
Weakest Precondition Reasoning for
Expected Run–Times of Probabilistic Programs?

Benjamin Lucien Kaminski, Joost-Pieter Katoen,
Christoph Matheja, and Federico Olmedo

Software Modeling and Verification Group, RWTH Aachen University
Ahornstraße 55, 52074 Aachen, Germany

{benjamin.kaminski,katoen,matheja,federico.olmedo}

@cs.rwth-aachen.de

Abstract. This paper presents a wp–style calculus for obtaining bounds
on the expected run–time of probabilistic programs. Its application in-
cludes determining the (possibly infinite) expected termination time of
a probabilistic program and proving positive almost–sure termination—
does a program terminate with probability one in finite expected time?
We provide several proof rules for bounding the run–time of loops, and
prove the soundness of the approach with respect to a simple opera-
tional model. We show that our approach is a conservative extension
of Nielson’s approach for reasoning about the run–time of deterministic
programs. We analyze the expected run–time of some example programs
including a one–dimensional random walk and the coupon collector prob-
lem.

Keywords: probabilistic programs · expected run–time · positive
almost–sure termination · weakest precondition · program verification.

1 Introduction

Since the early days of computing, randomization has been an important tool
for the construction of algorithms. It is typically used to convert a deterministic
program with bad worst–case behavior into an efficient randomized algorithm
that yields a correct output with high probability. The Rabin–Miller primal-
ity test, Freivalds’ matrix multiplication, and the random pivot selection in
Hoare’s quicksort algorithm are prime examples. Randomized algorithms are
conveniently described by probabilistic programs. On top of the usual language
constructs, probabilistic programming languages offer the possibility of sampling
values from a probability distribution. Sampling can be used in assignments as
well as in Boolean guards.

The interest in probabilistic programs has recently been rapidly growing.
This is mainly due to their wide applicability [10]. Probabilistic programs are

? This work was supported by the Excellence Initiative of the German federal and
state government.

2 Kaminski, Katoen, Matheja, Olmedo

for instance used in security to describe cryptographic constructions and security
experiments. In machine learning they are used to describe distribution functions
that are analyzed using Bayesian inference. The sample program

Cgeo : b := 1; while (b = 1) {b :≈ 1/2 ·〈0〉+ 1/2 ·〈1〉}

for instance flips a fair coin until observing the first heads (i.e. 0). It describes a
geometric distribution with parameter 1/2.

The run–time of probabilistic programs is affected by the outcome of their
coin tosses. Technically speaking, the run–time is a random variable, i.e. it is
t1 with probability p1, t2 with probability p2 and so on. An important measure
that we consider over probabilistic programs is then their average or expected
run–time (over all inputs). Reasoning about the expected run–time of proba-
bilistic programs is surprisingly subtle and full of nuances. In classical sequential
programs, a single diverging program run yields the program to have an infinite
run–time. This is not true for probabilistic programs. They may admit arbitrar-
ily long runs while having a finite expected run–time. The program Cgeo , for
instance, does admit arbitrarily long runs as for any n, the probability of not
seeing a heads in the first n trials is always positive. The expected run–time of
Cgeo is, however, finite.

In the classical setting, programs with finite run–times can be sequentially
composed yielding a new program again with finite run–time. For probabilistic
programs this does not hold in general. Consider the pair of programs

C1 : x := 1; b := 1; while (b = 1) {b :≈ 1/2 ·〈0〉+ 1/2 ·〈1〉; x := 2x} and

C2 : while (x > 0) {x := x− 1} .

The loop in C1 terminates on average in two iterations; it thus has a finite ex-
pected run–time. From any initial state in which x is non–negative, C2 makes
x iterations, and thus its expected run–time is finite, too. However, the pro-
gram C1;C2 has an infinite expected run–time—even though it almost–surely
terminates, i.e. it terminates with probability one. Other subtleties can occur as
program run–times are very sensitive to variations in the probabilities occurring
in the program.

Bounds on the expected run–time of randomized algorithms are typically
obtained using a detailed analysis exploiting classical probability theory (on ex-
pectations or martingales) [9,22]. This paper presents an alternative approach,
based on formal program development and verification techniques. We propose a
wp–style calculus à la Dijkstra for obtaining bounds on the expected run–time of
probabilistic programs. The core of our calculus is the transformer ert, a quan-
titative variant of Dijkstra’s wp–transformer. For a program C, ert [C] (f) (σ)
gives the expected run–time of C started in initial state σ under the assump-
tion that f captures the run–time of the computation following C. In particular,
ert [C] (0) (σ) gives the expected run–time of program C on input σ (where 0
is the constantly zero run–time). Transformer ert is defined inductively on the
program structure. We prove that our transformer conservatively extends Niel-
son’s approach [23] for reasoning about the run–time of deterministic programs.

wp–Reasoning for Expected Run–Times of Prob. Programs 3

In addition we show that ert [C] (f) (σ) corresponds to the expected run–time
in a simple operational model for our probabilistic programs based on Markov
Decision Processes (MDPs). The main contribution is a set of proof rules for ob-
taining (upper and lower) bounds on the expected run–time of loops. We apply
our approach for analyzing the expected run–time of some example programs
including a one–dimensional random walk and the coupon collector problem [20].

We finally point out that our technique enables determining the (possibly
infinite) expected time until termination of a probabilistic program and proving
(universal) positive almost–sure termination—does a program terminate with
probability one in finite expected time (on all inputs)? It has been recently
shown [16] that the universal positive almost–sure termination problem is Π0

3–
complete, and thus strictly harder to solve than the universal halting problem
for deterministic programs. To the best of our knowledge, the formal verification
framework in this paper is the first one that is proved sound and can handle
both positive almost–sure termination and infinite expected run–times.

