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Abstract. We study weakest precondition reasoning about the (co)va-
riance of outcomes and the variance of run–times of probabilistic pro-
grams with conditioning. For outcomes, we show that approximating
(co)variances is computationally more difficult than approximating ex-
pected values. In particular, we prove that computing both lower and
upper bounds for (co)variances is Σ0

2–complete. As a consequence, nei-
ther lower nor upper bounds are computably enumerable. We therefore
present invariant–based techniques that do enable enumeration of both
upper and lower bounds, once appropriate invariants are found. Finally,
we extend this approach to reasoning about run–time variances.
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1 Introduction

Probabilistic programs describe manipulations on uncertain data in a succinct
way. They are normal–looking programs describing how to obtain a distribu-
tion over the outputs. Using mostly standard programming language constructs,
a probabilistic program transforms a prior distribution into a posterior dis-
tribution. Probabilistic programs provide a structured means to describe e.g.,
Bayesian networks (from AI), random encryption (from security), or predator–
prey models (from biology) [5] succinctly.

The posterior distribution of a program is mostly determined by approximate
means such as Markov Chain Monte Carlo (MCMC) sampling using (variants
of) the well–known Metropolis–Hasting approach. This yields estimates for var-
ious measures of interest, such as expected values, second moments, variances,
covariances, and the like. Such estimates typically come with weak guarantees
in the form of confidence intervals, asserting that with a certain confidence the
measure has a certain value. In contrast to these weak guarantees, we aim at
the exact inference of such measures and their bounds. We hereby focus both on
correctness and on run–time analysis of probabilistic programs. Put shortly, we
are interested in obtaining quantitative statements about the possible outcomes
of programs well as their run times.

? This work was supported by the Excellence Initiative of the German federal and
state government.
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This paper studies reasoning about the (co)variance of outcomes and the
variance of run–times of probabilistic programs. Our programs support sam-
pling from discrete probability distributions, conditioning on the outcomes of
experiments by observations [5], and unbounded while–loops1. In the first part
of the paper, we study the theoretical complexity of obtaining (co)variances on
outcomes. We show that obtaining bounds on (co)variances is computation-
ally more difficult than for expected values. In particular, we prove that com-
puting both upper and lower bounds for (co)variances of program outcomes is
Σ0

2–complete, thus not recursively enumerable. This contrasts the case for ex-
pected values where lower bounds are recursively enumerable, while only upper
bounds are Σ0

2–complete [7]. We also show that determining the precise val-
ues of (co)variances as well as checking whether the (co)variance is infinite are
both Π0

2–complete. These results rule out analysis techniques based on finite
loop–unrollings as complete approaches for reasoning about the covariances of
outcomes of probabilistic programs.

In the second part of the paper, we therefore develop a weakest precondition
reasoning technique for obtaining covariances on outcomes and variances on run–
times. As with deductive reasoning for ordinary sequential programs, the crux
is to find suitable loop–invariants. We present a couple of invariant–based proof
rules that provide a sound and complete method to computably enumerate both
upper and lower bounds on covariances, once appropriate invariants are found.
We establish similar results for variances of the run–time of programs. The results
of this paper extend McIver and Morgans approach for obtaining expectations of
probabilistic programs [11], recent techniques for expected run–time analysis [9],
and complement results on termination analysis [7,4].

Some proofs had to be omitted due to lack of space. They can be found in
an extended version of this paper [8].

2 Preliminaries

We study approximating the covariance of two random variables (ranging over
program states) after successful termination of a probabilistic program on a given
input state. Our development builds upon the conditional probabilistic guarded
command language (cpGCL) [6]—an extension of Dijkstra’s guarded command
language [3] endowed with probabilistic choice and conditioning constructs.

Definition 1 (cpGCL [6]). Let V be a finite set of program variables2. Then
the set of programs in cpGCL, denoted P, adheres to the grammar

P ::= skip
∣∣ empty ∣∣ diverge ∣∣ halt ∣∣ x := E

∣∣ P; P
∣∣ if (B) {P} else {P}∣∣ {P} [p] {P}

∣∣ while (B) {P}
∣∣ observe B ,

1 This contrasts MCMC–based analysis, as this is restricted to bounded programs.
2 We restrict ourselves to a finite set of program variables for reasons of cleanness of

the presentation. In principle, a countable set of program variables could be allowed.
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where x ∈ V, E is an arithmetical expression over V, p ∈ [0, 1]∩Q is a rational
probability, and B is a Boolean expression over arithmetic expressions over V.

If a program C contains neither a probabilistic choice {C ′} [p] {C ′′} nor an
observe–statement, we say that C is non–probabilistic.

We briefly go over the meaning of the language constructs. Furthermore, we
assign each statement an execution time in order to reason about the run–
time of programs. skip (empty) does nothing—i.e. does not alter the current
variable valuations—and consumes one (no) unit of time. diverge is syntactic
sugar for the certainly non–terminating program while (true) {skip}. halt

consumes no unit of time and halts program execution immediately (even when
encountered inside a loop). It represents an improper termination of the program.
x := E, C1; C2, if (B) {C1} else {C2}, and while (B) {C ′} are standard
variable assignment, sequential composition, conditional choice, and while–loop
constructs. Assignments and guard evaluations consume one unit of time.

