 0.322
2010 116 × 2296 2.814 0.042 96.474 4.874 -0.215 0.028 0.359

Panel B - Aggregated

Year Size
v

(×1013)
Density k̄B k̄I r C NODF

1980 151 × 33 3.395 0.516 17.033 77.939 -0.336 0.192 0.824
1985 148 × 33 4.350 0.500 16.507 74.030 -0.344 0.181 0.823
1990 151 × 33 6.250 0.498 16.424 75.152 -0.351 0.181 0.810
1995 145 × 33 7.031 0.518 17.090 75.091 -0.341 0.195 0.834
1996 147 × 34 7.526 0.536 18.238 78.853 -0.344 0.206 0.852
2000 135 × 34 5.987 0.508 17.260 68.529 -0.349 0.177 0.839
2005 123 × 34 2.470 0.488 16.585 60.000 -0.340 0.151 0.822
2010 116 × 34 2.814 0.461 15.664 53.441 -0.330 0.134 0.819

Table 2: Properties of the credit networks at different aggregation levels over time.
Panel A shows the properties of W. Panel B shows the properties of WI. k̄B and
k̄F (I) correspond to the average degree of banks and firms (industries) respectively.
As defined in the main text, r denotes the assortativity, C denotes the clustering
coefficient, and NODF denotes the nestedness.

In Table 2, we present several basic network characteristics of our dataset. Specif-
ically, we show the assortativity, the clustering coefficient, and the nestedness. In the
following, we define the measures of those characteristics for the bank-firm network at

5See https://www.nikkeieu.com/needs/needs_data.html for details.
6A detailed explanation of the dataset, summary statistics, and a brief history of the Japanese

financial system can be found in Fricke and Roukny (2018).
7Given that bank-firm interactions are highly persistent, the structure of the credit network is

quite stable over time.
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the disaggregated level. In line with these definitions, we can define the same measures
for the bank-industry network at the aggregated level.

Assortativity is the tendency of banks to connect to firms (industries) with similar
characteristics, and vice versa. We define assortativity, r, as the Pearson correlation
coefficient of the degrees of connected banks and firms. Note that r lies in the range
[−1, 1] in which positive value indicates an assortative network while negative value
denotes a disassortative network. A network is said to be assortative when high degree
banks (low degree banks) are connected to other high degree firms (low degree firms)
on average. Meanwhile, a network is said to be disassortative when high degree banks
(low degree banks) are connected to other low(er) degree firms (high(er) degree firms)
on average. Here we find that the networks are generally disassortative, both at the
disaggregated level and the aggregated level. This means that low-degree banks and
low-degree firms rarely interact with each other.

The clustering coefficient measures the degree to which nodes in a network tend to
form clusters. In a unipartite network it is usually defined as the number of observed
triangles (three closed connected nodes) relative to the maximum possible number of
triangles. Since our network is bipartite, links can only exist between different sets
of nodes (banks and firms/industries), thus triangles can not be formed. Therefore,
following Zhang et al. (2008), we consider squares instead of triangles as the basic
cycle here, such that the local clustering coefficient is defined as the ratio between the
number of observed squares relative to the maximum possible number of squares,

Cmn(i) =
qimn

(km − ηimn) + (kn − ηimn) + qimn
(1)

where m and n are a pair of neighbors of node i (see Figure 1 for an illustration), qimn
is the number of squares which include these three nodes, while ηimn = 1 + qimn.

Figure 1: Illustration of calculating the observed and the possible squares in a bipartite
network (Zhang et al. (2008)). In this figure, m and n are a pair of neighbors of node
i. Here we observe 1 square cycle (qimn = 1) that consists of node imbn, and 4 possible
squares (iman, imbn, incm, indm).

Let Crow(i) and Ccol(i) are the average Cmn(i) of node i across all possible com-
bination of its pairs of neighbors m and n, we then calculate the global clustering
coefficient as,
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C =
1

nB + nF




nB∑

i=1

Crow(i) +
nF∑

i=1

Ccol(i)


 , (2)

which ranges between [0, 1]; higher values indicate a more clustered network, and a
value of 1 corresponds to a perfectly clustered network. Put simply, in our case higher
clustering would indicate that banks tend to cluster their investments on the same set
of firms (or industries), or equivalently, firms (or industries) tend to borrow from the
same banks. Table 2 shows that the networks are clustered at the aggregated level but
not at the disaggregated one.

Lastly, nestedness quantifies the degree to which low-degree banks (firms/industries)
tend to interact with a subset of firms/industries (banks) that the high-degree banks
(firms/industries) interact with. We follow Almeida-Neto et al. (2008) and use NODF
(Nestedness metric based on Overlap and Decreasing Fill) as our measure of nested-
ness

NODF =

∑
ij G

row
ij +

∑
ij G

col
ij

nB(nB − 1)/2 + nF (nF − 1)/2
, (3)

where

Grow
ij =

{
0 if ki ≤ kj∑nF

d=1 I{bid = 1 AND bjd = 1}/min(ki, kj) otherwise.
(4)

is the paired overlap of rows i and j, which is simply the fraction of 1’s (which denotes
to the existence of a link) present in both rows i and j. A similar term Gcol

ij is used to
compute the percentage of paired overlap of columns i and j. NODF lies in the range
[0, 1]; higher values correspond to higher nestedness, and a value of 1 indicates a per-
fectly nested network. Table 2 shows that all networks are nested at both aggregation
levels, suggesting a strong overlap of Japanese banks’ loan portfolios (see Fricke and
Roukny (2018)).8

In summary, Table 2 shows that the disaggregated credit networks are sparse,
disassortative, and nested. On the other hand, the aggregated networks are also disas-
sortative and nested, but also dense and clustered. We now aim to find reconstruction
methods that are able to reproduce these features.

4 Network Reconstruction

The literature on network reconstruction is concerned with finding appropriate null
models (i.e., network randomizations) that replicate certain features of the actual
network. In this paper, we look at four different network reconstruction methods that
have been found to be of importance for unipartite financial networks (see Anand et al.
(2015); Anand et al. (2017); BIS (2015); Gandy and Veraart (2017); Mazzarisi and

8Note that these values cannot be used to assess the significance of nestedness. For this, one would
have to compare them with what would be expected at random, i.e., using different null models. This
is not the aim of this paper, but the results in Table 5 suggest that the actual credit networks indeed
tend to show higher NODF values than their random counterparts.
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Lillo (2017); Mistrulli (2011)).

As in Anand et al. (2017), we focus on the independent reconstruction of the static
credit networks for each year. As such, we do not take into account the existence of
previous bank-firm credit relationships and do not explicitly model time variation in
the observed network topologies due to certain economic mechanisms. For example,
additional models that explicitly take memory and/or preferential lending into account
(De Masi and Gallegati (2012); Iori et al. (2015); Hatzopoulos et al. (2015)) could
potentially improve network reconstruction. Here we focus exclusively on methods
that preserve certain features of the observed network. This choice is justified by the
fact that, among others, Hatzopoulos et al. (2015) find that preferential lending in
interbank networks is largely driven by the degree distribution.

Existing reconstruction methods can be classified in terms of the inputs needed to
reconstruct the network, the desired network features, and the outputs. To reconstruct
a given interbank network, for example, all methods use the information of banks’ ag-
gregate borrowing and lending positions, respectively. In this way, the total size of
the system and the size of each individual market participant are expected to match
the actual values. In addition, some methods also use the system’s overall connec-
tivity (Squartini et al. (2017)), while others use each bank’s individual connectivity
(Squartini and Garlaschelli (2011)). In terms of the desired network features, some
methods focus on minimizing the total number of connections (Anand et al. (2015)),
while others focus on minimizing the exposure with respect to each counterparty (Up-
per (2011)). Lastly, in terms of their outputs, some methods produce a single network
for a given set of partial information, while others generate an ensemble of networks.
Several available network reconstruction methods, including some that we explore in
this paper, have been compared with each other previously for unipartite interbank
networks, but this is one of the first studies to focus on bipartite financial networks.