Related work. Several works apply wp–style– or Floyd–Hoare–style reasoning to
study quantitative aspects of classical programs. Nielson [23,24] provides a Hoare
logic for determining upper bounds on the run–time of deterministic programs.
Our approach applied to such programs yields the tightest upper bound on the
run–time that can be derived using Nielson’s approach. Arthan et al. [1] provide
a general framework for sound and complete Hoare–style logics, and show that
an instance of their theory can be used to obtain upper bounds on the run–time
of while programs. Hickey and Cohen [13] automate the average–case analysis
of deterministic programs by generating a system of recurrence equations de-
rived from a program whose efficiency is to be analyzed. They build on top of
Kozen’s seminal work [18] on semantics of probabilistic programs. Berghammer
and Müller–Olm [3] show how Hoare–style reasoning can be extended to ob-
tain bounds on the closeness of results obtained using approximate algorithms
to the optimal solution. Deriving space and time consumption of deterministic
programs has also been considered by Hehner [11]. Formal reasoning about prob-
abilistic programs goes back to Kozen [18], and has been developed further by
Hehner [12] and McIver and Morgan [19]. The work by Celiku and McIver [5]
is perhaps the closest to our paper. They provide a wp–calculus for obtaining
performance properties of probabilistic programs, including upper bounds on
expected run–times. Their focus is on refinement. They do neither provide a
soundness result of their approach nor consider lower bounds. We believe that
our transformer is simpler to work with in practice, too. Monniaux [21] exploits
abstract interpretation to automatically prove the probabilistic termination of
programs using exponential bounds on the tail of the distribution. His analysis
can be used to prove the soundness of experimental statistical methods to de-
termine the average run–time of probabilistic programs. Brazdil et al. [4] study
the run–time of probabilistic programs with unbounded recursion by consider-
ing probabilistic pushdown automata (pPDAs). They show (using martingale
theory) that for every pPDA the probability of performing a long run decreases
exponentially (polynomially) in the length of the run, iff the pPDA has a finite

4 Kaminski, Katoen, Matheja, Olmedo

(infinite) expected runtime. As opposed to our program verification technique,
[4] considers reasoning at the operational level. Fioriti and Hermanns [8] recently
proposed a typing scheme for deciding almost-sure termination. They showed,
amongst others, that if a program is well-typed, then it almost surely terminates.
This result does not cover positive almost-sure-termination.

Organization of the paper. Section 2 defines our probabilistic programming lan-
guage. Section 3 presents the transformer ert and studies its elementary proper-
ties such as continuity. Section 4 shows that the ert transformer coincides with
the expected run–time in an MDP that acts as operational model of our pro-
grams. Section 5 presents two sets of proof rules for obtaining upper and lower
bounds on the expected run–time of loops. In Section 6, we show that the ert
transformer is a conservative extension of Nielson’s approach for obtaining upper
bounds on deterministic programs. Section 7 discusses two case studies in detail.
Section 8 concludes the paper.

The proofs of the main facts are included in the body of the paper. The
remaining proofs and the calculations omitted in Section 7 are included in an
extended version of the paper [17].

2 A Probabilistic Programming Language

In this section we present the probabilistic programming language used through-
out this paper, together with its run–time model. To model probabilistic pro-
grams we employ a standard imperative language à la Dijkstra’s Guarded Com-
mand Language [7] with two distinguished features: we allow distribution ex-
pressions in assignments and guards to be probabilistic. For instance, we allow
for probabilistic assignments like

y :≈ Unif[1 . . . x]

which endows variable y with a uniform distribution in the interval [1 . . . x]. We
allow also for a program like

x := 0; while
(
p ·〈true〉+ (1−p) ·〈false〉

)
{x := x+ 1}

which uses a probabilistic loop guard to simulate a geometric distribution with
success probability p, i.e. the loop guard evaluates to true with probability p and
to false with the remaining probability 1−p.

Formally, the set of probabilistic programs pProgs is given by the grammar

C ::= empty empty program
| skip effectless operation
| halt immediate termination
| x :≈ µ probabilistic assignment
| C; C sequential composition
| {C} � {C} non–deterministic choice
| if (ξ) {C} else {C} probabilistic conditional
| while (ξ) {C} probabilistic while loop

wp–Reasoning for Expected Run–Times of Prob. Programs 5

Here x represents a program variable in Var, µ a distribution expression in DExp,
and ξ a distribution expression over the truth values, i.e. a probabilistic guard, in
DExp. We assume distribution expressions in DExp to represent discrete proba-
bility distributions with a (possibly infinite) support of total probability mass 1.
We use p1 · 〈a1〉+ · · ·+pn · 〈an〉 to denote the distribution expression that assigns
probability pi to ai. For instance, the distribution expression 1/2·〈true〉+1/2·〈false〉
represents the toss of a fair coin. Deterministic expressions over program vari-
ables such as x−y or x−y > 8 are special instances of distribution expressions—
they are understood as Dirac probability distributions1.

To describe the different language constructs we first present some prelimi-
naries. A program state σ is a mapping from program variables to values in Val.
Let Σ , {σ | σ : Var→ Val} be the set of program states. We assume an interpre-
tation function J · K : DExp→ (Σ → D(Val)) for distribution expressions, D(Val)
being the set of discrete probability distributions over Val. For µ ∈ DExp, JµK
maps each program state to a probability distribution of values. We use Jµ : vK
as a shorthand for the function mapping each program state σ to the probability
that distribution JµK(σ) assigns to value v, i.e. Jµ : vK(σ) , PrJµK(σ)(v), where Pr
denotes the probability operator on distributions over values.

We now present the effects of pProgs programs and the run–time model that
we adopt for them. empty has no effect and its execution consumes no time.
skip has also no effect but consumes, in contrast to empty, one unit of time.
halt aborts any further program execution and consumes no time. x :≈ µ
is a probabilistic assignment that samples a value from JµK and assigns it to
variable x; the sampling and assignment consume (altogether) one unit of time.
C1; C2 is the sequential composition of programs C1 and C2. {C1} � {C2} is
a non–deterministic choice between programs C1 and C2; we take a demonic
view where we assume that out of C1 and C2 we execute the program with the
greatest run–time. if(ξ){C1}else{C2} is a probabilistic conditional branching:
with probability Jξ : trueK program C1 is executed, whereas with probability
Jξ : falseK = 1−Jξ : trueK program C2 is executed; evaluating (or more rigorously,
sampling a value from) the probabilistic guard requires an additional unit of time.
while (ξ) {C} is a probabilistic while loop: with probability Jξ : trueK the loop
body C is executed followed by a recursive execution of the loop, whereas with
probability Jξ : falseK the loop terminates; as for conditionals, each evaluation of
the guard consumes one unit of time.