{C1} [p] {C2} is a probabilistic choice construct: With probability p the pro-
gram C1 is executed and with probability 1 − p the program C2 is executed.
Flipping the p–coin itself consumes one unit of time. observe B is the con-
ditioning construct. Whenever in the execution of a program, an observe B
is encountered, such that the current variable valuation satisfies the guard B,
nothing happens except that one unit of time is being consumed. If, however, an
observe B is encountered along an execution trace that occurs with probability
q, such that B is not satisfied, this trace is blocked as it is considered an un-
desired execution. The probabilities of the remaining execution traces are then
conditioned to the fact that this undesired trace was not encountered, i.e. the
probabilities of the remaining execution traces are renormalized by 1 − q. We
refer to encountering such an undesired execution as an observation violation.
For more details on conditioning and its semantics, see [6].

Notice that we do not include non–deterministic choice constructs (as op-
posed to probabilistic choice construct) in our language, as we would then run
into similar problems as in [6, Section 6] in the presence of conditioning.

Example 1 (Conditioning inside a Loop). Consider the following loop:

while (c = 1){ {c := 0} [0.5] {x := x+ 1}; observe c = 1 ∨ x is odd }

Without the observe–statement, this loop would generate a geometric distribu-
tion on x. By considering the observe–statement, this distribution is conditioned
to the fact that after termination x is odd. 4

Given a probabilistic program C, an initial state σ, and a random variable f
mapping program states to positive reals, we could now ask: What is the con-
ditional expected value of f after proper termination of program C on input σ,
given that no observation was violated during the execution? An answer to this
question is given by the conditional weakest pre–expectation calculus introduced
in [6]. For summarizing this calculus, we first formally characterize the random
variables f , commonly called expectations [11]:
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C wp [C] (f) rt [C] (t)

skip f t[τ/τ + 1]

empty f t

diverge 0 ∞
halt 0 0

x := E f [x/E] t[x/E, τ/τ + 1]

C1; C2 wp[C1] ◦ wp [C2] (f) rt[C1] ◦ rt [C2] (t)

if (B) {C1} else {C2} [B] · wp [C1] (f)
(
[B] · rt [C1] (t)

+[¬B] · wp [C2] (f) +[¬B] · rt [C2] (t)
)
[τ/τ + 1]

{C1} [p] {C2} p · wp [C1] (f)
(
p · rt [C1] (t)

+(1− p) · wp [C2] (f) +(1− p) · rt [C2] (t)
)
[τ/τ + 1]

while (B) {C′} lfpX. [¬B] · f lfpX.
(
[¬B] · t

+[B] · wp [C′] (X) +[B] · rt [C′] (X)
)
[τ/τ + 1]

observe B [B] · f [B] · t[τ/τ + 1]

C wlp [C] (f)

diverge 1

halt 1

while (B) {C′} gfpX. [¬B] · f + [B] · wlp [C′] (X)

Table 1. Definition of wp, wlp, and rt. [x/E] is a syntactic replacement with f [x/E] (σ)
= f(σ[x 7→ σ(E)]). [B] is the indicator function of B with [B](σ) = 1 if σ |= B, and
[B](σ) = 0 otherwise. F ◦H(f) is the functional composition of F and H applied to f .
lfpX. F (X) (gfpX. F (X)) is the least (greatest) fixed point of F with respect to �.
Definitions of wlp for the other language constructs are as for wp and thus omitted.

Definition 2 (Expectations [11,6]). Let S = {σ | σ : V→ Q}, where Q is the
set of rational numbers, be the set of program states.3 Then the set of expecta-
tions is defined as E =

{
f
∣∣ f : S→ R∞≥0

}
, and the set of bounded expectations

is defined as E≤1 = {f | f : S→ [0, 1]}. A complete partial order � on both E
and E≤1 is given by f1 � f2 iff ∀σ ∈ S : f1(σ) ≤ f2(σ).

The weakest (liberal) pre–expectation transformer wp : P → (E → E) (wlp : P →
(E≤1 → E≤1)) is defined according to Table 1 (middle column). By means of
these two transformers, we can give an answer to the question posed above:
Namely, the fraction wp[C](f)(σ)/wlp[C](1)(σ) is indeed the conditional expected
value of f after termination of C on input σ, given that no observation was
violated during C’s execution [6]. Consequently, we define:

Definition 3 (Conditional Expected Values [6]). Let C ∈ P, σ ∈ S, and
f ∈ E. Then the conditional expected value of f after executing C on input σ

3 Notice that S is countable and computably enumerable as V is finite.
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given that no observation was violated is defined as4

EJCK(σ) (f) =
wp [C] (f) (σ)

wlp [C] (1) (σ)
.

Having the definition for conditional expected values readily available, we can
now turn towards defining the conditional (co)variance of a (two) random vari-
ables. We simply translate the textbook definition to our setting:

Definition 4 (Conditional (Co)variances). Let C ∈ P, σ ∈ S, and f, g ∈
E. Then the conditional covariance of the two random variables f and g after
executing C on input σ, given that no observation was violated is defined as

CovJCK(σ) (f, g) = EJCK(σ) (f · g)− EJCK(σ) (f) · EJCK(σ) (g) .

The conditional variance of the single random variable f after executing C on
input σ, given that no observation was violated is defined as the conditional
covariance of f with itself, i.e. VarJCK(σ) (f) = CovJCK(σ) (f, f).

