
On the Hardness of Almost–Sure Termination?

Benjamin Lucien Kaminski and Joost-Pieter Katoen

Software Modeling and Verification Group
RWTH Aachen University

{benjamin.kaminski,katoen}@cs.rwth-aachen.de

Abstract. This paper considers the computational hardness of comput-
ing expected outcomes and deciding (universal) (positive) almost–sure
termination of probabilistic programs. It is shown that computing lower
and upper bounds of expected outcomes is Σ0

1– and Σ0
2–complete, respec-

tively. Deciding (universal) almost–sure termination as well as deciding
whether the expected outcome of a program equals a given rational value
is shown to be Π0

2–complete. Finally, it is shown that deciding (universal)
positive almost–sure termination is Σ0

2–complete (Π0
3–complete).

Keywords: probabilistic programs · expected outcomes · almost–sure
termination · positive almost–sure termination · computational hardness

1 Introduction

Probabilistic programs [1] are imperative programs with the ability to toss a
(possibly) biased coin and proceed their execution depending on the outcome of
the coin toss. They are used in randomized algorithms, in security to describe
cryptographic constructions (such as randomized encryption) and security ex-
periments [2], and in machine learning to describe distribution functions that are
analyzed using Bayesian inference [3]. Probabilistic programs are typically just
a small number of lines, but hard to understand and analyze, let alone algorith-
mically. This paper considers the computational hardness of two main analysis
problems (and variations thereof) for probabilistic programs:

1. Computing expected outcomes: Is the expected outcome of a program vari-
able smaller than, equal to, or larger than a given rational number?

2. Deciding [universal] (positive) almost–sure termination: Does a program ter-
minate [on all inputs] with probability one (within an expected finite number
of computation steps)?

The first analysis problem is related to determining weakest pre–expectations
of probabilistic programs [4, 5]. Almost–sure termination is an active field of
research [6]. A lot of work has been done towards automated reasoning for
almost–sure termination. For instance, [7] gives an overview of some particu-
larly interesting examples of probabilistic logical programs and the according

? This research is funded by the Excellence Initiative of the German federal and state
governments and by the EU FP7 MEALS project.

2 Benjamin Lucien Kaminski, Joost-Pieter Katoen

intuition for proving almost–sure termination. Arons et al. [8] reduce almost–
sure termination to termination of non–deterministic programs by means of a
planner. This idea has been further exploited and refined into a pattern–based
approach with prototypical tool support [9].

Despite the existence of several (sometimes automated) approaches to tackle
almost–sure termination, most authors claim that it must intuitively be harder
than the termination problem for ordinary programs. To mention a few, Mor-
gan [10] remarks that while partial correctness for small–scale examples is not
harder to prove than for ordinary programs, the case for total correctness of a
probabilistic loop must be harder to analyze. Esparza et al. [9] claim that almost–
sure termination must be harder to decide than ordinary termination since for
the latter a topological argument suffices while for the former arithmetical rea-
soning is needed. The computational hardness of almost–sure termination has
however received scant attention. As a notable exception, [11] establishes that
deciding almost–sure termination of certain concurrent probabilistic programs
is in Π0

2 .
In this paper, we give precise classifications of the level of arithmetical reason-

ing that is needed to decide the aforementioned analysis problems by establishing
the following results: We first show that computing lower bounds on the expected
outcome of a program variable v after executing a probabilistic program P on
a given input η is Σ0

1–complete and therefore arbitrarily close approximations
from below are computable. Computing upper bounds, on the other hand, is
shown to be Σ0

2–complete, thus arbitrarily close approximations from above are
not computable in general. Deciding whether an expected outcome equals some
rational is shown to be Π0

2–complete.
For the second analysis problem—almost–sure termination—we obtain that

deciding almost–sure termination of probabilistic program P on a given input η
is Π0

2–complete. While for ordinary programs we have a complexity leap when
moving from the non–universal to the universal halting problem, we establish
that this is not the case for probabilistic programs: Deciding universal a.s ter-
mination turns out to be Π0

2–complete too. The case for positive almost–sure
termination is different however: While deciding (non–universal) positive almost–
sure termination is Σ0

2–complete, we show that universal positive almost–sure
termination is Π0

3–complete.