Example 1 (Race between tortoise and hare). The probabilistic program

h :≈ 0; t :≈ 30;

while (h ≤ t) {
if
(
1/2 ·〈true〉+ 1/2 ·〈false〉

)
{h :≈ h+ Unif[0 . . . 10]}

else {empty};
t :≈ t+ 1

} ,
1 A Dirac distribution assigns the total probability mass, i.e. 1, to a single point.

6 Kaminski, Katoen, Matheja, Olmedo

adopted from [6], illustrates the use of the programming language. It models a
race between a hare and a tortoise (variables h and t represent their respective
positions). The tortoise starts with a lead of 30 and in each step advances one
step forward. The hare with probability 1/2 advances a random number of steps
between 0 and 10 (governed by a uniform distribution) and with the remaining
probability remains still. The race ends when the hare passes the tortoise. 4

We conclude this section by fixing some notational conventions. To keep our
program notation consistent with standard usage, we use the standard symbol
:= instead of :≈ for assignments whenever µ represents a Dirac distribution
given by a deterministic expressions over program variables. For instance, in
the program in Example 1 we write t := t + 1 instead of t :≈ t + 1. Likewise,
when ξ is a probabilistic guard given as a deterministic Boolean expression over
program variables, we use JξK to denote Jξ : trueK and J¬ξK to denote Jξ : falseK.
For instance, we write Jb = 0K instead of Jb = 0: trueK.

3 A Calculus of Expected Run–Times

Our goal is to associate to any program C a function that maps each state σ
to the average or expected run–time of C started in initial state σ. We use the
functional space of run–times

T ,
{
f
∣∣ f : Σ → R∞≥0

}
to model such functions. Here, R∞≥0 represents the set of non–negative real values
extended with ∞. We consider run–times as a mapping from program states to
real numbers (or ∞) as the expected run–time of a program may depend on the
initial program state.

We express the run–time of programs using a continuation–passing style by
means of the transformer

ert[·] : pProgs→ (T→ T) .

Concretely, ert [C] (f) (σ) gives the expected run–time of program C from state
σ assuming that f captures the run–time of the computation that follows C.
Function f is usually referred to as continuation and can be thought of as being
evaluated in the final states that are reached upon termination of C. Observe
that, in particular, if we set f to the constantly zero run–time, ert [C] (0) (σ)
gives the expected run–time of program C on input σ.

The transformer ert is defined by induction on the structure of C following
the rules in Table 1. The rules are defined so as to correspond to the run–time
model introduced in Section 2. That is, ert [C] (0) captures the expected number
of assignments, guard evaluations and skip statements. Most rules in Table 1
are self–explanatory. ert[empty] behaves as the identity since empty does not
modify the program state and its execution consumes no time. On the other
hand, ert[skip] adds one unit of time since this is the time required by the
execution of skip. ert[halt] yields always the constant run–time 0 since halt

wp–Reasoning for Expected Run–Times of Prob. Programs 7

C ert [C] (f)

empty f

skip 1 + f

halt 0

x :≈ µ 1 + λσ• EJµK(σ) (λv. f [x/v] (σ))

C1; C2 ert [C1] (ert [C2] (f))

{C1} � {C2} max{ert [C1] (f) , ert [C2] (f)}

if (ξ) {C1} else {C2} 1 + Jξ : trueK · ert [C1] (f) + Jξ : falseK · ert [C2] (f)

while (ξ) {C′} lfpX• 1 + Jξ : falseK · f + Jξ : trueK · ert [C′] (X)

Table 1. Rules for defining the expected run–time transformer ert. 1 is the con-
stant run–time λσ.1. Eη (h) ,

∑
v Prη(v) · h(v) represents the expected value of (ran-

dom variable) h w.r.t. distribution η. For σ ∈ Σ, f [x/v] (σ) , f(σ [x/v]), where
σ [x/v] is the state obtained by updating in σ the value of x to v. max{f1, f2} ,
λσ.max{f1(σ), f2(σ)} represents the point–wise lifting of the max operator over R∞≥0

to the function space of run–times. lfpX• F (X) represents the least fixed point of the
transformer F : T→ T.

aborts any subsequent program execution (making their run–time irrelevant) and
consumes no time. The definition of ert on random assignments is more involved:
ert [x :≈ µ] (f) (σ) = 1+

∑
v PrJµK(σ)(v)·f(σ [x/v]) is obtained by adding one unit

of time (due to the distribution sampling and assignment of the value sampled)
to the sum of the run–time of each possible subsequent execution, weighted
according to their probabilities. ert[C1;C2] applies ert[C1] to the expected run–
time obtained from the application of ert[C2]. ert[{C1} � {C2}] returns the
maximum between the run–time of the two branches. ert[if (ξ) {C1} else {C2}]
adds one unit of time (on account of the guard evaluation) to the weighted sum
of the run–time of the two branches. Lastly, the ert of loops is given as the least
fixed point of a run–time transformer defined in terms of the run–time of the
loop body.

Remark. We stress that the above run–time model is a design decision for the
sake of concreteness. All our developments can easily be adapted to capture
alternative models. These include, for instance, the model where only the number
of assignments in a program run or the model where only the number of loop
iterations are of relevance. We can also capture more fine–grained models, where
for instance the run–time of an assignment depends on the size of the distribution
expression being sampled.