3 Computational Hardness of Computing (Co)variances

In this section, we will investigate the computational hardness of computing
upper and lower bounds for conditional (co)variances. The results will be stated
in terms of levels in the arithmetical hierarchy—a concept we first briefly recall:

Definition 5 (The Arithmetical Hierarchy [10,12]). For every n ∈ N, the
class Σ0

n is defined as Σ0
n =

{
A
∣∣ A =

{
x
∣∣ ∃y1 ∀y2 ∃y3 · · · ∃/∀yn : (x, y1, y2,

y3, . . . , yn) ∈ R
}
, R is a decidable relation

}
and the class Π0

n is defined as

Π0
n =

{
A
∣∣ A =

{
x
∣∣ ∀y1 ∃y2 ∀y3 · · · ∃/∀yn : (x, y1, y2, y3, . . . , yn) ∈ R

}
, R is

a decidable relation
}

. Note that we require the values of variables to be drawn
from a computable domain. Multiple consecutive quantifiers of the same type
can be contracted to one quantifier of that type, so the number n really refers to
the number of necessary quantifier alternations. A set A is called arithmetical,
iff A ∈ Γ 0

n , for Γ ∈ {Σ, Π} and n ∈ N. The arithmetical sets form a strict
hierarchy, i.e. Γ 0

n ⊂ Γ 0
n+1 holds for Γ ∈ {Σ, Π} and n ≥ 0. Furthermore, note

that Σ0
0 = Π0

0 is exactly the class of the decidable sets and Σ0
1 is exactly the class

of the computably enumerable sets.

Next, we recall the concept of many–one reducibility and completeness:

Definition 6 (Many–One Reducibility and Completeness [12,14,2]).
Let A, B be arithmetical sets and let X be some appropriate universe such that

4 We make use of the convention that 0
0

= 0. Note that since our probabilistic choice
is a discrete choice and our language does not support sampling from continuous
distributions, the problematic case of “ 0

0
” can only occur if executing C on input σ

will result in a violation of an observation with probability 1.
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A,B ⊆ X. A is called many–one reducible (or simply reducible) to B, denoted
A ≤m B, iff there exists a computable function r : X → X, such that ∀x ∈
X :

(
x ∈ A ⇐⇒ r(x) ∈ B

)
. If r is a function such that r reduces A to B, we

denote this by r : A ≤m B. Note that ≤m is transitive.
A is called Γ 0

n–complete, for Γ ∈ {Σ, Π}, iff both A ∈ Γ 0
n and A is Γ 0

n–hard,
meaning C ≤m A, for any set C ∈ Γ 0

n . Note that if B ∈ Γ 0
n and A ≤m B, then

A ∈ Γ 0
n , too. Furthermore, note that if A is Γ 0

n–complete and A ≤m B, then B
is necessarily Γ 0

n–hard. Lastly, note that if A is Σ0
n–complete, then A ∈ Σ0

n \Π0
n.

Analogously, if A is Π0
n–complete, then A ∈ Π0

n \Σ0
n.

In the following, we study the hardness of obtaining covariance approximations
both from above and from below. Furthermore, we are interested in exact values
of covariances as well as in deciding whether the covariance is infinite. In order
to formally investigate the arithmetical complexity of these problems, we define
four problem sets which relate to upper and lower bounds for covariances and
to the question whether the covariance is infinite:

Definition 7 (Approximation Problems for Covariances). We define the
following decision problems:

(C, σ, f, g, q) ∈ LCOVAR ⇐⇒ CovJCK(σ) (f, g) > q

(C, σ, f, g, q) ∈ RCOVAR ⇐⇒ CovJCK(σ) (f, g) < q

(C, σ, f, g, q) ∈ COVAR ⇐⇒ CovJCK(σ) (f, g) = q

(C, σ, f, g) ∈ ∞COVAR ⇐⇒ CovJCK(σ) (f, g) ∈ {−∞, +∞}

where C ∈ P, σ ∈ S, f, g ∈ E, and q ∈ Q.5

The first fact we establish about the hardness of computing upper and lower
bounds of covariances is that this is at most Σ0

2–hard, thus not harder than de-
ciding whether a non–probabilistic program, i.e. a program without observations
and probabilistic choice, does not terminate on all inputs, or deciding whether a
probabilistic program terminates after an expected finite number of steps [13,7].
Formally, we establish the following results:

Lemma 1. LCOVAR and RCOVAR are both in Σ0
2 .

For proving Lemma 1, we revert to a fact established in [7]: All lower bounds for
expected outcomes are computably enumerable. As a consequence, there exists
a computable function wpk [C] (f) (σ) that is ascending in k, such that for given
C ∈ P, σ ∈ S, and f ∈ E, we have

∀ k ∈ N : wpk [C] (f) (σ) ≤ wp [C] (f) (σ), and

sup
k∈N

wpk [C] (f) (σ) = wp [C] (f) (σ) .

Intuitively, for every k ∈ N the function wpk [C] (f) (σ) outputs a lower bound
of wp [C] (f) (σ) in ascending order.

5 Note that, for obvious reasons, we restrict to computable expectations f, g only.
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Similarly, lower bounds for wlp [C] (1) (σ) can be enumerated. To see this,
note that wp [C] (1) (σ) = 1 for any observe–free program C and any state σ.
wp [C] (1) (σ) can only be decreased by violation of an observation. Informally,

wp [C] (1) (σ) = 1− “Probability of C violating an observation” .