2 Preliminaries

As indicated, our hardness results will be stated in terms of levels in the arith-
metical hierarchy—a concept we briefly recall:

Definition 1 (Arithmetical Hierarchy [12, 13]). For every n ∈ IN, the
class Σ0

n is defined as Σ0
n =

{
A
∣∣ A =

{
x
∣∣ ∃y1 ∀y2 ∃y3 · · · ∃/∀yn : (x, y1, y2,

y3, . . . , yn) ∈ R
}
, R is a decidable relation

}
, the class Π0

n is defined as

Π0
n =

{
A
∣∣ A =

{
x
∣∣ ∀y1 ∃y2 ∀y3 · · · ∃/∀yn : (x, y1, y2, y3, . . . , yn) ∈ R

}
, R

is a decidable relation
}

and the class ∆0
n is defined as ∆0

n = Σ0
n ∩ Π0

n. Note

On the Hardness of Almost–Sure Termination 3

that we require that the values of the variables are drawn from a recursive do-
main. Multiple consecutive quantifiers of the same type can be contracted to one
quantifier of that type, so the number n really refers to the number of necessary
quantifier alternations rather than to the number of quantifiers used. A set A is
called arithmetical, iff A ∈ Γ 0

n , for Γ ∈ {Σ, Π, ∆} and n ∈ N. The arithmeti-
cal sets form a strict hierarchy, i.e. ∆0

n ⊂ Γ 0
n ⊂ ∆n+1 and Σ0

n 6= Π0
n holds for

Γ ∈ {Σ, Π} and n ≥ 1. Furthermore, note that Σ0
0 = Π0

0 = ∆0
0 = ∆0

1 is ex-
actly the class of the decidable sets and Σ0

1 is exactly the class of the recursively
enumerable sets.

Next, we recall the concept of many–one reducibility and completeness:

Definition 2 (Many–One Reducibility and Completeness [13–15]). Let
A, B be arithmetical sets and let X be some appropriate universe such that
A,B ⊆ X. A is called many–one–reducible to B, denoted A ≤m B, iff there
exists a computable function f : X → X, such that ∀x ∈ X :

(
x ∈ A ⇐⇒ f(x) ∈

B
)
. If f is a function such that f many–one reduces A to B, we denote this by

f : A ≤m B. Note that ≤m is transitive.
A is called Γ 0

n–complete, for Γ ∈ {Σ, Π, ∆}, iff both A ∈ Γ 0
n and A is

Γ 0
n–hard, meaning C ≤m A, for any set C ∈ Γ 0

n . Note that if A is Γ 0
n–complete

and A ≤m B, then B is necessarily Γ 0
n–hard. Furthermore, note that if A is Σ0

n–
complete, then A ∈ Σ0

n\Π0
n. Analogously if A is Π0

n–complete, then A ∈ Π0
n\Σ0

n.

3 Probabilistic Programs

In order to speak about probabilistic programs and the computations performed
by such programs, we briefly introduce the syntax and semantics we use:

Definition 3 (Syntax). Let Var be the set of program variables. The set Prog
of probabilistic programs adheres to the following grammar:

Prog −→ v := e | Prog; Prog | {Prog} [p] {Prog} | WHILE (b) {Prog} ,

where v ∈ Var, e is an arithmetical expression over Var, p ∈ [0, 1] ⊆ Q, and
b is a Boolean expression over arithmetic expressions over Var. We call the set
of programs that do not contain any probabilistic choices the set of ordinary
programs and denote this set by ordProg.