Example 2 (Truncated geometric distribution). To illustrate the effects of the ert
transformer consider the program in Figure 1. It can be viewed as modeling a
truncated geometric distribution: we repeatedly flip a fair coin until observing

8 Kaminski, Katoen, Matheja, Olmedo

Ctrunc : if
(
1/2 ·〈true〉+ 1/2 ·〈false〉

)
{succ := true} else {

if
(
1/2 ·〈true〉+ 1/2 ·〈false〉

)
{succ := true}

else {succ := false}
}

Fig. 1. Program modeling a truncated geometric distribution

the first heads or completing the second unsuccessful trial. The calculation of
the expected run–time ert [Ctrunc] (0) of program Ctrunc goes as follows:

ert [Ctrunc] (0)

= 1 + 1
2 · ert [succ := true] (0)

+ 1
2 · ert [if (. . .) {succ := true} else {succ := false}] (0)

= 1 + 1
2 · 1 + 1

2 ·
(
1 + 1

2 · ert [succ := true] (0) + 1
2 · ert [succ := false] (0)

)
= 1 + 1

2 · 1 + 1
2 ·
(
1 + 1

2 · 1 + 1
2 · 1

)
= 5

2

Therefore, the execution of Ctrunc takes, on average, 2.5 units of time. 4

Note that the calculation of the expected run–time in the above example is
straightforward as the program at hand is loop–free. Computing the run–time of
loops requires the calculation of least fixed points, which is generally not feasible
in practice. In Section 5, we present invariant–based proof rules for reasoning
about the run–time of loops.

The ert transformer enjoys several algebraic properties. To formally state
these properties we make use of the point–wise order relation “�” between run–
times: given f, g ∈ T, f � g iff f(σ) ≤ g(σ) for all states σ ∈ Σ.

Theorem 1 (Basic properties of the ert transformer). For any program
C ∈ pProgs, any constant run–time k = λσ.k for k ∈ R≥0, any constant r ∈ R≥0,
and any two run–times f, g ∈ T the following properties hold:

Monotonicity: f � g =⇒ ert [C] (f) � ert [C] (g);

Propagation of ert [C] (k + f) = k + ert [C] (f)
constants: provided C is halt–free;

Preservation of ∞: ert [C] (∞) = ∞
provided C is halt–free;

Sub–additivity: ert [C] (f + g) � ert [C] (f) + ert [C] (g);
provided C is fully probabilistic2;

Scaling: ert [C] (r · f) � min{1, r} · ert [C] (f);
ert [C] (r · f) � max{1, r} · ert [C] (f).

2 A program is called fully probabilistic if it contains no non–deterministic choices.

wp–Reasoning for Expected Run–Times of Prob. Programs 9

Proof. Monotonicity follows from continuity (see Lemma 1 below). The remain-
ing proofs proceed by induction on the program structure; see [17] for details. ut

We conclude this section with a technical remark regarding the well–definedness
of the ert transformer. To guarantee that ert is well–defined, we must show the
existence of the least fixed points used to define the run–time of loops. To this
end, we use a standard denotational semantics argument (see e.g. [26, Ch. 5]):
First we endow the set of run–times T with the structure of an ω–complete
partial order (ω–cpo) with bottom element. Then we use a continuity argument
to conclude the existence of such fixed points.

Recall that � denotes the point–wise comparison between run–times. It easily
follows that (T,�) defines an ω–cpo with bottom element 0 = λσ.0 where the
supremum of an ω–chain f1 � f2 � · · · in T is also given point–wise, i.e. as
supn fn , λσ. supn fn(σ). Now we are in a position to establish the continuity
of the ert transformer:

Lemma 1 (Continuity of the ert transformer). For every program C and
every ω–chain of run–times f1 � f2 � · · · ,

ert [C] (supn fn) = supn ert [C] (fn) .

Proof. By induction on the program structure; see [17] for details. ut

Lemma 1 implies that for each program C ∈ pProgs, guard ξ ∈ DExp, and run–
time f ∈ T, function Ff (X) = 1 + Jξ : falseK · f + Jξ : trueK · ert [C] (X) is also
continuous. The Kleene Fixed Point Theorem then ensures that the least fixed
point ert [while (ξ) {C}] (f) = lfpFf exists and the expected run–time of loops
is thus well-defined.

Finally, as the aforementioned function Ff is frequently used in the remainder
of the paper, we define:

Definition 1 (Characteristic functional of a loop). Given program C ∈
pProgs, probabilistic guard ξ ∈ DExp, and run–time f ∈ T, we call

F
〈ξ,C〉
f : T→ T, X 7→ 1 + Jξ : falseK · f + Jξ : trueK · ert [C] (X)

the characteristic functional of loop while (ξ) {C} with respect to f .

When C and ξ are understood from the context, we usually omit them and
simply write Ff for the characteristic functional associated to while (ξ) {C}
with respect to run–time f . Observe that under this definition, the ert of loops
can be recast as

ert [while (ξ) {C}] (f) = lfpF
〈ξ,C〉
f .

This concludes our presentation of the ert transformer. In the next section we
validate the transformer’s definition by showing a soundness result with respect
to an operational model of programs.

10 Kaminski, Katoen, Matheja, Olmedo

4 An Operational Model for Expected Run–Times

We prove the soundness of the expected run–time transformer with respect to a
simple operational model for our probabilistic programs. This model will be given
in terms of a Markov Decision Process (MDP, for short) whose collected reward
corresponds to the run–time. We first briefly recall all necessary notions. A more
detailed treatment can be found in [2, Ch. 10]. A Markov Decision Process is
a tuple M = (S, Act , P, s0, rew) where S is a countable set of states, Act is
a (finite) set of actions, P : S × Act × S → [0, 1] is the transition probability
function such that for all states s ∈ S and actions α ∈ Act ,∑

s′∈S
P(s, α, s′) ∈ {0, 1} ,

s0 ∈ S is the initial state, and rew : S → R≥0 is a reward function. Instead of

P(s, α, s′) = p, we usually write s
α−→ s′ ` p. An MDP M is a Markov chain if

no non–deterministic choice is possible, i.e. for each pair of states s, s′ ∈ S there
exists exactly one α ∈ Act with P(s, α, s′) 6= 0.