4.1 Null Models

Let us briefly describe the different null models used in this paper (see Table 3 for an
overview).

4.1.1 Details

Maximum Entropy (MaxEntropy). First, we look at the well-known method
of Maximum Entropy (MaxEntropy). In the literature on financial networks, Max-
Entropy is often considered as the standard approach to derive individual interbank
liabilities in the absence of further information. It has been widely used to reconstruct
interbank networks of different countries (see Upper (2011); Anand et al. (2015)). The
main characteristic of MaxEntropy is that it generates fully connected networks, i.e.,
it assumes maximum diversification. Di Gangi et al. (2018) show that, in the case of
bipartite networks, MaxEntropy implies that all market participants hold the exact
same (market) portfolio.

8

                  



Null model Required information Definition and remarks

Configuration
Model 1 (CM1)

kB , kF (kI), sB , and
sF (sI) sequences

Generates ensemble of networks.

Link allocation: based on the approach of Squartini
and Garlaschelli (2011), but adjusted for bipartite
network. The probability of link existence between
every two nodes in the network,

pij =
θiγj

1+θiγj
,

is calculated by solving:

∑
j

θiγj
1+θiγj

= kBi ∀i, ∑
i

θiγj
1+θiγj

= kFj ∀j.

for θ and γ.

Weight is allocated using RAS.

Configuration
Model 2 (CM2)

sB and sF (sI) se-
quences and m

Generates ensemble of networks. Using fitness
model.

Link allocation: based on the approach of Squartini
et al. (2017). The probability of link existence
between every two nodes in the network,

pij =
zViVj

1+zV iV j ,

is calculated by solving

∑
i

∑
j

zViVj

1+V iV j . = m

for θ and γ.

Weight is allocated using RAS.

Maximum
Entropy

(MaxEntropy)

sB and sF (sI) se-
quences

Simple implementation of standard maximum en-
tropy approaches. Produces completely connected
network. Generates one single network. Economic
interpretation: each node is as diversified as possi-
ble.

Minimum
Density

(MinDensity)

sB and sF (sI) se-
quences

Each bank and industry have the same total loan
amounts but we minimize the total number of links.
Generates ensemble of networks due to multiple pos-
sible solutions. Economic interpretation: each node
is as specialized as possible. Based on the approach
of Anand et al. (2015), but adjusted for the case of
bipartite networks.

Table 3: Summary different network reconstruction methods used in this paper.

9

                  



Minimum Density (MinDensity). Second, we look at the Minimum Density ap-
proach (MinDensity) of Anand et al. (2015). This method was developed to acknowl-
edge the fact that real financial networks tend to be sparse, in which case using Max-
Entropy is rather problematic (Mistrulli (2011)). In a sense, MinDensity can be seen
as the opposite extreme of MaxEntropy, given that it starts from the premise that es-
tablishing/maintaining links is costly, which is in line with the fact that most banking
networks are sparse. As a result, banks do not spread their borrowing and lending
across the entire system, and MinDensity identifies the network that satisfies the total
aggregate positions with the minimum number of links. This assumption is in line
with the fact that relationship banking is of the utmost importance in most banking
systems. Since the MinDensity-algorithm may yield multiple solutions, we treat this
algorithm as an ensemble method. In our specific case, the bank-firm networks are
sparse as well (see Table 5). On the other hand, the aggregated bank-industry net-
works are dense, such that MinDensity is likely to have difficulties in replicating the
aggregated networks.

Configuration Models (CM). Lastly, we use two different versions of the popular
configuration model (CM). CMs are probably the most popular types of random graph
models because they allow to randomize a given network while preserving its degree
distribution. As such, CM can be quite restrictive. CMs have been previously explored
in different fields, from sociology to biology (see Fosdick et al. (2016) for an overview),
and several of them have been applied in financial network settings (Squartini and
Garlaschelli (2011); Musmeci et al. (2013); Mastrandrea et al. (2014); Cimini et al.
(2015b); Squartini et al. (2017)). We are aware of only one other application that
applies the CM to bipartite financial networks (Squartini et al. (2017)).

The first configuration model, CM1, is based on Squartini and Garlaschelli (2011),
but adjusted for the case of bipartite networks. In addition to the strength sequences,
CM1 requires the degree sequences of all nodes as additional inputs, thus preserv-
ing the exact degree distributions. The second configuration model, CM2, is based
on Squartini et al. (2017), which extends the reconstruction method for unipartite
networks introduced in Cimini et al. (2015b) to the bipartite case. CM2 preserves
the degree distribution as well, but only requires the total number of links additional
input. Hence, CM2 needs less detailed information compared to CM1.

We should stress that, in contrast to MaxEntropy and MinDensity, both CMs
produce binary instead of weighted networks.9 After obtaining a randomized adjacency
matrix, we need to distribute the observed credit volumes across links. There are
different approaches for this (see Table A.1 in the Appendices for an overview), but in
the following we use the standard RAS algorithm of Blien and Graef (1998).10

9The original model of Squartini et al. (2017), where CM2 is based on, generates weighted net-
works. However, here we only consider part of their method to produce binary networks. This part
of their method is based on the work of Saracco et al. (2015) where the formalism for the fitness
bipartite is first introduced for the world trade web.

10The RAS algorithm generally performed best in our analysis (in terms of the corresponding
L1-error), but we also experimented with the other weight allocation methods mentioned in Table
A.1 in the Appendices. The results are qualitatively similar to what is shown here. Details available
upon request from the authors.
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Method
Input Output

Aggregate
positions

Total links
Degree

sequence
Single Ensemble

CM1 v v v v

CM2 v v v

MaxEntropy v v

MinDensity v v

Table 4: Summary classification of the methods based on the input and the output.

Table 3 provides more technical details of our implementation of the four null mod-
els. Table 4 summarizes the differences in terms of the required inputs and the outputs.
It should be clear that CM1 requires the most detailed information as inputs (followed
by CM2), while MaxEntropy and MinDensity require only the strength sequences.
Furthermore, CM1, CM2 and MinDensity can produce an ensemble of networks while
MaxEntropy generates one single output for any particular input.

4.1.2 Illustration

(a) Actual (b) CM1 (c) CM2

(d) MaxEntropy (e) MinDensity

Figure 2: Weighted credit network bank-industry in 2010 and one realization for each
of the four reconstruction methods. Data are log transformed. Warmer colors indicate
stronger links, and white dots correspond to the absence of a link.

In order to provide some intuition for the typical outputs of each method, Figure 2
shows the weighted version of the actual aggregated credit network (log-transformed)
for the year 2010 and one realization of each corresponding null model. Warmer colors
denote stronger relationships, and white dots correspond to the absence of a link.
It becomes clear that different reconstruction methods can generate very different
network architectures - for example, MaxEntropy produces a fully connected credit
network while MinDensity yields a highly compartmentalized and sparse network. In
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this specific case, MinDensity needs less than 5% of the total links in the actual network
to distribute the weight (the actual density is around 46%). The two CMs, on the other
hand, tend to produce networks that are visually much closer to the actual one. As
such, it is natural to expect that these will perform well.

4.2 Defining Relevant Dimensions of Comparison

In this section we define the different dimensions along which we will compare the
actual credit networks and the reconstruction methods.