The presented syntax is the one of the fully probabilistic1 fragment of the prob-
abilistic guarded command language (pGCL) originally due to McIver and Mor-
gan [4]. We omitted skip–, abort–, and if–statements, as those are syntactic
sugar. While assignment, concatenation, and the while–loop are standard pro-
gramming constructs, {P1} [p] {P2} denotes a probabilistic choice between pro-
grams P1 (with probability p) and P2 (with probability 1 − p). An operational
semantics for pGCL programs is given below:

1 Fully probabilistic programs may contain probabilistic but no non–deterministic
choices.

4 Benjamin Lucien Kaminski, Joost-Pieter Katoen

Definition 4 (Semantics). Let the set of variable valuations be denoted by V =
{η | η : Var→ Q+}, let the set of program states be denoted by S =

(
Prog∪{↓}

)
×

V×I×{L, R}∗, for I = [0, 1]∩Q+, let JeKη be the evaluation of the arithmetical
expression e in the variable valuation η, and analogously let JbKη be the evaluation
of the Boolean expression b. Then the semantics of probabilistic programs
is given by the smallest relation ` ⊆ S×S which satisfies the following inference
rules:

(assign)
〈v := e, η, a, θ〉 ` 〈↓, η[v 7→ max{JeKη, 0}], a, θ〉

(concat1)
〈P1, η, a, θ〉 ` 〈P ′1, η′, a′, θ′〉

〈P1; P2, η, a, θ〉 ` 〈P ′1; P2, η′, a′, θ′〉

(concat2)
〈↓; P2, η, a, θ〉 ` 〈P2, η, a, θ〉

(prob1)
〈{P1} [p] {P2}, η, a, θ〉 ` 〈P1, η, a · p, θ · L〉

(prob2)
〈{P1} [p] {P2}, η, a, θ〉 ` 〈P2, η, a · (1− p), θ ·R〉

(while1)
JbKη = True

〈WHILE (b) {P}, η, a, θ〉 ` 〈P; WHILE (b) {P}, η, a, θ〉

(while2)
JbKη = False

〈WHILE (b) {P}, η, a, θ〉 ` 〈↓, η, a, θ〉

We use σ `k τ in the usual sense.

The semantics is mostly straightforward except for two features: in addition to
the program that is to be executed next and the current variable valuation, each
state also stores a sequence θ that encodes which probabilistic choices were made
in the past (Left or Right) as well as the probability a that those choices were
made. The graph that is spanned by the `–relation can be seen as an unfolding
of the Markov decision process semantics for pGCL provided by Gretz et al. [5]
when restricting oneself to fully probabilistic programs.

4 Expected Outcomes and Termination Probabilities

In this section we formally define the notion of an expected outcome as well the
notion of (universal) (positive) almost–sure termination. We start by investigat-
ing how state successors can be computed.

It is a well–known result due to Kleene that for any ordinary program P and
a state σ the k-th successor of σ with respect to ` is unique and computable. If,
however, P is a probabilistic program containing probabilistic choices, the k-th
successor of a state need not be unique, because at various points of the execution

On the Hardness of Almost–Sure Termination 5

the program must choose a left or a right branch with some probability. However,
if we resolve those choices by providing a sequence of symbols w over the alphabet
{L, R} that encodes for all probabilistic choices which occur whether the Left
or the Right branch shall be chosen at a branching point, we can construct a
computable function that computes a unique k-th successor. Notice that for this
purpose a sequence of finite length is sufficient. We obtain the following:

Proposition 1 (The State Successor Function). Let S⊥ = S ∪ {⊥}. There
exists a total computable function T: IN×S×{L, R}∗ → S⊥, such that for k ≥ 1

T0(σ, w) =

{
σ, if w = ε,

⊥, otherwise,

Tk(σ, w) =


Tk−1(τ, w′), if σ = 〈P, η, a, θ

〉
` 〈P ′, η′, a′, θ · b

〉
= τ,

with w = b · w′ and b ∈ {L, R, ε},
⊥ otherwise.

So Tk(σ, w) returns a successor state τ , if σ `k τ , whereupon exactly |w| infer-
ences must use the (prob1)– or the (prob2)–rule and those probabilistic choices
are resolved according to w. Otherwise Tk(σ, w) returns ⊥. Note in particular
that for both the inference of a terminal state 〈↓, η, a, θ〉 within less than k steps
as well as the inference of a terminal state through less or more than |w| prob-
abilistic choices, the calculation of Tk(σ, w) will result in ⊥. In addition to T,
we will need two more computable operations for expressing expected outcomes,
termination probabilities, and expected runtimes:

Proposition 2. There exist two total computable functions α : S⊥ → Q+ and
℘ : S⊥ × Var→ Q+, such that

α(σ) =

{
a, if σ = 〈↓, , a, 〉
0, otherwise,

℘(σ, v) =

{
η(v) · a, if σ = 〈↓, η, a, 〉
0, otherwise,

where represents an arbitrary value.