A scheduler for M is a mapping S : S+ → Act , where S+ denotes the set of
non–empty finite sequences of states. Intuitively, a scheduler resolves the non–
determinism of an MDP by selecting an action for each possible sequence of
states that has been visited so far. Hence, a scheduler S induces a Markov chain
which is denoted by MS. In order to define the expected reward of an MDP,
we first consider the reward collected along a path. Let PathsMS (PathsMfin)

denote the set of all (finite) paths π (π̂) in MS. Analogously, let PathsMS(s)
and PathsMS

fin (s) denote the set of all infinite and finite paths in MS starting in
state s ∈ S, respectively. For a finite path π̂ = s0 . . . sn, the cumulative reward
of π̂ is defined as

rew(π̂) ,
n−1∑
k=0

rew(sk) .

For an infinite path π, the cumulative reward of reaching a non–empty set of
target states T ⊆ S, is defined as rew(π,♦T) , rew(π(0) . . . π(n)) if there exists
an n such that π(n) ∈ T and π(i) /∈ T for 0 ≤ i < n and rew(π,♦T) , ∞
otherwise. Moreover, we write Π(s, T) to denote the set of all finite paths π̂ ∈
PathsMS

fin (s), s ∈ S, with π̂(n) ∈ T for some n ∈ N and π̂(i) /∈ T for 0 ≤ i < n.
The probability of a finite path π̂ is

PrMS{π̂} ,
|π̂|−1∏
k=0

P(sk,S(s1, . . . , sk), sk+1) .

The expected reward that an MDP M eventually reaches a non–empty set of
states T ⊆ S from a state s ∈ S is defined as follows. If

inf
S

PrMS{s |= ♦T} = inf
S

∑
π̂∈Π(s,T)

PrMS{π̂} < 1

wp–Reasoning for Expected Run–Times of Prob. Programs 11

〈↓, σ〉 τ−→ 〈 sink 〉 ` 1
[terminated]

〈 sink 〉 τ−→ 〈 sink 〉 ` 1
[sink]

〈empty, σ〉 τ−→ 〈↓, σ〉 ` 1
[empty]

〈skip, σ〉 τ−→ 〈↓, σ〉 ` 1
[skip]

〈halt, σ〉 τ−→ 〈 sink 〉 ` 1
[halt]

Jµ : vK(σ) = p > 0

〈x :≈ µ, σ〉 τ−→ 〈↓, σ [x/v]〉 ` p
[pr–assgn]

〈C1, σ〉
α−→ 〈C′1, σ′〉 ` p, α ∈ Act 0 < p ≤ 1

〈C1;C2, σ〉
α−→ 〈C′1;C2, σ

′〉 ` p
[seq1]

〈↓;C2, σ〉
τ−→ 〈C2, σ〉 ` 1

[seq2]

〈{C1} � {C2}, σ〉
L−→ 〈C1, σ〉 ` 1

[�–L]
〈{C1} � {C2}, σ〉

R−→ 〈C2, σ〉 ` 1
[�–R]

Jξ : trueK(σ) = p > 0

〈if (ξ) {C1} else {C2}, σ〉
τ−→ 〈C1, σ〉 ` p

[if–true]

Jξ : falseK(σ) = p > 0

〈if (ξ) {C1} else {C2}, σ〉
τ−→ 〈C2, σ〉 ` p

[if–false]

〈while (ξ) {C}, σ〉 τ−→ 〈if (ξ) {C; while (ξ) {C}} else {empty}, σ〉 ` 1
[while]

Fig. 2. Rules for the transition probability function of operational MDPs.

then ExpRewM (s |= ♦T) ,∞. Otherwise,

ExpRewM (s |= ♦T) , sup
S

∑
π̂∈Π(s,T)

PrMS{π̂} · rew(π̂) .

We are now in a position to define an operational model for our probabilis-
tic programming language. Let ↓ denote a special symbol indicating successful
termination of a program.

Definition 2 (The operational MDP of a program). Given program C ∈
pProgs, initial program state σ0 ∈ Σ, and continuation f ∈ T, the operational
MDP of C is given by Mf

σ0
JCK = (S, Act , P, s0, rew), where

– S , ((pProgs ∪ {↓} ∪ {↓;C | C ∈ pProgs})×Σ) ∪ {〈 sink 〉},
– Act , {L, τ, R},
– the transition probability function P is given by the rules in Figure 2,
– s0 , 〈C, σ0〉, and
– rew : S → R≥0 is the reward function defined according to Table 2.

Since the initial state of the MDP Mf
σ0

JCK of a program C with initial state σ0

is uniquely given, instead of ExpRewMf
σ0

JCK (〈C, σ0〉 |= ♦T) we simply write

ExpRewMf
σJCK (T) .

12 Kaminski, Katoen, Matheja, Olmedo

s rew(s)

〈↓, σ〉 f(σ)

〈skip, σ〉, 〈x :≈ µ, σ〉, 〈if (ξ) {C1} else {C2}, σ〉 1

〈 sink 〉, 〈empty, σ〉, 〈halt, σ〉, 〈↓ ; C2, σ〉, 0

〈{C1} � {C2}, σ〉, 〈while (ξ) {C}, σ〉

〈C1; C2, σ〉 rew(〈C1, σ〉)

Table 2. Definition of the reward function rew : S → R≥0 of operational MDPs.

The rules in Figure 2 defining the transition probability function of a program’s
MDP are self–explanatory. Since only guard evaluations, assignments and skip

statements are assumed to consume time, i.e. have a positive reward, we assign
a reward of 0 to all other program statements. Moreover, note that all states of
the form 〈empty, σ〉, 〈↓, σ〉 and 〈 sink 〉 are needed, because an operational MDP
is defined with respect to a given continuation f ∈ T. In case of 〈empty, σ〉, a
reward of 0 is collected and after that the program successfully terminates, i.e.
enters state 〈↓, σ〉 where the continuation f is collected as reward. In contrast,
since no state other than 〈 sink 〉 is reachable from the unique sink state 〈 sink 〉,
the continuation f is not taken into account if 〈 sink 〉 is reached without reaching
a state 〈↓, σ〉 first. Hence the operational MDP directly enters 〈 sink 〉 from a state
of the form 〈halt, σ〉.