4.2.1 Network Characteristics

To understand how similar the statistics of the reconstructed networks are to the
actual networks, we compare their density, average degree, assortativity, clustering
and nestedness (as defined in the previous section) at the different aggregation levels.

4.2.2 Allocation of Links and Weights

In addition to comparing specific network properties, we also look at the performance
of each method in terms both of placing links and distributing weights correctly, re-
spectively. In the following, we formally define the network similarity measures for the
bank-firm credit network. In line with these definitions, we can define similar measures
for the bank-industry credit network.

Link Allocation. In order to understand the ability of a method to reproduce cor-
rect links in the network, we calculate the values of Accuracy, Sensitivity, and Speci-
ficity. We define the Accuracy of a given reconstructed network as

Accuracy =
1

nB × nF
nB∑

i=1

nF∑

j=1

(I{bij = 0 and b̂ij = 0}+ I{bij = 1 and b̂ij = 1}), (5)

where b̂ij equals 1 if there is a link between nodes i and j in the reconstructed network
of a given null model. Put simply, Accuracy tells us the total number of links and
non-links that are allocated correctly, relative to the size of the network.

Sensitivity

Sensitivity =
1

m

nB∑

i=1

nF∑

j=1

(I{bij = 1 and b̂ij = 1}), (6)

measures the number of actual links correctly allocated.
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Lastly, Specificity

Specificity =
1

nB × nF −m
nB∑

i=1

nF∑

j=1

(I{bij = 0 and b̂ij = 0}, (7)

measures the number of non-existing links correctly allocated. These three measures
take values in the range [0, 1], with higher values corresponding to greater similarity.

Weight Allocation. We are also interested in quantifying the ability of each null
model to reproduce the observed link weights in the credit network. For this purpose,
we use three different measures: L1-error, root-mean-square deviation (RMSE) and
cosine similarity (Cos-Sim). L1-error is defined as

L1 =
nB∑

i=1

|ŝBi − sBi |+
nF∑

j=1

|ŝFj − sFj | (8)

which allows us to understand how well the reconstructed network is able to satisfy the
aggregate positions, which is the total borrowing (lending) of banks (firms/industries),
in the actual network. As mentioned previously in Table 3 and Table 4, all null models
are expected to reproduce the actual aggregate positions. Therefore, L1-error measures
the degree to which those constraints have been satisfied by a given null model. In
everything that follows, we scale the L1-error by the average lending volume of banks
in the actual network.

Additionally, we calculate RMSE which is defined as

RMSE =

√∑nB

i=1

∑nF

j=1(ŵi,j − wi,j)2

nB × nF , (9)

where ŵi,j is the allocated credit volume of bank i to firm j in a given reconstructed
network. In everything that follows, we scale RMSE by the average exposure of a link
in the actual network which makes values comparable over time.

Cosine Similarity as

Cos− Sim =

∑nB

i=1

∑nF

j=1 ŵi,jwi,i√∑nB

i=1

∑nF

j=1 ŵ
2
i,j

√∑nB

i=1

∑nF

j=1w
2
i,j

. (10)

to quantify deviations in the weight allocation across all links in the network.

L1-error and RMSE have values in the range [0,∞] with lower values corresponding
to greater similarity. Meanwhile, Cos-Sim has values in the range [0,1] and higher
values correspond to greater similarity.
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4.3 Results on Horse Racing Different Methods

In this section, we show the empirical results on horse racing the different network
reconstruction methods. For each year under study and each null model, we generate
100 network realizations for each aggregation level. We then calculate the average
of each of the characteristics mentioned previously. For the sake of brevity and also
illustrative purposes, in the following we only show results for the year 2010, but the
results are qualitatively similar for other years and do not affect our main conclusions.

The main results for the three aggregation levels can be found in Tables 5 (network
statistics) and 6 (link/weight similarity). In all cases, the best method for each statistic
is highlighted using the ? symbol. Let us briefly describe the results for the different
aggregation levels.

Network characteristics

Disaggregated Density k̄B k̄F r
C

(×10−2)
NODF

W(116× 2296) 0.042 96.474 4.874 -0.215 0.028 0.359
CM1 0.042 96.601 4.881 ?-0.205 ?0.028 ?0.366
CM2 ?0.042 ?96.510 ?4.876 -0.321 0.062 0.254
MaxEntropy 1.000 2296 116 NaN 1.000 0.000
MinDensity 0.009 20.789 1.050 -0.125 0.000 0.009

Network characteristics

Aggregated Density k̄B k̄I r C NODF

WI(116× 34) 0.461 15.664 53.441 -0.330 0.134 0.819
CM1 ?0.460 ?15.649 ?53.392 ?-0.370 ?0.136 ?0.821
CM2 0.461 15.683 53.507 -0.248 0.131 0.704
MaxEntropy 1.000 34.000 116.000 NaN 1.000 0.000
MinDensity 0.038 1.285 4.385 -0.224 0.000 0.044

Network characteristics

Intermediate Density k̄B ¯kF→I r C NODF

W→WI 0.461 15.664 53.441 -0.330 0.134 0.819
CM1 ?0.482 ?16.395 ?55.936 ?-0.308 ?0.152 ?0.798
CM2 0.493 16.771 57.218 -0.289 0.175 0.769
MaxEntropy 1.000 34.000 116 NaN 1.000 0.000
MinDensity 0.178 6.055 20.658 -0.329 0.019 0.442

Table 5: Comparison of the statistics between the actual credit network for year
2010 and the reconstructed networks for different aggregation levels. k̄B and k̄F (k̄I )
correspond to the average degree, r denotes the assortativity, C indicates the clustering
coefficient and NODF denotes the nestedness of the network. We highlight the best
reconstruction method for a given statistic (the value closest to the actual network)
using the ? symbol.

4.3.1 Disaggregated Level

At the disaggregated level (bank-firm), the top panel of Table 5 shows that the two
CMs tend to reproduce the features of the actual network reasonably well: the density,
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Link similarity Weight similarity

Disaggregated
Accu-
racy

Sensi-
tivity

Speci-
ficity

L1-error RMSE Cos-Sim

CM1 0.941 0.304 0.969 4.511 18.674 0.442
CM2 0.936 0.241 0.967 2.706 13.850 0.633
MaxEntropy 0.042 ?1.000 0.000 0.000 ?13.038 ?0.681
MinDensity ?0.955 0.071 ?0.994 ?0.000 27.896 0.278

Link similarity Weight similarity

Aggregated
Accu-
racy

Sensi-
tivity

Speci-
ficity

L1-error RMSE Cos-Sim

CM1 ?0.781 0.762 0.798 0.015 ?2.527 ?0.915
CM2 0.711 0.687 0.732 0.018 2.555 0.914
MaxEntropy 0.461 ?1.000 0.000 ?0.000 2.572 0.914
MinDensity 0.558 0.061 ?0.982 0.000 8.607 0.532

Link similarity Weight similarity

Intermediate
Accu-
racy

Sensi-
tivity

Speci-
ficity

L1-error RMSE Cos-Sim

CM1 ?0.767 0.771 0.764 4.511 2.675 0.905
CM2 0.738 0.750 0.726 2.706 ?2.530 ?0.915
MaxEntropy 0.461 ?1.000 0.000 0.000 2.572 0.914
MinDensity 0.668 0.333 ?0.954 ?0.000 3.676 0.836

Table 6: Link and weight similarity of the reconstruction methods with the actual
credit network in 2010 for different aggregation levels. Accuracy, sensitivity, specificity
and cosine similarity lie in the range [0,1] and higher values correspond to higher
similarity. L1-error and RMSE lie in the range [0,∞] with smaller values corresponding
to greater similarity. We highlight the best reconstruction method for a given statistic
(the value closest to the actual network) using the ? symbol.
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average degree, assortativity, clustering, and nestedness are always quite similar to
the actual values. On the other hand, MaxEntropy and MinDensity perform rather
poorly: for example, in terms of density MaxEntropy (MinDensity) produce much
higher (lower) values.