The function α takes a state σ and returns the probability of reaching σ. The
function ℘ takes a state σ and a variable v and returns the probability of reaching
σ multiplied with the value of v in the state σ. Both functions do that only if
the provided state σ is a terminal state. Otherwise they return 0. Based on the
above notions, we now definie expected outcomes, termination probabilities and
expected times until termination:

Definition 5 (Expected Outcome, Termination Probability, and Ex-
pected Time until Termination). Let P ∈ Prog, η ∈ V, v ∈ Var, σP,η =

〈P, η, 1, ε〉, and for a finite alphabet A let A≤k =
⋃k
i=0A

i. Then

1. the expected outcome of v after executing P on η, denoted EP,η(v), is

EP,η(v) =

∞∑
k=0

∑
w∈{L,R}≤k

℘
(
Tk(σP,η, w), v

)
,

6 Benjamin Lucien Kaminski, Joost-Pieter Katoen

2. the probability that P terminates on η, denoted PrP,η(↓), is

PrP,η(↓) =

∞∑
k=0

∑
w∈{L,R}≤k

α
(
Tk(σP,η, w)

)
,

3. the expected time until termination of P on η, denoted EP,η(↓), is

EP,η(↓) =

∞∑
k=0

1−
∑

w∈{L,R}≤k

α
(
Tk(σP,η, w)

) .

The expected outcome EP,η(v) as defined here coincides with the weakest pre–
expectation wp.P.v (η) à la McIver and Morgan [4] for fully probabilistic pro-
grams. In the above definition for EP,η(v), we sum over all possible numbers of
inference steps k and sum over all possible sequences from length 0 up to length
k for resolving all probabilistic choices. Using ℘ we filter out the terminal states
σ and sum up the values of ℘(σ, v).

For the termination probability PrP (↓), we basically do the same but we
merely sum up the probabilities of reaching final states by using α instead of ℘.

For the expected time until termination EP,η(↓), we go along the lines of [6]:
It is stated there that the expected time until termination of P on η can be
expressed as

∑∞
k=0 Pr(“P runs for more than k steps on η”) =

∑∞
k=0

(
1−Pr(“P

terminates within k steps on η”)
)
. We have expressed the latter in our set–up.

In order to investigate the complexity of calculating EP,η(v), we define three
sets: LEXP, which relates to the set of rational lower bounds of EP,η(v), REXP,
which relates to the set of rational upper bounds, and EXP which relates to the
value of EP,η(v) itself:

Definition 6 (LEXP, REXP, and EXP). The sets LEXP,REXP, EXP ⊂
Prog × V × Var × Q+ are defined as (P, η, v, q) ∈ LEXP iff q < EP,η(v),
(P, η, v, q) ∈ REXP iff q > EP,η(v), and (P, η, v, q) ∈ EXP iff q = EP,η(v).

Regarding the termination probability of a probabilistic program, the case of
almost–sure termination is of special interest: We say that a program P termi-
nates almost–surely on input η iff P terminates on η with probability 1. Further-
more, we say that P terminates positively almost–surely on η iff the expected
time until termination of P on η is finite. Lastly, we say that P terminates uni-
versally (positively) almost–surely, if it does so on all possible inputs η. The
problem of (universal) almost–sure termination can be seen as the probabilistic
counterpart to the (universal) halting problem for ordinary programs.

In the following, we formally define the according problem sets:

Definition 7 (Almost–Sure Termination Problem Sets). The sets AST ,
PAST , UAST , and PAST are defined as follows:

(P, η) ∈ AST ⇐⇒ PrP,η(↓) = 1 (P, η) ∈ PAST ⇐⇒ EP,η(↓) <∞
P ∈ UAST ⇐⇒ ∀η : (P, η) ∈ AST P ∈ UPAST ⇐⇒ ∀η : (P, η) ∈ PAST

Notice that both PAST ⊂ AST and UPAST ⊂ UAST hold.