Lower bounds for the latter probability can be enumerated by successively ex-
ploring the computation tree of C on input σ and accumulating the probability
mass of all execution traces that lead to a violation of an observation. As a
consequence, there must exist a computable function wlpk [C] (1) (σ) that is de-
scending in k, such that for given C ∈ P and σ ∈ S,

∀ k ∈ N : wlp [C] (1) (σ) ≤ wlpk [C] (1) (σ), and

wlp [C] (1) (σ) = inf
k∈N

wlpk [C] (1) (σ) .

Since wpk [C] (f) (σ) is ascending and wlpk [C] (1) (σ) is descending in k, the
quotient wpk[C](f)(σ)/wlpk[C](1)(σ) is ascending in k. We can now prove Lemma 1:

Proof (Lemma 1). For LCOVAR ∈ Σ0
2 , consider (C, σ, f, g, q) ∈ LCOVAR iff

∃ k ∀ ` :
wpk [C] (f · g) (σ)

wlpk [C] (1) (σ)
− wp` [C] (f) (σ) · wp` [C] (g) (σ)

wlp` [C] (1) (σ)2
> q .

For the proof for RCOVAR, see [8] ut

Regarding the hardness of deciding whether a given rational is equal to the co-
variance and the hardness of deciding non–finiteness of covariances, we establish
that this is at most Π0

2–hard, thus not harder than deciding whether a non–
probabilistic program terminates on all inputs, or deciding whether a probabilis-
tic program does not terminate after an expected finite number of steps [13,7].
Formally, we establish the following:

Lemma 2. COVAR and ∞COVAR are both in Π0
2 .

So far we provided upper bounds for the computational hardness of solving
approximation problems for covariances. We now show that these bounds are
tight in the sense that these problems are complete for their respective level of the
arithmetical hierarchy. For that we need a Σ0

2– and a Π0
2–hard problem in order

to perform the necessary reductions for proving the hardness results. Adequate
problems are the problem of almost–sure termination and its complement:

Theorem 1 (Hardness of the Almost–Sure Termination Problem [7]).
Let C ∈ P be observe–free. Then C terminates almost–surely on input σ ∈ S, iff
it does so with probability 1. The problem set AST is defined as (C, σ) ∈ AST
iff C terminates almost–surely on input σ. We denote the complement of AST
by AST .6 AST is Π0

2–complete and AST is Σ0
2–complete.

6 Note that by “complement” we mean not exactly a set theoretic complement but
rather all pairs (C, σ) such that C does not terminate almost–surely on σ.
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1
2 10

wp [C′] (1) (σ)

1
4

0

wp [C′] (1) (σ)− wp [C′] (1) (σ)2

Fig. 1. Plot of the termination probability of a program against the resulting variance.

By reduction from AST we now establish the following hardness results:

Lemma 3. LCOVAR and RCOVAR are both Σ0
2–hard.

Proof. For proving the Σ0
2–hardness of LCOVAR, consider the reduction func-

tion rL(C, σ) = (C ′, σ, v, v, 0)7, with C ′ = v := 0; {skip} [1/2] {C}; v := 1,
where variable v does not occur in C. Now consider the following:

CovJC′K(σ) (v, v) =
wp [C ′]

(
v2
)

(σ)

wlp [C ′] (1) (σ)
− wp [C ′] (v) (σ)2

wlp [C ′] (1) (σ)2

=
wp [C ′]

(
v2
)

(σ)

1
− wp [C ′] (v) (σ)2

12
(C ′ is observe–free)

= wp [C ′]
(
v2
)

(σ)− wp [C ′] (v) (σ)2

Since v does not occur in C and v is set from 0 to 1 if and only if C ′ has
terminated, this is equal to:

= wp [C ′]
(
12
)

(σ)− wp [C ′] (1) (σ)2

= wp [C ′] (1) (σ)− wp [C ′] (1) (σ)2

Note that wp [C ′] (1) (σ) is exactly the probability of C ′ terminating on input σ.
A plot of this termination probability against the resulting variance is given in
Figure 1. We observe that CovJC′K(σ) (v, v) = wp [C ′] (1) (σ)−wp [C ′] (1) (σ)2 > 0
iff C ′ terminates neither with probability 0 nor with probability 1. Since, how-
ever, C ′ terminates by construction at least with probability 1/2, we obtain
that CovJC′K(σ) (v, v) > 0 iff C ′ terminates with probability less than 1, which
is the case iff C terminates with probability less than 1. Thus rL(C, σ) =
(C ′, σ, v, v, 0) ∈ LCOVAR iff (C, σ) ∈ AST . Thus, rL : AST ≤m LCOVAR.
Since AST is Σ0

2–complete, if follows that LCOVAR is Σ0
2–hard.

For the the proof for RCOVAR, see [8]. ut

A hardness results for COVAR is obtained by reduction from AST .

Lemma 4. COVAR is Π0
2–hard.

7 We write v for the expectation that in state σ returns σ(v).
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Proof. Similar to Lemma 3 using rV(C, σ) =
(
C ′, σ, v, v, 1

4

)
, with C ′ = v := 0;

{diverge} [1/2] {C}; v := 1. For details, see [8]. ut

For a hardness result on ∞COVAR we use the universal halting problem for
non–probabilistic programs.