The results for link allocation and weight distribution (top panel of Table 6), are
broadly in line with those for the network characteristics: again the two CMs perform
relatively well across the different measures. In this case, however, the results are not
always consistent. For example, MinDensity achieves the highest Accuracy and the
lowest L1-error, but shows the worst Sensitivity, RMSE, and Cos-Sim. On the other
hand, MaxEntropy yields the worst Accuracy but the best RMSE and Cos-Sim. Not
surprisingly, MaxEntropy achieves the maximum Sensitivity simply because it predicts
a fully connected network.

We should also mention that both CM1 and CM2 generate relatively large L1-errors,
indicating that they do not manage to perfectly allocate the aggregate positions. This
is due to the nature of CM1 and CM2 as preserving the degree sequences only in
expectation, such that specific realizations can lead to some low-degree nodes being
inactive (or unconnected).11

4.3.2 Aggregated Level

Similar to the previous results, the center panel of Table 5 shows that the two CMs
tend to reproduce the observed network characteristics reasonably well at the aggre-
gated (bank-industry) level. In this particular case, CM1 consistently performs best.
For link/weight similarity, the results are also comparable (center panel of Table 6),
except for Sensitivity and Specificity which are again dominated by MaxEntropy and
MinDensity, respectively.

4.3.3 Intermediate Level

Lastly, the two bottom panels of Tables 5 and 6 show the results for the interme-
diate aggregation level, where we construct synthetic networks for the disaggregated
(bank-firm) level and then aggregate these to the industry level using firms’ observed
industry affiliations. Overall, the statistics shown here are very similar to those at
the aggregated level (with the exception of the L1-error, which is close to the value at
the disaggregated level), with CM1 performing best for the network statistics and the
Accuracy.

4.4 Summary and Discussion - Network Reconstruction

Previous studies on the reconstruction of interbank networks (e.g., Anand et al. (2017))
suggest that the best reconstruction method depends on the type of network character-
istics of interest. Our findings support this conclusion. We see, for example, that if we

11We also experimented with a minimum threshold in terms of active nodes’ degrees, but observe
a similar issue.
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(c) Intermediate

Figure 3: Standard box-plots of the (normalized) similarity measures between the
actual network and different network reconstruction methods (averaged over many
realizations). For each reconstruction method, we consider each of the measures in
the three categories of similarity under study: network characteristics, link similarity,
and weight distribution. We normalize each of these measures such that a value of
1 (0) indicates that the reconstructed network and the actual network are identical
(completely different) in terms of these features. We compute the metrics for each
synthetic network, and take the average of these quantities.
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focus the horse race on the number of non-existent links in the adjacency matrix that
are correctly estimated (Specificity), MinDensity which produces sparse networks is
clearly the winner. However, when we look at the number of links correctly estimated
(Sensitivity), MaxEntropy, which generates a fully connected network, outperforms all
other methods.

Given that our comparison is based on multiple network statistics, Figure 3 summa-
rizes the results by combining statistics for the individual features. For this purpose,
we normalize each measure in Table 5 (network characteristics) and Table 6 (link sim-
ilarity and weight distribution) such that each of them ranges between 0 and 1, where
the value of 1 (0) indicates that the reconstructed network and the actual network are
identical (completely different) in terms of these features. We compute the metrics
for each synthetic network, and take the average of these quantities. Figure 3 shows a
standard box-plot of the metrics of each reconstruction method that are averaged over
the realizations of the synthetic networks.12 Overall, we find that the two CMs consis-
tently perform the best, followed by MinDensity and MaxEntropy. We also note that,
in general, CM1 and CM2 succeed in reproducing the topological structure related to
the heterogeneity of links in the actual network (e.g., assortativity). This is important
since heterogeneity plays an important role for systemic risk in financial networks (Iori
et al. (2006), Banwo et al. (2016)).

Since CM1 and CM2 require more information relative to the other methods (degree
sequence and total degree, respectively), it seems clear that adding such information
improves the performance of the reconstruction methods (see also Mastrandrea et al.
(2014) and Cimini et al. (2015a)). This finding is in line with Gandy and Veraart
(2016), who suggests that using the information on aggregate positions only is not
sufficient to reconstruct certain topological properties of the network. Overall, it seems
reassuring that, despite the fact that CM1 requires more information than CM2, both
methods generate very similar networks (in some cases CM2 even outperforms CM1).
This indicates that the degree distribution of the network might indeed, to a certain
extent, be inferred without the full knowledge of the degree sequence. An obvious
follow-up question is to what extent CM2 would still perform well if we treated the
overall density as a free parameter. We leave this question for future research.

5 Systemic Risk Analysis

One of the main reasons why regulators and policymakers are interested in reconstruct-
ing financial networks from partial information is because of their potential contribu-
tion to financial instability. Therefore, exploring how well different methods are able
to reconstruct the observed networks is only the first step. The next step is to compare
how well the different network reconstruction methods are able to replicate the levels
of systemic risk of the actual credit networks. Clearly, this analysis is not independent
from the results of the previous section, in the sense that we would expect a method
that closely reproduces the actual networks to also yield similar systemic risk levels.

12Note that we ignore the average degree (since it is redundant with density) and assortativity
(since it is not defined for MaxEntropy) from the calculation.
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To the best of our knowledge, however, such an exercise has not been performed for
the case of bipartite financial networks.

5.1 Measuring Systemic Risk

Over the last decade, common asset holdings (or overlapping portfolios) have been
identified as an important source of systemic risk and several stress testing models have
been introduced (see Table B.1 in the Appendices for a comparison of different models).
In this paper, we use the stress testing model of Huang et al. (2013) in order to quantify
the vulnerability of the bipartite credit networks to systemic asset liquidations. The
model has also been used in a study of the Venezuelan banking system (Levy-Carciente
et al. (2015)) and is similar in spirit to the models in Greenwood et al. (2015) and
Caccioli et al. (2014).13
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Figure 4: Scatter plot of change in leverage and change in total asset of banks drawn
from our dataset. The left panel displays the results for 1980-95, and the right panel
shows the results for 1996-2013. Red lines show the best linear fit between the two
variables.

The model of Huang et al. (2013) uses a linear market impact function (always
yielding positive prices) and, in contrast to several other studies, assumes that banks
do not target their leverage. First, choosing a linear impact function can be seen as
more conservative, in the sense that we tend to overestimate the resulting price impact
of a given asset liquidation. Second, regarding the exclusion of leverage targeting, we
checked whether we find similar results as in Adrian and Shin (2010) for our sample
of Japanese banks. Figure 4 shows scatter plots of the change in leverage against the
change in total asset (both in percent) for two subsamples, with the best linear fits

13For the purpose of finding out how the systemic risk analysis might vary if leverage targeting
model (as in Greenwood et al. (2015)) and threshold model (as in Cont and Schaanning (2017)) are
used, we also performed the same exercise with these other models. We find that the rank ordering of
the different methods are generally consistent with those presented in the main text. See Appendices
for more details.
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shown as red lines. If Japanese banks were targeting fixed leverage values, we would
expect most observations to cluster around a vertical line at zero leverage growth. We
find that this is not the case for either of the subsamples under study here: for the
first subsample (1980-95), we find a positive relationship between the two variables,
suggesting that banks tended to use procyclical leverage during the first half of the
sample. Note that the left panel also shows results without the noisy 1988-90 data
which improves the fit dramatically. For the second subsample (1996-2013), the right
panel shows that that assuming no leverage targeting is again a reasonable assumption.
In fact, this plot looks similar to the corresponding Figure for non-financial, non-farm
corporates in Adrian and Shin (2010). This suggests that Japanese banks appear
to manage their leverage to a certain extent, but clearly do not seem to have fixed
leverage targets.