On the Hardness of Almost–Sure Termination 7

5 The Hardness of Computing Expected Outcomes

In this section we investigate the computational hardness of deciding the sets
LEXP, REXP, and EXP. The first fact we establish is the Σ0

1–completeness of
LEXP. This result is established by reduction from the (non–universal) halting
problem for ordinary programs:

Theorem 1 (The Halting Problem [16]). The halting problem is a subset
H ⊂ ordProg × V, which is characterized as (P, η) ∈ H iff ∃k ∃η′ : Tk(σP,η,
ε) = 〈↓, η′, 1, ε〉. Let H denote the complement of the halting problem, i.e.
H = (ordProg × V) \ H. H is Σ0

1–complete and H is Π0
1–complete.

Theorem 2. LEXP is Σ0
1–complete.

Proof. For showing LEXP ∈ Σ0
1 , observe that (P, η, v, q) ∈ LEXP iff ∃ y : q <∑y

k=0

∑
w∈{L,R}≤k ℘

(
Tk(σP,η, w), v

)
, which is a Σ0

1–formula. Figure 1 (left)

gives an intuition on this formula. For establishing Σ0
1–hardness we use a re-

duction function f : H ≤m LEXP with f(Q, η) = (P, η, v, 1/2), where P is the
program v := 0; {v := 1}[1/2]{TQ; v := 1} and TQ is an ordinary program that
simulates Q on η. For details see [17]. ut

Theorem 2 implies that LEXP is recursively enumerable. This means that all
lower bounds for expected outcomes can be effectively enumerated by some algo-
rithm. Now, if upper bounds were recursively enumerable as well, then expected
outcomes would be computable reals. However, the contrary will be shown by
establishing that REXP is Σ0

2–complete, thus REXP 6∈ Σ0
1 and hence REXP

is not recursively enumerable. Σ0
2–hardness will be established by a reduction

from the complement of the universal halting problem for ordinary programs:

Theorem 3 (The Universal Halting Problem [16]). The universal halt-
ing problem is a subset UH ⊂ ordProg, which is characterized as P ∈ UH
iff ∀ η : (P, η) ∈ H. Let UH denote the complement of UH, i.e., UH =
ordProg \ UH. UH is Π0

2–complete and UH is Σ0
2–complete.

Theorem 4. REXP is Σ0
2–complete.

Proof. For showing REXP ∈ Σ0
2 , observe that (P, η, v, q) ∈ REXP iff ∃ δ ∀ y : q

− δ >
∑y
k=0

∑
w∈{L,R}≤k ℘

(
Tk(σP,η, w), v

)
, which is a Σ0

2–formula. Figure 1

(right) gives an intuition on this formula. For establishing Σ0
2–hardness we use

a reduction function f : UH ≤m REXP with f(Q) = (P, η, v, 1), where η is
arbitrary but fixed and P is the probabilistic program

i := 0; {c := 0} [0.5] {c := 1};
while (c 6= 0){i := i + 1; {c := 0} [0.5] {c := 1}};
k := 0; {c := 0} [0.5] {c := 1};
while (c 6= 0){k := k + 1; {c := 0} [0.5] {c := 1}};
v := 0; TQ ,

8 Benjamin Lucien Kaminski, Joost-Pieter Katoen

q

∃y −→

EP,η(v)

(P, η, v, q) ∈ LEXP

q

←− ∀ y −→

∃ δ
EP,η(v)

(P, η, v, q) ∈ REXP

Fig. 1. Schematic depiction of the formulae defining LEXP and REXP, respectively.
In each diagram, the solid line represents the monotonically increasing graph of∑y
k=0

∑
w∈{L,R}≤k ℘

(
Tk(σP,η, w), v

)
plotted over increasing y.

where TQ is a program that assigns the value 2k+1 to the variable v if and
only if Q halts on input gQ(i) after exactly k steps (otherwise it assigns 0 to v)
and gQ : IN → V is a computable bijection, such that ∀z ∈ Var :

(
gQ(i)

)
(z) 6= 0

implies that z occurs in Q. For details see [17]. ut

Finally, we establish the following result regarding exact expected outcomes:

Theorem 5. EXP is Π0
2–complete.