Example 3 (MDP of Ctrunc). Recall the probabilistic program Ctrunc from Ex-
ample 2. Figure 3 depicts the MDP Mf

σJCtruncK for an arbitrary fixed state
σ ∈ Σ and an arbitrary continuation f ∈ T. Here labeled edges denote the value
of the transition probability function for the respective states, while the reward
of each state is provided in gray next to the state. To improve readability, edge
labels are omitted if the probability of a transition is 1. Moreover, Mf

σJCtruncK
is a Markov chain, because Ctrunc contains no non-deterministic choice.

A brief inspection of Figure 3 reveals that Mf
σJCtruncK contains three finite

paths π̂true, π̂false true, π̂false false that eventually reach state 〈 sink 〉 starting from
the initial state 〈Ctrunc , σ〉. These paths correspond to the results of the two
probabilistic guards in C. Hence the expected reward of Mf

σJCK to eventually
reach T = {〈 sink 〉} is given by

ExpRewMf
σJCtruncK (T)

= supS

∑
π̂∈Π(s,T) PrMS{π̂} · rew(π̂)

=
∑
π̂∈Π(s,T) PrM{π̂} · rew(π̂) (Mf

σJCtruncK = M is a Markov chain)

= PrM{π̂true} · rew(π̂true) + PrM{π̂false true} · rew(π̂false true)

+ PrM{π̂false false} · rew(π̂false false)

=
(
1
2 · 1 · 1

)
· (1 + 1 + f(σ [succ/true]))

wp–Reasoning for Expected Run–Times of Prob. Programs 13

〈C, σ〉
1

〈succ := true, σ〉1

〈↓, σ [succ/true]〉f(σ [succ/true])

〈C′, σ〉 1

〈succ := false, σ〉 1

〈↓, σ [succ/false]〉 f(σ [succ/false])〈 sink 〉0

1/2 1/2

1/2

1/2

Fig. 3. The operational MDP Mf
σJCtruncK corresponding to the program in Example 3.

C′ denotes the subprogram if(1/2·〈true〉+1/2·〈false〉){succ := true}else{succ := false}.

+
(
1
2 ·

1
2 · 1 · 1

)
· (1 + 1 + 1 + f(σ [succ/true]))

+
(
1
2 ·

1
2 · 1 · 1

)
· (1 + 1 + 1 + f(σ [succ/false]))

= 1 + 1
2 · f(σ [succ/true]) + 1

4 · (6 + f(σ [succ/true])

+ f(σ [succ/false]))

= 5
2 + 3

4 · f(σ [succ/true]) + 1
4 · f(σ [succ/false]).

Observe that for f = 0, the expected reward ExpRewMf
σJCtruncK (T) and the ex-

pected run–time ert [C] (f) (σ) (cf. Example 2) coincide, both yielding 5/2. 4

The main result of this section is that ert precisely captures the expected reward
of the MDPs associated to our probabilistic programs.

Theorem 2 (Soundness of the ert transformer). Let ξ ∈ DExp, C ∈
pProgs, and f ∈ T. Then, for each σ ∈ Σ, we have

ExpRewMf
σJCK (〈 sink 〉) = ert [C] (f) (σ) .

Proof. By induction on the program structure; see [17] for details. ut

5 Expected Run–Time of Loops

Reasoning about the run–time of loop–free programs consists mostly of syntactic
reasoning. The run–time of a loop, however, is given in terms of a least fixed

14 Kaminski, Katoen, Matheja, Olmedo

point. It is thus obtained by fixed point iteration but need not be reached within
a finite number of iterations. To overcome this problem we next study invariant–
based proof rules for approximating the run–time of loops.

We present two families of proof rules which differ in the kind of the invariants
they build on. In Section 5.1 we present a proof rule that rests on the presence
of an invariant approximating the entire run–time of a loop in a global manner,
while in Section 5.2 we present two proof rules that rely on a parametrized
invariant that approximates the run–time of a loop in an incremental fashion.
Finally in Section 5.3 we discuss how to improve the run–time bounds yielded
by these proof rules.

5.1 Proof Rule Based on Global Invariants

The first proof rule that we study allows upper–bounding the expected run–time
of loops and rests on the notion of upper invariants.

Definition 3 (Upper invariants). Let f ∈ T, C ∈ pProgs and ξ ∈ DExp. We
say that I ∈ T is an upper invariant of loop while (ξ) {C} with respect to f iff

1 + Jξ : falseK · f + Jξ : trueK · ert [C] (I) � I

or, equivalently, iff F
〈ξ,C〉
f (I) � I, where F

〈ξ,C〉
f is the characteristic functional.

The presence of an upper invariant of a loop readily establishes an upper bound
of the loop’s run–time.

Theorem 3 (Upper bounds from upper invariants). Let f ∈ T, C ∈
pProgs and ξ ∈ DExp. If I ∈ T is an upper invariant of while (ξ) {C} with
respect to f then

ert [while (ξ) {C}] (f) � I .

Proof. The crux of the proof is an application of Park’s Theorem3 [25] which,

given that F
〈ξ,C〉
f is continuous (see Lemma 1), states that

F
〈ξ,C〉
f (I) � I =⇒ lfpF

〈ξ,C〉
f � I .

The left–hand side of the implication stands for I being an upper invariant, while
the right–hand side stands for ert [while (ξ) {C}] (f) � I. ut

Notice that if the loop body C is itself loop–free, it is usually fairly easy to verify
that some I ∈ T is an upper invariant, whereas inferring the invariant is—as in
standard program verification—one of the most involved part of the verification
effort.

3 If H : D → D is a continuous function over an ω–cpo (D,v) with bottom element,
then H(d) v d implies lfpH v d for every d ∈ D.

wp–Reasoning for Expected Run–Times of Prob. Programs 15

Example 4 (Geometric distribution). Consider loop

Cgeo : while (c = 1) {c :≈ 1/2 · 〈0〉+ 1/2 · 〈1〉} .