Let us briefly sketch the model details: let the total market value of asset j be
defined as Γj =

∑
i γi,j, with γi,j the amount of asset j owned by bank i. The basic

steps of the model are:

1. We shock a given industry j by reducing its market value to p ∈ [0, 1] times its
original value. Note that a value of p = x would mean that the market value of
industry j is reduced by x, or in other words it is a (1-x) shock to industry k.
Therefore, a smaller p corresponds to a larger shock.

2. Does any bank default? This occurs if a bank’s total assets drop below its
liabilities. (Process terminates if no bank defaults.)

3. If a bank i defaults, it liquidates all of its remaining asset holdings. This has
an indirect effect on other banks, because the market value of its assets drops
proportional to α ∈ [0, 1] times the bank’s current holdings. The unit price of a

liquidated asset j becomes a fraction
Γj−αγi,j

Γj
of its original price.

4. Back to step 2 ...

Note that α is a homogeneous (identical across assets) market impact parameter:
a value α = 0 corresponds to an extremely liquid asset, that is when any sales would
not alter the market value of the asset, while α = 1 corresponds to an extremely
illiquid asset, where sales could potentially push the market price down to 0.14 We
will show results for different values of p and α. In the following, we mainly focus
on a specific range of parameters. In particular, we consider loans to be relatively
illiquid and therefore focus on the upper range of the market impact parameter (α ∈
[0.6, 1]).15 Moreover, in line with previous studies on price-mediated contagion, we
consider relatively small values of the intial shock (p ∈ [0.6, 1]).16

We perform the above exercise separately for each industry j. At the aggregated
level, for each iteration we shock one node (industry), while for the disaggregated level

14Among other things, the liquidity of a loan might be dependent on its remaining maturity. We
leave a detailed calibration of the market impact parameter for future work.

15For α = 0.7, the asset price drops by 7% when 10% of the asset is liquidated; for α = 1, the
price drops by 10% when 10% of the asset is liquidated.

16Greenwood et al. (2015) consider a 50% write-off on GIIPS debts, while Cont and Schaanning
(2017) gradually increase the shock from 0% to 20%.
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we shock all the nodes (firms) that belong to the same industry. To quantify the
impact of a shock on industry j, we first define default rate

rj =
nBdefaultj

nB
(11)

as the ratio between the number of failed banks to the total number of active banks
in the network. We then define the probability of default

Pd =

∑nI

j=1 rj

nI
(12)

as the average of rj across all industries. This is our systemic risk measure and in the
following we use the terms systemic risk and Pd interchangeably. Finally, for a given
reconstructed network W̃ , we also define relative difference between the actual Pd and
the null model Pd as

Dr =
PW
d − P W̃

d

PW
d

. (13)

A positive (negative) value of Dr indicates that a given null model underestimates
(overestimates) the actual Pd.

5.2 Time Dynamics of Systemic Risk

Before going into the details regarding the different reconstruction methods, we first
quantify the level of systemic risk, Pd, over time. Figure 5 plots the Pd over time, both
for the disaggregated (left panel) and the aggregated level (right panel), respectively.
As a benchmark, we use a market impact parameter α = 0.7 and different values of the
initial shock p. The plots in Figure 5 suggest that Pd is substantially smaller in 2010
compared with the values earlier in the sample. In other words, in many instances the
level of systemic risk appears to have been reduced over time.
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Figure 5: Pd over time for the disaggregated (left panel) and the aggregated level (right
panel). We use α = 0.7 and various values of p.
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We also test for a significant trend in Pd for different values of α and p.17 We then
plot the corresponding p-value of the estimated trend as a heatmap in Figure 6, where
darker colors correspond to smaller p-values (i.e., significance) of the estimated trends.
The Figure shows that we obtain a significant trend for most values of p (except for
very large values) whenever α is relatively small.18
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Figure 6: Trend analysis. p-value of regression analysis of Pd against a constant and
a time variable (year), for different combinations of p and α. Darker color denotes a
smaller p-value.

5.3 Results on Horse Racing Different Methods

We now turn to a detailed analysis of the different null models and their implied levels
of systemic risk. As before, we focus our presentation on the results for one particular
year of data, namely 2010. We will see that the results shown here are again broadly
consistent over time. We will show three sets of results: first, Figures 7-11 show
heatmaps of Dr for all possible combinations of p and α. Second, Figure 8 allows us
to take a closer look at the systemic risk levels, Pd, for a specific choices of α as a
function of p in the range p ∈ [0.6, 1]. Third, to illustrate that our findings are robust
over time, Figure 9 shows the Pd’s over time for specific choices of α and p.

As for the network reconstruction part in section 4, we briefly discuss the results
separately for the three different aggregation levels. Table 7 then summarizes these
results.

17Technically, for a given combination of α and p, we regress the resulting Pd on a constant and a
time variable (year).

18For relatively large values of α the absence of a time trend in Pd is easily explained by the fact
that in these cases all banks will tend to default in every single year. Hence, Pd will be roughly
constant over time.
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Figure 7: Relative difference of the probability of default between actual network and
the null models (Dr) at the disaggregated level for α ∈ [0,1] (small to large market
impact) and p ∈ [0,1] (large to small initial shock). Data for year 2010. Warm color
corresponds to an underestimation of the actual network, while cold color indicates
an overestimation. Our main analysis focuses on small values of the initial shock and
large values of market impact, which is shown by the area inside the black dashed line
square.
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Figure 8: Pd for initial shock p ∈ [0.6, 1] and α = 0.7. Data for year 2010. Dotted
line indicates the value within one standard deviation. Inset: Pd for p ∈ [0.8, 1] and
α = 0.7 for network at disaggregated level.
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Figure 9: Pd over time for illiquid market impact α = 0.7 and initial shock p = 0.6 for
data of different years. Dotted line indicates the value within one standard deviation.
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5.3.1 Disaggregated Level

Figure 7 shows that the actual network tends to be the riskiest, because all null
models underestimate the actual Pd for most values of p and α. We observe that this
underestimation is consistent for the range of parameters that we consider here (small
initial shock and high market impact), which is shown by an area inside the black
dashed line in Figure 7. Moreover, all null models overestimate the actual Pd only in
a small region of the parameter space, for example when p = 0.9 (small initial shock)
and α = 0.1 (small market impact). Figure 7 also shows that the magnitude of the
underestimation gets larger as α increases.

Panel (a) in Figure 8 shows the performance of the null models for a specific value
of α = 0.7 as a function of specific values of p ∈ [0.6, 1]. All null models underestimate
the actual Pd, with CM1 being the closest match, followed by CM2, MinDensity and
MaxEntropy. We note that, for relatively smaller values of the initial shock (inset
in Figure 8, Panel (a)), MinDensity instead produces higher values of Pd than CM2.
This result is driven by the fact that MinDensity produces very sparse networks and
allocates very few assets to each banks (high concentration levels). Banks are therefore
vulnerable to idiosyncratic shocks in this case, and some banks can default due to the
initial shock. However, given that the portfolio overlap between banks is very low
in the MinDensity model, shocks cannot spread easily through the system and the
number of banks defaulting through fire sale cascades is rather small. The opposite is
true for CM2: when the initial shock is large enough to cause banks to default, the
shock can propagate to other banks. Therefore, for larger initial shocks, CM2 produces
higher values of Pd than MinDensity. Lastly, Panel (a) of Figure 9 shows the Pd over
time for specific parameters (α = 0.7 and p = 0.6). As for the 2010 data, the actual
network tends to be the most risky one.