Proof. For EXP we can construct a Π0
2–formula from the two formulae defining

LEXP and REXP. For establishing Π0
2–hardness we use the same reduction

function f from the proof of Theorem 4 since for that function it holds that
f : UH ≤m EXP. For details see [17]. ut

6 The Hardness of Deciding Probabilistic Termination

This section presents the main contributions of this paper: Hardness results on
several variations of almost–sure termination problems. We first establish that
deciding almost–sure termination of a program on a given input is Π0

2–complete:

Theorem 6. AST is Π0
2–complete.

Proof. For proving AST ∈ Π0
2 , we show AST ≤m EXP using the reduction

function f : AST ≤m EXP with f(Q, η) = (P, η, v, 1), where v does not occur
in Q and P is the program v := 0;Q; v := 1.

For establishing Π0
2–hardness we use a reduction function f ′ : UH ≤m AST

with f ′(Q) = (P ′, η), where η is arbitrary but fixed and P ′ is the program

i := 0; {c := 0} [0.5] {c := 1};
while (c 6= 0){i := i + 1; {c := 0} [0.5] {c := 1}};
SQ ,

where SQ is an ordinary program that simulates Q on gQ(i) and gQ : IN→ V is
the bijection from the proof of Theorem 4. For details see [17]. ut

On the Hardness of Almost–Sure Termination 9

While for ordinary programs there is a complexity leap when moving from the
halting problem for some given input to the universal halting problem, we estab-
lish that there is no such leap in the probabilistic setting, i.e. UAST is as hard
as AST :

Theorem 7. UAST is Π0
2–complete.

Proof. For showing UAST ∈ Π0
2 , consider that by Theorem 6 there must exist

a decidable relation R such that (P, η) ∈ AST iff ∀ y1 ∃ y2 : (y1, y2, P, η) ∈ R.
By that we have that P ∈ UAST iff ∀ η ∀ y1 ∃ y2 : (y1, y2, P, η) ∈ R, which is a
Π0

2–formula.
It remains to show that UAST is Π0

2–hard. This can be done by proving
AST ≤m UAST as follows: On input (Q, η) the reduction function f : AST ≤m

UAST computes a probabilistic program P that first initializes all variables
according to η and then executes Q. ut

We now investigate the computational hardness of deciding positive almost–sure
termination: It turns out that deciding PAST is Σ0

2–complete. Thus, PAST be-
comes semi–decidable when given access to an H–oracle whereas AST does not.
We establish Σ0

2–hardness by a reduction from UH. This result is particularly
counterintuitive as it means that for each ordininary program that does not halt
on all inputs, we can compute a probabilistic program that does halt within an
expected finite number of steps.

Theorem 8. PAST is Σ0
2–complete.

Proof. For showing PAST ∈ Σ0
2 , observe that (P, η) ∈ PAST iff ∃ c ∀ ` : c >∑`

k=0

(
1 −

∑
w∈{L,R}≤k α

(
Tk(σP,η, w)

))
, which is a Σ0

2–formula. For more

details on this formula see [17].
It remains to show that PAST is Σ0

2–hard. For that we use a reduction
function f : UH ≤m PAST with f(Q) = (P, η), where η is arbitrary but fixed
and P is the program

c := 1; i := 0; x := 0; term := 0; InitQ;

while (c 6= 0){
StepQ; if (term = 1){Cheer; i := i + 1; term := 0; InitQ}
{c := 0} [0.5] {c := 1}; x := x + 1 } ,

where InitQ ∈ ordProg is a program that initializes a simulation of the program
Q on input gQ(i) (recall the bijection gQ : IN → V from Theorem 4), StepQ ∈
ordProg is a program that does one single (further) step of that simulation and
sets term to 1 if that step has led to termination of Q, and Cheer ∈ ordProg is a
program that executes 2x many effectless steps. In the following we refer to this
as “cheering”2.