Theorem 2 (Hardness of the Universal Halting Problem [13]). Let C
be a non–probabilistic program. The universal halting problem is the problem of
deciding whether C terminates on all inputs. Let UH denote the problem set,
defined as C ∈ UH iff ∀σ ∈ S : C terminates on input σ. UH is Π0

2–complete.

We now establish by reduction from UH the remaining hardness result:

Lemma 5. ∞COVAR is Π0
2–hard.

Proof. For proving the Π0
2–hardness of ∞COVAR we use the reduction function

r∞(C) = (C ′, σ, v, v), where σ is arbitrary but fixed and C ′ is the program

c := 1; i := 0; x := 0; v := 0; term := 0; InitC;

while (c 6= 0){
StepC; if (term = 1){ v := 2x; i := i+ 1; term := 0; InitC };
{c := 0} [0.5] {c := 1}; x := x+ 1 } ,

where InitC is a non–probabilistic program that initializes a simulation of the
program C on input e(i) (where e : N → S is some computable enumeration of
S), and StepC is a non–probabilistic program that does one single (further) step
of that simulation and sets term to 1 if that step has led to termination of C.

Intuitively, the program C ′ starts by simulating C on input e(0). During
the simulation, it—figuratively speaking—gradually looses interest in further
simulating C by tossing a coin after each simulation step to decide whether to
continue the simulation or not. If eventually C ′ finds that C has terminated on
input e(0), it sets the variable v to a number exponential in the number of coin
tosses that were made so far, namely to 2x. C ′ then continues with the same
procedure for the next input e(1), and so on.

The variable x keeps track of the number of loop iterations (starting from
1 as the first loop iteration will definitely take place), which equals the number
of coin tosses. The x–th loop iteration takes place with probability 1/2x. The
expected value EJC′K(σ) (v) is thus given by a series of the form S =

∑∞
i=1

vi/2i,
where vi = 2j for some j ∈ N. Two cases arise:

(1) C ∈ UH, i.e. C terminates on every input. In that case, v will infinitely of-
ten be updated to 2x. Therefore, summands of the form 2i/2i will appear infinitely
often in S and so S diverges. Hence, the expected value of v is infinity and there-
fore, the variance of v must be infinite as well. Thus, (C ′, σ, v, v) ∈ ∞COVAR.

(2) C 6∈ UH, i.e. there exists some input σ′ with minimal i ∈ N such that
e(i) = σ′ on which C does not terminate. In that case, the numerator of all
summands of S is upper bounded by some constant 2j and thus S converges.
Boundedness of the vi’s implies that the series

∑∞
i=1

vi
2
/2i = EJC′K(σ)

(
v2
)

also
converges. Hence, the variance of v is finite and (C ′, σ, v, v) 6∈ ∞COVAR. ut
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Lemmas 1 to 5 together directly yield the following completeness results:

Theorem 3 (The Hardness of Approximating Covariances).

1. LCOVAR and RCOVAR are both Σ0
2–complete.

2. COVAR and ∞COVAR are both Π0
2–complete.

Remark 1 (The Hardness of Approximating Variances). It can be shown that
variance approximation is not easier than covariance approximation: exactly the
same completeness results as in Theorem 3 hold for analogous variance approx-
imation problems. In fact, we have always reduced to approximating a variance
for obtaining our hardness results on covariances. 4

As an immediate consequence of Theorem 3, computing both upper and lower
bounds for covariances is equally difficult. This is contrary to the case for expected
values: While computing upper bounds for expected values is also Σ0

2–complete,
computing lower bounds is Σ0

1–complete, thus lower bounds are computably
enumerable [7]. Therefore we can computably enumerate an ascending sequence
that converges to the sought–after expected value. By Theorem 3 this is not
possible for a covariance as Σ0

2–sets are in general not computably enumerable.
Theorem 3 rules out techniques based on finite loop–unrollings as complete

approaches for reasoning about the covariances of outcomes of probabilistic pro-
grams. As this is a rather sobering insight, in the next section we will investigate
invariant–aided techniques that are complete and can be applied to tackle these
approximation problems.

4 Invariant–Aided Reasoning on Outcome Covariances

For straight–line (i.e. loop–free) programs, upper and lower bounds for covarian-
ces are obviously computable, e.g. by using the decompositions from Definitions
3 and 4, and the inference rules from Table 1. Problems do arise, however, for
loops. We have seen in the previous section that neither upper nor lower bounds
are computably enumerable. In this section we therefore present an invariant–
aided approach for enumerating bounds on covariances of loops. The underlying
principle of such techniques is quite commonly a result due to Park:

Theorem 4 (Park’s Lemma [15]). Let (D, v) be a complete partial order
and F : D → D be continuous. Then, for all d ∈ D, it holds that F (d) v d
implies lfpF v d, and d v F (d) implies d v gfpF .

Using this theorem, we can verify in a relatively easy fashion that some element
is an over–approximation of the least fixed point or an under–approximation of
the greatest fixed point of a continuous mapping on a complete partial order.
In the following, let C = while (B) {C ′}. In order to exploit Park’s Lemma for
enumerating bounds on covariances for this while–loop, recall

CovJCK(σ) (f, g) = EJCK(σ) (f · g)− EJCK(σ) (f) · EJCK(σ) (g)
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=
wp [C] (f · g) (σ)

wlp [C] (1) (σ)
− wp [C] (f) (σ) · wp [C] (g) (σ)

wlp [C] (1) (σ)2
.