From the calculations below we conclude that I = 1 + Jc = 1K · 4 is an upper
invariant with respect to 0:

1 + Jc 6= 1K · 0 + Jc = 1K · ert [c :≈ 1/2 · 〈0〉+ 1/2 · 〈1〉] (I)

= 1 + Jc = 1K ·
(
1 + 1

2 · I [c/0] + 1
2 · I [c/1]

)
= 1 + Jc = 1K ·

(
1 + 1

2 · (1 + J0 = 1K · 4︸ ︷︷ ︸
= 1

) + 1
2 · (1 + J1 = 1K · 4︸ ︷︷ ︸

= 5

)
)

= 1 + Jc = 1K · 4 = I � I

Then applying Theorem 3 we obtain

ert
[
Cgeo

]
(0) � 1 + Jc = 1K · 4 .

In words, the expected run–time of Cgeo is at most 5 from any initial state where
c = 1 and at most 1 from the remaining states. 4
The invariant–based technique to reason about the run–time of loops presented
in Theorem 3 is complete in the sense that there always exists an upper invariant
that establishes the exact run–time of the loop at hand.

Theorem 4. Let f ∈ T, C ∈ pProgs, ξ ∈ DExp. Then there exists an upper in-
variant I of while(ξ){C} with respect to f such that ert [while (ξ) {C}] (f) = I.

Proof. The result follows from showing that ert [while (ξ) {C}] (f) is itself an

upper invariant. Since ert [while (ξ) {C}] (f) = lfpF
〈ξ,C〉
f this amounts to show-

ing that

F
〈ξ,C〉
f

(
lfpF

〈ξ,C〉
f

)
� lfpF

〈ξ,C〉
f ,

which holds by definition of lfp . ut

Intuitively, the proof of this theorem shows that ert [while (ξ) {C}] (f) itself is
the tightest upper invariant that the loop admits.

5.2 Proof Rules Based on Incremental Invariants

We now study a second family of proof rules which builds on the notion of ω–
invariants to establish both upper and lower bounds for the run–time of loops.

Definition 4 (ω–invariants). Let f ∈ T, C ∈ pProgs and ξ ∈ DExp. Moreover
let In ∈ T be a run–time parametrized by n ∈ N. We say that In is a lower
ω–invariant of loop while (ξ) {C} with respect to f iff

F
〈ξ,C〉
f (0) � I0 and F

〈ξ,C〉
f (In) � In+1 for all n ≥ 0 .

Dually, we say that In is an upper ω–invariant iff

F
〈ξ,C〉
f (0) � I0 and F

〈ξ,C〉
f (In) � In+1 for all n ≥ 0 .

16 Kaminski, Katoen, Matheja, Olmedo

Intuitively, a lower (resp. upper) ω–invariant In represents a lower (resp. upper)
bound for the expected run–time of those program runs that finish within n+ 1
iterations, weighted according to their probabilities. Therefore we can use the
asymptotic behavior of In to approximate from below (resp. above) the expected
run–time of the entire loop.

Theorem 5 (Bounds from ω–invariants). Let f ∈ T, C ∈ pProgs, ξ ∈ DExp.

1. If In is a lower ω–invariant of while (ξ) {C} with respect to f and lim
n→∞

In

exists4, then
ert [while (ξ) {C}] (f) � lim

n→∞
In .

2. If In is an upper ω–invariant of while (ξ) {C} with respect to f and lim
n→∞

In

exists, then
ert [while (ξ) {C}] (f) � lim

n→∞
In .

Proof. We prove only the case of lower ω–invariants since the other case follows
by a dual argument. Let Ff be the characteristic functional of the loop with
respect to f . Let F 0

f = 0 and Fn+1
f = Ff (Fnf). By the Kleene Fixed Point

Theorem, ert [while (ξ) {C}] (f) = supn F
n
f and since F 0

f � F 1
f � . . . forms an

ω–chain, by the Monotone Sequence Theorem5, supn F
n
f = limn→∞ Fnf . Then

the proof follows from showing that Fn+1
f � In. We prove this by induction

on n. The base case F 1
f � I0 holds because In is a lower ω–invariant. For the

inductive case we reason as follows:

Fn+2
f = Ff

(
Fn+1
f

)
� Ff (In) � In+1 .

Here the first inequality follows by I.H. and the monotonicity of Ff (recall that
ert[C] is monotonic by Theorem 1), while the second inequality holds because
In is a lower ω–invariant. ut

Example 5 (Lower bounds for Cgeo). Reconsider loop Cgeo from Example 4. Now
we use Theorem 5.1 to show that 1 + Jc = 1K ·4 is also a lower bound of its run–
time. To this end we first show that In = 1 + Jc = 1K · (4− 3/2n) is a lower
ω–invariant of the loop with respect to 0:

F0(0) = 1 + Jc 6= 1K · 0 + Jc = 1K · ert [c :≈ 1/2〈0〉+ 1/2〈1〉] (0)

= 1 + Jc = 1K ·
(
1 + 1

2 · 0 [c/0] + 1
2 · 0 [c/1]

)
= 1 + Jc = 1K · 1 = 1 + Jc = 1K · (4− 3/20) = I0 � I0

F0(In) = 1 + Jc 6= 1K · 0 + Jc = 1K · ert [c :≈ 1/2〈0〉+ 1/2〈1〉] (In)

= 1 + Jc = 1K ·
(
1 + 1

2 · In [c/0] + 1
2 · In [c/1]

)
4 Limit limn→∞ In is to be understood pointwise, on R∞≥0, i.e. limn→∞ In =
λσ. limn→∞ In(σ) and limn→∞ In(σ) =∞ is considered a valid value.

5 If 〈an〉n∈N is an increasing sequence in R∞≥0, then limn→∞ an coincides with supre-
mum supn an.

wp–Reasoning for Expected Run–Times of Prob. Programs 17

= 1 + Jc = 1K ·
(
1 + 1

2 · (1 + 0) + 1
2 ·
(
1 +

(
4− 3

2n

)))
= 1 + Jc = 1K ·

(
4− 3

2n+1

)
= In+1 � In+1

Then from Theorem 5.1 we obtain

ert
[
Cgeo

]
(0) � lim

n→∞

(
1 + Jc = 1K ·

(
4− 3

2n

))
= 1 + Jc = 1K · 4 .