5.3.2 Aggregated Level

The results for the aggregated networks are shown in Figure 10 and in Panel (b) of
Figures 8 and 9, respectively. With the exception of MinDensity, the actual network
tends to be the riskiest (at least for the 2010 data) and all other reconstruction methods
tend to underestimate the actual Pd for most values of p and α. As for MinDensity, it
overestimates (underestimates) the actual Pd for relatively small (large) initial shocks.
However, it should be noted that for the aggregated networks, MinDensity produces
the riskiest networks in terms of Pd in most years (see also Figure 9, Panel (B)). The
intuition for this finding is similar to our explanations for the disaggregated networks,
with the important difference that MinDensity tends to produce denser networks at
the aggregate level. Therefore, the initial shock can lead to bank defaults which then
spread the shock trough the system.

The results also suggest that the other reconstruction models (CM and MaxEn-
tropy) tend to produce values of Pd closer to each other. This suggests that data
aggregation may reduce differences among Pd’s of different null models. This is mainly
because aggregating data will result in a smaller number of nodes (assets) in the net-
work, so reconstruction models have fewer links to allocate. This reduces differences

26

                  



CM1

0.2 0.4 0.6 0.8 1  

0.2

0.4

0.6

0.8

1  

p

-1

-0.5

0

0.5

1
CM2

0.2 0.4 0.6 0.8 1  

0.2

0.4

0.6

0.8

1  

p

-1

-0.5

0

0.5

1

MaxEntropy

0.2 0.4 0.6 0.8 1  

0.2

0.4

0.6

0.8

1  

p

-1

-0.5

0

0.5

1
MinDensity

0.2 0.4 0.6 0.8 1  

0.2

0.4

0.6

0.8

1  

p

-1

-0.5

0

0.5

1

Figure 10: Relative difference of the probability of default between actual network and
the null models (Dr) at the aggregated level for α ∈ [0,1] (small to large market
impact) and p ∈ [0,1] (large to small initial shock). Data for year 2010. Warm color
corresponds to an underestimation of the actual network, while cold color indicates
an overestimation. Our main analysis focuses on small values of the initial shock and
large values of market impact, which is shown by the area inside the black dashed line
square.
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between the reconstructed networks.

5.3.3 Intermediate Level
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Figure 11: Relative difference of the probability of default between actual network and
the null models (Dr) at the intermediate level for α ∈ [0,1] (small to large market
impact) and p ∈ [0,1] (large to small initial shock). Data for year 2010. Warm color
corresponds to an underestimation of the actual network, while cold color indicates
an overestimation. Our main analysis focuses on small values of the initial shock and
large values of market impact, which is shown by the area inside the black dashed line
square.

For the intermediate aggregation level, the black dashed line in Figure 11, and
Panel (c) of Figure 8 show that MinDensity heavily overestimates the actual Pd. Hence,
MinDensity yields the most risky networks at this aggregation level. The Panel (c)
of Figure 9 also shows that these results are consistent over time. The reasoning for
this finding is again similar to what we saw at the other aggregation levels. The main
difference here is that the aggregation takes place after the MinDensity bank-firm
networks have been generated, which increases connectivity between banks and thus
allows shock to propagate more easily.
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5.4 Summary and Discussion - Systemic Risk Analysis

As for the network reconstruction part, Table 7 summarizes the results from the sys-
temic risk analysis. We rank the different methods, along with the actual networks,
based on the average Pd (standard deviations in parentheses) for the restriced param-
eter ranges (p ∈ [0.6, 1] and α ∈ [0.6, 1]).19

Rank
Disaggregated Aggregated Intermediate

Null model Pd Null model Pd Null model Pd
1 Actual 0.236 Actual 0.195 MinDensity 0.275

(0.164) (0.148) (0.159)
2 CM1 0.163 MinDensity 0.193 Actual 0.195

(0.128) (0.085) (0.148)
3 CM2 0.079 CM1 0.061 CM1 0.133

(0.067) (0.060) (0.109)
4 MinDensity 0.069 CM2 0.057 CM2 0.076

(0.041) (0.051) (0.067)
5 MaxEntropy 0.035 MaxEntropy 0.035 MaxEntropy 0.034

(0.026) (0.027) (0.027)

Table 7: Rank of the actual networks and the corresponding null models at different
aggregation levels for the 2010 data. Rank 1 corresponds to the most risky network.
Pd denotes the average. We also show the standard deviation of Pd in brackets, which
is calculated using the Pd across the restricted parameter range (p ∈ {0.60, 0.61, 0.62,
... ,1} and α ∈ {0.60, 0.61, 0.62, ... ,1}) .

First, we find that the actual network tends to display the highest levels of systemic
risk in many instances, at least for the disaggregated networks. This is remarkable,
given that some of the reconstruction methods generate very different network ar-
chitectures; for example, MaxEntropy (MinDensity) yields a maximally (minimally)
connected credit network. This finding also suggests that even the null models that
preserve the degree distribution, like CM1 and CM2, fail to accurately reproduce the
actual Pd.

20 However, our result contrasts Anand et al. (2015) which indicates that
MinDensity yields an upper bound of the actual risk. Here we find that MinDensity
in many instances underestimates the actual Pd, in particular for the disaggregated
networks, but overestimates systemic risk at the intermediate aggregation level.

Second, with regards to the performance of each null model, we find that CM1,
followed by CM2 and MaxEntropy, has the closest behavior to the actual network over-
all, while MinDensity shows an inconsistent performance across different aggregation
levels. Given that the different null models require different inputs, we propose CM2
as the most appealing model as it requires less information than CM1.21

19We also compute the rank for all possible combinations of parameters, including those within
and outside restricted range, in Table D.1. We find that the main results are qualitatively similar
to those in the main text. We also formally test whether the difference between each network Pd
is significant. Specifically, we run a two-sided Wilcoxon signed rank test on each pair of the actual
network and the null model (see Tables E.1 and Table E.2 in the Appendices for the test results).

20This finding is related to previous studies on interbank networks (Mistrulli (2011) and Anand
et al. (2015)) which suggest that MaxEntropy underestimates the actual risk.

21Wilcoxon tests (see Appendix) indicate that the Pd results from CM1 and CM2 are not signifi-
cantly different from each other (as opposed to the results from the other reconstruction methods).
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Lastly, the choice of aggregation level of financial networks matters for stress test-
ing. Certain models can change their behavior at different aggregation levels, most
notably MinDensity. On the other hand, configuration models generally behave rather
well at all aggregation levels. However, the ranking of each null model in term of re-
constructing the topological features of the actual network is not necessarily consistent
with that of reproducing actual systemic risk level (see the comparison between Figure
3 and Table 7). Future research should explore which network characteristic is most
important for reproducing the actual systemic risk levels.

6 Policy Exercise

Our findings suggest that, with respect to the null models we considered, the actual
network displays the highest level of Pd in many instances (at least for the 2010 data).
This implies that it is possible to make the network more stable by changing its
structure. With this in mind, we now explore different policies in order to increase the
robustness of the actual credit network.