By inspection of the last line, we can see that for obtaining an over–approxima-
tion of CovJCK(σ) (f, g), it suffices to over–approximate wp[C′](f ·g)(σ)/wlp[C′](1)(σ),
which can be done by over–approximating wp [C ′] (f · g) (σ) and under–approxi-
mating wlp [C ′] (1) (σ). Since wp (wlp) of a loop is defined in terms of a least
(greatest) fixed point, we can apply Park’s Lemma for over–approximating this
fraction. This leads us to the following proof rule:

Theorem 5 (Invariant–Aided Over–Approximation of Covariances).
Let C = while (B) {C ′}, σ ∈ S, f, g ∈ E, Fh(X) = [¬B] · h+ [B] · wp [C ′] (X),

for any h ∈ E, and G(Y ) = [¬B] + [B] · wlp [C ′] (Y ). Furthermore, let X̂ ∈ E
and Ŷ ∈ E≤1, such that Ff ·g

(
X̂
)
� X̂, Ŷ � G

(
Ŷ
)
, and Ŷ (σ) > 0. Then for all

k ∈ N it holds that8

CovJCK(σ) (f, g) ≤ X̂(σ)

Ŷ (σ)
−
F kf (0)(σ) · F kg (0)(σ)

Gk(1)(σ)2
.

By this method we can computably enumerate upper bounds for covariances once
appropriate invariants are found. The catch is that if we choose the invariants,
such that Ff ·g

(
X̂
)
(σ) < X̂(σ) or Ŷ (σ) < G

(
Ŷ
)
(σ), then the enumeration will

not get arbitrarily close to the actual covariance. Note, however, that our method
is complete since we could have chosen X̂ = lfpFf ·g and Ŷ = gfpG:

Corollary 1 (Completeness of Theorem 5). Let C = while (B) {C ′}, σ ∈
S, f, g ∈ E. Then there exist X̂ ∈ E and Ŷ ∈ E≤1, such that

inf
k∈N

X̂(σ)

Ŷ (σ)
−
F kf (0)(σ) · F kg (0)(σ)

Gk(1)(σ)2
= CovJCK(σ) (f, g) .

By considerations analogous to the ones above, we can formulate dual results
for lower bounds. For details, see [8].

Example 2 (Application of Theorem 5). Reconsider the loop from Example 1.
For reasoning about the variance of x, we pick the invariants

X̂ = [c 6= 0] · x2 + [c = 1] ·
(
[x is even] · 1/27

(
9x2 + 30x+ 41

)
+ [x is odd] · 2/27

(
9x2 + 12x+ 20

))
, and

Ŷ = [c 6= 0] + [c = 1] · ([x is even] · 1/3 + [x is odd] · 2/3) ,

which satisfy the preconditions of Theorem 5. If we enter the loop in a state
σ with σ(c) = 1 and σ(x) = 0, we have X̂(σ)/Ŷ (σ) = 41/9 which is our first
upper bound. We can now enumerate further upper bounds by doing fixed point
iteration on Fx(X) = [c 6= 1] · x + [c = 1] · wp [loop body ] (X) = [c 6= 1] ·
8 Here F kh (X) stands for k–fold application of Fh to X.
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x + [c = 1] · 1
2

(
[x is odd] · X[c/0] +X[x/x+ 1]

)
and G(Y ) = [c 6= 1] + [c =

1] · wlp [loop body ] (Y ) = [c 6= 1] + [c = 1] · 12
(
[x is odd] · Y [c/0] +Y [x/x+ 1]

)
:

41

9
− F 1

x (0)(σ)2

G1(1)(σ)2
=

41

9
− F 2

x (0)(σ)2

G2(1)(σ)2
=

41

9
,

41

9
− F 3

x (0)(σ)2

G3(1)(σ)2
=

37

9
, . . .

Finally, this sequence converges to 41/9− 25/9 = 16/9 as the variance of x. 4

5 Reasoning about Run–Time Variances

In addition to the (co)variance of outcomes we are interested in the variance of
the program’s run–time. Intuitively, the run–time of a program corresponds to
its number of executed operations, where each operation is weighted according to
some run–time model. For simplicity, our run–time model assumes skip, guard
evaluations and assignments to consume one unit of time. Other statements are
assumed to consume no time at all. More elaborated run–time models, e.g. in
which the run–time of assignments depends on the size of a given expression,
are possible design choices that can easily be integrated in our formalization.

We describe the run–time variance in terms of an operational model Markov
Chain (MC) with rewards. The model is similar to the ones studied in [6,9], but
additionally keeps track of the run–time in a dedicated variable τ which is not
accessible by the program, but may occur in expectations.

Definition 8 (Run–Time Expectations). Let Sτ = {σ | V ∪· {τ} → Q}.
The set of run–time expectations is then defined as Eτ =

{
t
∣∣ t : Sτ → R∞≥0

}
.

A corresponding wp–style calculus to reason about expected run–times and va-
riances of probabilistic programs is presented afterwards.