Correctness of the reduction: Intuitively, the program P starts by simulating
Q on input gQ(0). During the simulation, it—figuratively speaking—gradually

2 The program P cheers as it was able to prove the termantion of Q on input gQ(i).

10 Benjamin Lucien Kaminski, Joost-Pieter Katoen

looses interest in further simulating Q by tossing a coin after each simulation
step to decide whether to continue the simulation or not. If eventually P finds
that Q has halted on input gQ(0), it “cheers” for a number of steps exponential
in the number of coin tosses that were made so far, namely for 2x steps. P then
continues with the same procedure for the next input gQ(1), and so on.

The variable x keeps track of the number of loop iterations (starting from
0), which equals the number of coin tosses. The x–th loop iteration takes place
with probability 1/2x. One loop iteration consists of a constant number of steps
c1 in case Q did not halt on input gQ(i) in the current simulation step. Such an
iteration therefore contributes c1/2x to the expected runtime of the probabilistic
program P . In case Q did halt, a loop iteration takes a constant number of steps
c2 plus 2x additional “cheering” steps. Such an iteration therefore contributes
c2+2x/2x = c2/2x + 1 > 1 to the expected runtime. Overall, the expected runtime
of the program P roughly resembles a geometric series with exponentially de-
creasing summands. However, for each time the program Q halts on an input, a
summand of the form c2/2x + 1 appears in this series. There are now two cases:

(1) Q ∈ UH, so there exists some input η with minimal i such that gQ(i) = η
on which Q does not terminate. In that case, summands of the form c2/2x + 1
appear only i − 1 times in the series and therefore, the series converges—the
expected time until termination is finite, so (P, η) ∈ PAST .

(2) Q 6∈ UH, so Q terminates on every input. In that case, summands of
the form c2/2x + 1 appear infinitely often in the series and therefore, the series
diverges—the expected time until termination is infinite, so (P, η) 6∈ PAST . ut

The final problem we study is universal positive almost–sure termination. In
contrast to the non–positive version, we do have a complexity leap when moving
from non–universal to universal positive almost–sure termination. We will estab-
lish that UPAST is Π0

3–complete and thus even harder to decide than UAST .
For the reduction, we make use of the following Π0

3–complete problem:

Theorem 9 (The Cofiniteness Problem [16]). The cofiniteness problem
is a subset COF ⊂ ordProg, which is characterized as P ∈ COF iff

{
η
∣∣ (P, η) ∈

H
}

is cofinite. Let COF denote the complement of COF , i.e. COF = ordProg\
COF . COF is Σ0

3–complete and COF is Π0
3–complete.

Theorem 10. UPAST is Π0
3–complete.

Proof. By Theorem 8, there exists a decidable relation R such that (P, η) ∈
PAST iff ∃ y1 ∀ y2 : (y1, y2, P, η) ∈ R. Therefore UPAST is definable by P ∈
UPAST iff ∀ η ∃ y1 ∀ y2 : (y1, y2, P, η) ∈ R, which gives a Π0

3–formula.
It remains to show that UPAST is Π0

3–hard. This is established by a re-
duction function f : COF ≤m UPAST such that f(Q) gives nearly the same
program as the reduction function from the proof of Theorem 8 except that in
f(Q) the initialization i := 0 is omitted. Thus, on input η the resulting program
P also simulates Q successively on all inputs but starting from input gQ

(
η(i)

)
instead of gQ(0). For details, see [17]. ut

On the Hardness of Almost–Sure Termination 11

Σ0
1 Π0

1

∆0
1

Σ0
2 Π0

2

∆0
2

Σ0
3 Π0

3

∆0
3

...

H H

UH UH

COF COF

LEXP

semi–decidable

decidable

PAST
REXPwith access to

H–oracle:
semi–decidable

EXP

AST
not
semi–decidable;
even with
access to
H–oracle

not
semi–decidable;
even with
access to
UH–oracle

UAST

UPAST

Fig. 2. The complexity landscape of determining expected outcomes and deciding (uni-
versal) (positive) almost–sure termination.