6.1 Policies

To this end, we use a similar approach as Greenwood et al. (2015) and explore three
different sets of policies (see Table 8 for an overview):

1. merging banks with certain characteristics;

2. breaking up banks with certain characteristics;

3. imposing a leverage cap.

First, we explore the effect of merging banks. In this context, we consider four
different scenarios in which we merge a group of large or small banks that are chosen
on the basis of their size or leverage.We sort the banks according to their total assets
(or their leverage ratios), and merge the top and bottom 15% of them into a single
bank.

Second, we study the effect of breaking up banks. Specifically, we split a large bank
into two smaller banks. Moreover we assume that one of the smaller banks connects
only to the group of relatively connected firms, while the other bank connects only to a
group of relatively unconnected firms. (Here we use the number of bank relationships
per firm as a proxy of firms’ connectedness). Additionally, we assume that the leverage
ratio of both banks is identical to the leverage of the original bank.

Third, we explore the effect of a leverage cap, i.e. we limit the maximum ratio
between debt to equity of a bank. In this case, we assume that banks that breach
the limit need to raise new equity to satisfy the cap (without changing the size of the
credit portfolio).
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Policy choice Observable outcome

1 - Bank merger
Number of

banks merged
Total assets of a

new merged bank
A) Top 15% (total assets) 17 U23.58 Tr
B) Top 15% (leverage) 17 U2.99 Tr
C) Bottom 15% (total assets) 17 U0.03 Tr
D) Bottom 15% (leverage) 17 U3.18 Tr

2 - Bank break-up
Number of
banks split

Total assets of
impacted banks

A) Split each of the top 15% banks
(total assets) into one that connects to
top 15% industries (connectedness),
while the other connects to the bottom
85% industries (connectedness)

17 U23.58 Tr

B) Split each of the top 15% banks
(leverage) into one that connects to top
15% industries (connectedness) and the
other connected to the bottom 85%
industries (connectedness)

17 U2.99 Tr

3 - Leverage cap Equity issue
Number of banks

capped
A) max debt/equity = 15 U354.6 Bn 107
B) max debt/equity = 20 U79.6 Bn 64
C) max debt/equity = 25 U34.4 Bn 31
D) max debt/equity = 30 U18.5 Bn 11

Table 8: Different policy exercises applied to the actual network in 2010. Tr and Bn
stand for trillion and billion (in U).
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6.2 Results

We apply each policy separately to the actual network and then conduct the systemic
risk analysis on these modified networks. For this exercise, we explore the aggregated
network in 2010, with α = 0.7. We compare Pd of the modified networks to that of
the actual network, and to MaxEntropy (the least risky network in this case).
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Figure 12: Effect of different policy exercises on Pd, relative to the actual network.
MaxEntropy serves as the lower bound as it is the least risky network in this case.
Here we use the data for 2010 with a market impact parameter of α = 0.7.

Figure 12 shows the results for the three sets of policies. First, we find that merging
the largest banks based on their total assets (1A) decreases Pd.

22 Our specific merging
procedure yields a large but moderately leveraged bank. We illustrate this in Figure
13, where the merged bank (red colored bar) ends up holding 84% assets in the system
and with a leverage ratio of 18. Moreover, by holding a majority of the assets in
the system, it becomes less vulnerable to other banks’ asset liquidations.23 Figure 12

22This is different to the results of Greenwood et al. (2015) where the merger may lead to an even
more leveraged bank.

23Contrary to Greenwood et al. (2015), we assume that banks only sell assets when they de-
fault. Under alternative assumptions (such as leverage targeting), the results may differ from what
is reported here.
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Figure 13: Leverage of the top 15% banks (total assets) for the 2010 data. There are
17 (out of 116) banks that belong to this category. The red bar refers to the leverage
of a merged bank (resulted from merging the largest 15% banks), while the dashed
black line refers to the total assets of the corresponding banks. Overall, the merger
results in a very large but moderately leveraged bank.

shows that other merging procedures (1B, 1C and 1D) do not lower Pd as effectively.
These results are mainly driven by the relatively insignificant total assets of the merged
banks obtained from procedures 1B, 1C and 1D as shown in Table 8.24 Moreover, we
note that 1B is better than 1D to reduce the actual Pd. The intuition is similar to that
of procedure with 1A: merging highly leveraged banks yields a moderately leveraged
bank that is more stable during distress.

Figure 12 shows that breaking-up banks (2A and 2B) can increase systemic risk.
Intuitively, one would expect that this policy should reduce the possibility of shock
propagation since we break-up a given bank into two smaller banks that connect to
different sets of firms/industries. However, this policy also leads to relatively con-
centrated banks that are more vulnerable to idiosyncratic shocks. As we only split
the top 15% banks and keep the other 75% as they are, banks are still sufficiently
interconnected to propagate the shock in the network.

Lastly, Figure 12 shows that a leverage cap can lead to substantially more stable
networks, with tighter constraints yielding lower values of Pd. However, the results
show that for modest leverage caps (such as scenario 3D) Pd remains largely unaffected.
Hence, a substantial part of the observed vulnerability of the system is driven by banks’
size and their portfolio overlap.

Overall, we find that neither of the three different policy exercises is able to bring
down Pd to the values of the least risky network for this particular network (Max-
Entropy). We find that merging banks and introducing a leverage cap may improve
the robustness of the system, while splitting banks does not. These results can be
dependent on the specific choice of the initial shock scenario.

24The leverage of banks in our datasets does not correlate to their size where highly and lowly
leveraged banks might consist of both large and small banks.
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7 Conclusions

There is widespread interest in finding accurate reconstruction methods for financial
networks from partial information. In this paper, we focus on reconstructing and
stress testing bipartite credit networks using detailed micro-data on bank-firm credit
interactions in Japan for the period 1980 - 2010.

We find that there is no single ”best” network reconstruction method - it depends
on the assumed criterion of interest. This is also true when we look at each method’s
ability to reproduce observed levels of systemic risk. In fact, in many instances the
actual credit networks display the highest levels of systemic risk, at least for the
most disaggregated data. Hene, many reconstruction methods tend to underestimate
systemic risk. Lastly, we find that the network aggregation level affects the individual
performance of the different reconstruction methods.

Our findings suggest several interesting paths for future research. First and fore-
most, it is important to perform similar analyses for other datasets. Secondly, another
important follow-up question is whether there are other reconstruction methods that
are able to replicate the actual systemic risk levels more closely. In this paper, we only
include a small number of popular reconstruction methods, but other methods may
work better. Lastly, different stress tests can lead to different results. We therefore
aim to generalize the modeling framework proposed here and test the robustness of
the results in future research.
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Appendices

A Weight Allocation Methods

We use RAS (Blien and Graef (1998)) method to distribute the observed credit volumes
across links for the generated adjacency matrix of CM1 and CM2. Previously, we
experimented with different weight allocation approaches defined below and finally
find that RAS generally performed best in our analysis (in term of corresponding
L1-error).
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Weight allocation method Definition

RAS (Blien and Graef
(1998))

Column constraint

ŵi,j(t+ 1) =
ŵi,j(t)

ŝ(t)Bi ,
× sBi ,

Row constraint

ŵi,j(t+ 1) =
ŵi,j(t)

ŝ(t)Fi ,
× sFi ,

where t is the respective iteration step.
Linear Programming
(Mohr and Polenske

(1987))
Maximize

nB∑

i=1

nF∑

j=1

cij,ŵi,j

subject to

nB∑

i=1

ŵi,j = sFj (j = 1, . . . , n)

nF∑

j=1

ŵi,j = sBi [i = 1, . . . , (m− 1)]

ŵi,j > (ci,j)(ε)

where bi,j > 0→ ci,j = 1, bi,j = 0→ ci,j = 0
Convex transportation
problem (Klincewicz

(1989)) ŵ = (ŵ1,1, ŵ1,2, . . . , ŵ2,nF , . . . , ŵnB ,1, ŵnB ,2, ..., ŵnB ,nF )T

s = (sB1 , s
B
2 , . . . , s

B
nB , s

F
1 , s

F
2 , . . . , s

F
nF )T

Bŵ = s

Maximum Flow ( Cormen
et al. (2009))

See Gandy and Veraart (2016) for the discussion on how to transform
this into a maximum flow problem.