We first briefly recall some necessary notions about MCs and refer to [1,
Ch. 10] for a comprehensive introduction. A Markov Chain is a tuple M =
(S,P, sI , rew), where S is a countable set of states, sI ∈ S is the initial state,
P : S × S → [0, 1] is the transition probability function such that for each state
s ∈ S,

∑
s′∈S P(s, s′) ∈ {0, 1}, and rew : S → R≥0 is a reward function. Instead

of P(s, s′) = p, we often write s
p−→ s′. A path in M is a finite or infinite sequence

π = s0s1 . . . such that si ∈ S and P(si, si+1) > 0 for each i ≥ 0 (where we
tacitly assume P(si, si+1) = 0 if π is a finite path of length n and i ≥ n). The
cumulative reward and the probability of a finite path π̂ = s0 . . . sn are given
by rew(π̂) =

∑n−1
k=0 rew(sk) and PrM {π̂} =

∏n−1
k=0 P(sk, sk+1). These notions

are lifted to infinite paths by the standard cylinder set construction (cf. [1]).
Given a set of target states T ⊆ S, ♦T denotes the set of all paths in M

reaching a state in T from initial state sI . Analogously, all paths starting in sI
that never reach a state in T are denoted by ¬♦T . The expected reward that M
eventually reaches T from a state s ∈ S is defined as follows:

ExpRewM (♦T ) =

{∑
π∈♦T PrM {π} · rew(π) if

∑
π∈♦T PrM {π} = 1

∞ if
∑
π∈♦T PrM {π} < 1.
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Moreover, the conditional expected reward of M reaching T from s under the
condition that a set of undesired states U ⊆ S is never reached is given by9

CExpRewM (♦T | ¬♦U) =
ExpRewM (♦T ∩ ¬♦U)

PrM {¬♦U}
.

We are now in a position to define an operational model for our probabilistic
programming language P. Let ↓ and E be two special symbols denoting successful
termination of a program and failure of an observation, respectively.

Definition 9 (The Operational MC of a P–Program). Given a program
C ∈ P, an initial program state σ0 ∈ Sτ and a post–run–time t ∈ E, the according
MC is given by M t

σ0
[C] = (S, P, sI , rew), where

– S = ((P ∪ {↓} ∪ {↓;C | C ∈ P})× Sτ ) ∪ {〈 sink 〉, 〈 E 〉},
– the transition probability function P is given by the rules in Figure 2,
– sI = 〈C, σ0 〉, and
– rew : S → R≥0 is the reward function defined by rew(s) = t(σ) if s = 〈 ↓, σ 〉

for some σ ∈ Sτ and rew(s) = 0, otherwise.

In this construction, σ0(τ) represents the post–execution time of a program,
i.e. the run–time that is added after a program finishes its execution. Hence, τ
precisely captures the run–time of a program if σ0(τ) = 0. The rules presented in
Figure 2 defining the transition probability function are mostly self–explanatory.
Since we assume guard evaluations, probabilistic choices, assignments and the
statement skip to consume one unit of time. Hence, τ is incremented accordingly
for each of these statements and remains untouched otherwise.

Figure 3 sketches the structure of the operational MC M t
σ [C]. Here, clouds

represent a set of states and squiggly arrows indicate that a set of states is
reachable by one or more paths. Each run either terminates successfully (i.e.
it visits some state 〈 ↓, σ′ 〉), or violates an observation (i.e. it visits 〈 E 〉), or
diverges. In the first two cases each run eventually ends up in the 〈 sink 〉 state.
Note that states of the form 〈 ↓, σ′ 〉 are the only ones that may have a positive
reward. Furthermore, each of the auxiliary states of the form 〈 ↓, σ′ 〉, 〈 E 〉 and
〈 sink 〉 is needed to properly deal with diverge, halt and observe B.

Since τ precisely captures the run–time of a program if τ is initially set to
0, the expected run–time of executing C ∈ P on input σ ∈ Sτ with σ(τ) = 0 is
given by the conditional expected reward of M τ

σ [C] reaching 〈 sink 〉, given that

no observation fails, i.e. EJCK(σ) (τ) = CExpRewM τ
σ [C] (♦〈 sink 〉 | ¬♦〈 E 〉). Then,

in compliance with Definition 4, the run–time variance RTVarJCK(σ) of C ∈ P in

state σ ∈ Sτ with σ(τ) = 0 is given by EJCK(σ)
(
τ2
)
−
(
EJCK(σ) (τ)

)2
which is

CExpRewM τ2

σ [C] (♦〈 sink 〉 | ¬♦〈 E 〉)−
(
CExpRewM τ

σ [C] (♦〈 sink 〉 | ¬♦〈 E 〉)
)2

.

In the following we provide a corresponding wp–style calculus to reason about
expected run–times and run–time variances of probabilistic programs. A formal

9 Again, we stick to the convention that 0
0

= 0.
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〈 ↓, σ 〉 1−→ 〈 sink 〉
[terminated]

〈 sink 〉 1−→ 〈 sink 〉
[sink]

〈 empty, σ 〉 1−→ 〈↓, σ 〉
[empty]

〈 skip, σ 〉 1−→ 〈↓, σ[τ/τ + 1] 〉
[skip]

〈 halt, σ 〉 1−→ 〈 sink 〉
[halt]

〈x := E, σ 〉 1−→ 〈↓, σ[x/E, τ/τ + 1] 〉
[assgn]