7 Conclusion

We have studied the computational complexity of solving a variety of natural
problems which appear in the analysis of probabilistic programs: Computing
lower bounds, upper bounds, and exact expected outcomes (LEXP, REXP, and
EXP), deciding non–universal and universal almost–sure termination (AST and
UAST), and deciding non–universal and universal positive almost–sure termina-
tion (PAST and UPAST). Our complexity results are summarized in Figure 2.
All examined problems are complete for their respective level of the arithmeti-
cal hierarchy. We conjecture that all our results remain valid for programs with
(minimizing) demonic non–determinism à la McIver & Morgan [4].

Future work consists of identifying program subclasses for which some of the
studied problems become easier. One idea towards this would be to investigate
the use of quantifier–elimination methods such as e.g. Skolemization.

Acknowledgements We would like to thank Luis Maŕıa Ferrer Fioriti (Saar-
land University) and Federico Olmedo (RWTH Aachen) for the fruitful discus-
sions on the topics of this paper. Furthermore, we are very grateful for the
valuable and constructive comments we received from the anonymous referees
on an earlier version of this paper.

References

1. Kozen, D.: Semantics of Probabilistic Programs. J. Comput. Syst. Sci. 22(3)
(1981) 328–350

12 Benjamin Lucien Kaminski, Joost-Pieter Katoen

2. Barthe, G., Köpf, B., Olmedo, F., Béguelin, S.Z.: Probabilistic Relational Rea-
soning for Differential Privacy. ACM Trans. Program. Lang. Syst. 35(3) (2013)
9

3. Borgström, J., Gordon, A., Greenberg, M., Margetson, J., van Gael, J.: Measure
Transformer Semantics for Bayesian Machine Learning. LMCS 9(3) (2013)

4. McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Sys-
tems. Springer (2004)

5. Gretz, F., Katoen, J.P., McIver, A.: Operational versus Weakest Pre–Expectation
Semantics for the Probabilistic Guarded Command Language. Performance Eval-
uation 73 (2014) 110–132

6. Fioriti, L.M.F., Hermanns, H.: Probabilistic termination: Soundness, completeness,
and compositionality. In: POPL 2015, ACM (2015) 489–501

7. Sneyers, J., de Schreye, D.: Probabilistic Termination of CHRiSM Programs. In:
LOPSTR. Volume 7225 of LNCS., Springer (2011) 221–236

8. Arons, T., Pnueli, A., Zuck, L.D.: Parameterized Verification by Probabilistic
Abstraction. In: FoSSaCS. Volume 2620 of LNCS., Springer (2003) 87–102

9. Esparza, J., Gaiser, A., Kiefer, S.: Proving Termination of Probabilistic Programs
Using Patterns. In: CAV. Volume 7358 of LNCS., Springer (2012) 123–138

10. Morgan, C.: Proof Rules for Probabilistic Loops. In: Proc. of the BCS-FACS 7th
Refinement Workshop, Workshops in Computing, Springer Verlag (1996) 7

11. Tiomkin, M.L.: Probabilistic Termination Versus Fair Termination. TCS 66(3)
(1989) 333–340

12. Kleene, S.C.: Recursive Predicates and Quantifiers. Trans. of the AMS 53(1)
(1943) 41 – 73

13. Odifreddi, P.: Classical Recursion Theory: The Theory of Functions and Sets of
Natural Numbers. Elsevier (1992)

14. Post, E.L.: Recursively Enumerable Sets of Positive Integers and their Decision
Problems. Bulletin of the AMS 50(5) (1944) 284–316

15. Davis, M.D.: Computability, Complexity, and Languages: Fundamentals of Theo-
retical Computer Science. Academic Press (1994)

16. Odifreddi, P.: Classical Recursion Theory, Volume II. Elsevier (1999)
17. Kaminski, B.L., Katoen, J.P.: On the Hardness of Almost-Sure Termination. ArXiv

e-prints (June 2015)