Table A.1: Summary of different weight allocation methods for the bank-firm network.
Note that we can define the same methods for the bank-industry network.
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B Systemic Risk Models

To quantify the vulnerability of the bipartite credit networks to systemic asset liqui-
dations, we use the stress testing model of Huang et al. (2013) which uses a linear
market impact, and assumes that banks do not target their leverage. This model is
related with other models that have been recently introduced.

Here we compare the models based on the type of market impact function and
whether it assumes some form of leverage targeting. First, we note that the model of
Caccioli et al. (2014) uses a non-linear market impact and neglects leverage targeting,
but then the leverage targeting is incorporated in the extended version of that model.
Similar to the extended version of Caccioli et al. (2014), the model of Greenwood et al.
(2015) incorporates leverage targeting, but assumes a linear market impact function.
Cont and Schaanning (2017) do not include pure leverage targeting, but assume that
banks have some regulatory constraint regarding their maximum leverage and banks
will only liquidate when they exceed that maximum threshold. Another distinction
between the two models is that even though the model of Cont and Schaanning (2017)
also assumes a linear market impact for small volumes, they use a non-linear impact
function with heterogeneous price impacts for each asset class.

Market impact
linear non-linear

Leverage
targeting

not-included Huang et al. (2013) Caccioli et al. (2014)

included with
threshold

Cont and Schaanning (2017)

included Greenwood et al. (2015)
Caccioli et al. (2014)

(extended)

Table B.1: Comparison between different stress testing model for bipartite credit net-
work based on the type of market impact function used and whether leverage targeting
is included or not.
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C Additional Results: Systemic Risk Analysis on

Other Models

For the purpose of finding out how the systemic risk analysis might vary if leverage
targeting model (as in Greenwood et al. (2015)) and threshold model (as in Cont
and Schaanning (2017)) are used, we also performed the same exercise with these
other models. We find that the rank ordering of the different methods are generally
consistent with those presented in the main text.
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Figure C.1: Relative difference of the probability of default between actual network and
the null models (Dr) at the aggregated level for α ∈ [0,1] (small to large market impact)
and p ∈ [0,1] (large to small initial shock). Leverage targeting model Greenwood et al.
(2015)is used. Data for year 2010. Warm color corresponds to an underestimation of
the actual network, while cold color indicates an overestimation.
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Figure C.2: Relative difference of the probability of default between actual network and
the null models (Dr) at the aggregated level for α ∈ [0,1] (small to large market impact)
and p ∈ [0,1] (large to small initial shock). Threshold model (Cont and Schaanning
(2017))is used. Data for year 2010. Warm color corresponds to an underestimation of
the actual network, while cold color indicates an overestimation.
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D Additional Results:

In Table 7, we previously computed the average of Pd across a range of restricted
values of parameters that we defined as p ∈ [0.6, 1] and α ∈ [0.6, 1]. In the following,
we again compute the average of Pd but for all possible values of parameters (including
those that we define as restricted and not restricted).

Rank
Disaggregated Aggregated Intermediate

Null model Pd Null model Pd Null model Pd
1 Actual 0.393 Actual 0.360 Actual 0.360

(0.254) (0.230) (0.230)
2 CM1 0.301 CM1 0.218 MinDensity 0.358

(0.202) (0.156) (0.217)
3 CM2 0.243 CM2 0.217 CM1 0.275

(0.176) ( 0.157) (0.182)
4 MaxEntropy 0.190 MinDensity 0.202 CM2 0.241

(0.149) (0.122) (0.174)
5 MinDensity 0.140 MaxEntropy 0.190 MaxEntropy 0.190

(0.096) (0.149) (0.149)

Table D.1: Rank of the actual networks and the corresponding null models at different
aggregation levels as in Table 7 for the 2010 data. However, as opposed to Table
7, where we consider only the restricted values of parameters, here we calculate the
average of Pd across all possible parameter combinations: p ∈ {0, 0.01, 0.02, ... ,1}
and α ∈ {0, 0.01, 0.02, ... ,1}. Rank 1 corresponds to the most risky network. Pd
denotes the average, and the value inside the bracket is its corresponding standard
deviation.
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E Additional Results: Wilcoxon Signed Rank Test

on the Networks

We formally test whether the difference between each network Pd is significant by
running a two-sided Wilcoxon signed rank test on each pair of the actual network and
the null model. In the tables below, we show the corresponding p-values of each test
for different range of p and α. In Table E.1, we consider a range of parameters within
the restricted values that we defined in the main text (p ∈ [0.6, 0.8] and α ∈ [0.6, 0.8]).
Meanwhile, in Table E.2, we consider a range of parameters outside the restricted
values that we previously defined. In particular, we consider all possible values of the
initial shock (p ∈ [0, 1]) and relatively liquid assets (α ∈ [0, 0.5]). Overall, we find
that the difference between each network Pd is significant, except for CM1 and CM2
in some instances.

Disaggregated CM1 CM2
MaxEn-

tropy
Min-

Density
Actual 0.000 0.000 0.000 0.000
CM1 0.000 0.000 0.000
CM2 0.000 0.000
MaxEntropy 0.000

Aggregated CM1 CM2
MaxEn-

tropy
Min-

Density
Actual 0.000 0.000 0.000 0.000
CM1 �0.389 0.000 0.000
CM2 0.000 0.000
MaxEntropy 0.000

Intermediate CM1 CM2
MaxEn-

tropy
Min-

Density
Actual 0.000 0.000 0.000 0.000
CM1 0.000 0.000 0.000
CM2 0.000 0.000
MaxEntropy 0.000

Table E.1: P -value of a two-sided Wilcoxon signed rank test on each pair of the
network. A sufficiently small p-value indicates that the test rejects the null hypothesis
that the difference between the pairs follow a symmetric distribution around zero, thus
the two networks have significantly different Pds. Meanwhile, a large p-value indicates
that the test fails to reject the null hypothesis, thus the difference between the two
networks Pds is not significant. Here we test the Pd value of each network for p ∈ [0.6,
0.8] and α ∈ [0.6, 0.8]. We highlight the p-value above 0.05 using the � symbol.
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Disaggregated CM1 CM2
MaxEn-

tropy
Min-

Density
Actual 0.000 0.000 0.000 0.000
CM1 0.000 0.000 0.000
CM2 0.000 0.000
MaxEntropy 0.000

Aggregated CM1 CM2
MaxEn-

tropy
Min-

Density
Actual 0.000 0.000 0.000 0.000
CM1 �0.158 0.000 0.000
CM2 0.000 0.000
MaxEntropy 0.000

Intermediate CM1 CM2
MaxEn-

tropy
Min-

Density
Actual 0.000 0.000 0.000 0.000
CM1 0.000 0.000 0.000
CM2 0.000 0.000
MaxEntropy 0.000

Table E.2: P -value of a two-sided Wilcoxon signed rank test on each pair of the
network as in Table E.1. However, here we consider p ∈ [0, 1] and α ∈ [0, 0.5].
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