〈C1, σ 〉
p−→ 〈C′1, σ′ 〉 0 < p ≤ 1

〈C1; C2, σ 〉
p−→ 〈C′1; C2, σ

′ 〉
[seq-1]

〈 ↓; C2, σ 〉
1−→ 〈C2, σ 〉

[seq-2]

〈 {C1} [p] {C2} , σ 〉
p−→ 〈C1, σ[τ/τ + 1] 〉

[pc-1]

〈 {C1} [p] {C2} , σ 〉
1−p−−→ 〈C2, σ[τ/τ + 1] 〉

[pc-2]

[B](σ) = 1

〈 if (B) {C1} else {C2} , σ 〉
1−→ 〈C1, σ[τ/τ + 1] 〉

[if-true]

[B](σ) = 0

〈 if (B) {C1} else {C2} , σ 〉
1−→ 〈C2, σ[τ/τ + 1] 〉

[if-false]

〈 while (B) {C} , σ 〉 1−→ 〈 if (B) {C; while (B) {C}} else {empty} , σ 〉
[while]

〈 diverge, σ 〉 1−→ 〈 diverge, σ 〉
[diverge]

[B](σ) = 1

〈 observe B, σ 〉 1−→ 〈↓, σ[τ/τ + 1] 〉
[observe-true]

[B](σ) = 0

〈 observe B, σ 〉 1−→ 〈 E 〉
[observe-false]

〈 E 〉 1−→ 〈 sink 〉
[observe-failed]

Fig. 2. Rules for defining the transition probability function of the MC of a P–program.

definition of the run–time transformer rt : P → (Eτ → Eτ ) is provided in Ta-
ble 1 (rightmost column). Intuitively, it behaves like wp except that a dedicated
run–time variable τ is updated accordingly for each program statement that con-
sumes time. In [9], a transformer for expected run–times without the need for
an additional variable τ is studied. However, this approach fails when reasoning
about run–time variances since it fails to capture expected squared run–times.
The run–time transformer rt precisely captures the notion of expected run–time
of our operational model.

Theorem 6 (Operational–Denotational Correspondence). Let C ∈ P,
t ∈ Eτ , and σ ∈ Sτ . Then

CExpRewM t
σ [C] (♦〈 sink 〉 | ¬♦〈 E 〉) =

rt [C] (t) (σ)

wlp [C] (1) (σ)
.
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〈C, σ 〉 ↓

〈 E 〉

sink

diverge

↓
↓ ↓

↓ ↓

Fig. 3. Schematic depiction of the structure of the operational MC M t
σ [C].

As a result of Theorem 6 we immediately obtain a formal definition of the
run–time variance of probabilistic programs in terms of rt and wlp. Formally, the
run–time variance of C ∈ P in state σ ∈ Sτ with σ(τ) = 0 is given by

RTVarJCK(σ) = CExpRewM τ2

σ [C] (♦〈 sink 〉 | ¬♦〈 E 〉)

−
(
CExpRewM τ

σ [C] (♦〈 sink 〉 | ¬♦〈 E 〉)
)2

=
rt [C]

(
τ2
)

(σ)

wlp [C] (1) (σ)
− (rt [C] (τ) (σ))

2

(wlp [C] (1) (σ))
2 .

Since rt is continuous (cf. [8] for a formal proof), the invariant–aided approach
based on Park’s Lemma (Theorem 4) presented in Section 4 is applicable to
approximate run–time variances as well. We present the result for approximating
upper bounds only. The dual result for lower bounds is obtained analogously.

Theorem 7 (Invariant–Aided Over–Approximation of Run–Time Va-
riances). Let C = while (B) {C ′} and σ ∈ Sτ with σ(τ) = 0. Moreover, let
Fh(X) = [¬B] · h + [B] · rt [C ′] (X), and G(Y ) = [¬B] + [B] · wlp [C ′] (Y ). Fur-

thermore, let X̂ ∈ Eτ and Ŷ ∈ E≤1, such that Fτ2

(
X̂
)
� X̂, Ŷ � G

(
Ŷ
)
, and

Ŷ (σ) > 0. Then for each k ∈ N, it holds

RTVarJCK(σ) ≤
X̂(σ)

Ŷ (σ)
−
(
F kτ (0)(σ)

Gk(1)(σ)

)2

.

The proof of Theorem 7 is analogous to the proof of Theorem 5. Again, since it
is always possible to choose X̂ = lfpFτ2 and Ŷ = gfpG, Theorem 7 is complete,
i.e. there exist X̂ ∈ Eτ and Ŷ ∈ E≤1 such that

inf
k∈N

X̂(σ)

Ŷ (σ)
−
(
F kτ (0)(σ)

Gk(1)(σ)

)2

= RTVarJCK(σ).

6 Conclusion

We have studied the computational hardness of obtaining both upper and lower
bounds on (co)variance of outcomes and established that this is Σ0

2–complete.



16 Kaminski, Katoen, Matheja

Thus neither upper nor lower bounds are computably enumerable. Furthermore,
we have established that deciding whether the (co)variance equals a given ratio-
nal and deciding whether the covariance is infinite is Π0

2–complete.
In the second part of the paper, we continued by presenting a sound and com-

plete invariant–aided approach which allows to computably enumerate upper and
lower bounds on (co)variances of while–loops, once appropriate loop–invariants
are found. Finally, we have shown how this approach can be extended to reason
about the variance of run–times.
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