Combining this result with the upper bound ert
[
Cgeo

]
(0) � 1 + Jc = 1K · 4

established in Example 4 we conclude that 1 + Jc = 1K · 4 is the exact run–time
of Cgeo. Observe, however, that the above calculations show that In is both a
lower and an upper ω–invariant (exact equalities F0(0) = I0 and F0(In) = In+1

hold). Then we can apply Theorem 5.1 and 5.2 simultaneously to derive the
exact run–time without having to resort to the result from Example 4.

Invariant Synthesis. In order to synthesize invariant In = 1+Jc = 1K·(4− 3/2n),
we proposed template In = 1+Jc = 1K·an and observed that under this template
the definition of lower ω–invariant reduces to a0 ≤ 1, an+1 ≤ 2 + 1

2an, which is
satisfied by an = 4− 3/2n. 4

Now we apply Theorem 5.1 to a program with infinite expected run–time.

Example 6 (Almost–sure termination at infinite expected run–time). Recall the
program from the introduction:

C : 1: x := 1; b := 1;

2: while (b = 1) {b :≈ 1/2〈0〉+ 1/2〈1〉; x := 2x};
3: while (x > 0) {x := x− 1}

Let Ci denote the i-th line of C. We show that ert [C] (0) � ∞.6 Since

ert [C] (0) = ert [C1] (ert [C2] (ert [C3] (0)))

we start by showing that

ert [C3] (0) � 1 + Jx > 0K · 2x

using lower ω–invariant Jn = 1 + Jn > x > 0K · 2x+ Jx ≥ nK · (2n− 1). We omit
here the details of verifying that Jn is a lower ω–invariant. Next we show that

ert [C2] (1 + Jx > 0K · 2x) � 1 + Jb 6= 1K ·
(
1 + Jx > 0K · 2x

)
+ Jb = 1K ·

(
7 + Jx > 0K ·∞

)
by means of the lower ω–invariant

In = 1 + Jb 6= 1K ·
(
1 + Jx > 0K · 2x

)
+ Jb = 1K ·

(
7− 5

2n + n · Jx > 0K · 2x
)
.

6 Note that while this program terminates with probability one, the expected run–time
to achieve termination is infinite.

18 Kaminski, Katoen, Matheja, Olmedo

Let F be the characteristic functional of loop C2 with respect to 1+ Jx > 0K ·2x.
The calculations to establish that In is a lower ω–invariant now go as follows:

F (0) = 1 + Jb 6= 1K ·
(
1 + Jx > 0K · 2x

)
+ Jb = 1K ·

(
1 + 1

2 · (1 + 0 [x, b/2x, 0]) + 1
2 · (1 + 0 [x, b/2x, 1])

)
= 1 + Jb 6= 1K ·

(
1 + Jx > 0K · 2x

)
+ Jb = 1K ·

(
1 + 1

2 · 1 + 1
2 · 1

)
= 1 + Jb 6= 1K ·

(
1 + Jx > 0K · 2x

)
+ Jb = 1K · 2 = I0 � I0

F (In) = 1 + Jb 6= 1K ·
(
1 + Jx > 0K · 2x

)
+ Jb = 1K·

(
1 + 1

2 · (1 + In [x, b/2x, 0]) + 1
2 · (1 + In [x, b/2x, 1])

)
= 1 + Jb 6= 1K ·

(
1 + Jx > 0K · 2x

)
+ Jb = 1K·

(
1 + 1

2 · (3 + J2x > 0K · 4x) + 1
2 ·
(
9− 5

2n + n · J2x > 0K · 4x
))

= 1 + Jb 6= 1K ·
(
1 + Jx > 0K · 2x

)
+ Jb = 1K·

(
7− 5

2n+1 + (n+1) · Jx > 0K · 2x
)

= In+1 � In+1

Now we can complete the run–time analysis of program C:

ert [C] (0)

= ert [C1] (ert [C2] (ert [C3] (0)))

� ert [C1]
(
1 + Jb 6= 1K ·

(
1 + Jx > 0K · 2x

)
+ Jb = 1K ·

(
7 + Jx > 0K ·∞

))
= ert[x := 1]

(
ert[b := 1]

(
1 + Jb 6= 1K ·

(
1 + Jx > 0K · 2x

)
+ Jb = 1K ·

(
7 + Jx > 0K ·∞

)))
= ert [x := 1] (8 + Jx > 0K ·∞) = 8 + ∞ = ∞

Overall, we obtain that the expected run–time of the program C is infinite
even though it terminates with probability one. Notice furthermore that sub–
programs while (b = 1) {b :≈ 1/2〈0〉+ 1/2〈1〉; x := 2x} and while (x > 0) {x :=

x− 1} have expected run–time 1 + JbK · 4 and 1 + Jx > 0K · 2x, respectively, i.e.
both have a finite expected run–time.

Invariant synthesis. In order to synthesize the ω–invariant In of loop C2 we
propose the template In = 1 + Jb 6= 1K ·

(
1 + Jx > 0K · 2x

)
+ Jb = 1K ·

(
an +

bn · Jx > 0K · 2x
)

and from the definition of lower ω–invariants we obtain a0 ≤ 2,
an+1 ≤ 7/2+1/2 ·an and b0 ≤ 0, bn+1 ≤ 1+bn. These recurrences admit solutions
an = 7− 5/2n and bn = n. 4

As the proof rule based on upper invariants, the proof rules based on ω-invariants
are also complete: Given loop while (ξ) {C} and run–time f , it is enough to
consider the ω-invariant In = Fn+1

f , where Fnf is defined as in the proof of

wp–Reasoning for Expected Run–Times of Prob. Programs 19

Theorem 5 to yield the exact run–time ert [while (ξ) {C}] (f) from an application
of Theorem 5. We formally capture this result by means of the following theorem:

Theorem 6. Let f ∈ T, C ∈ pProgs and ξ ∈ DExp. Then there exists a (both
lower and upper) ω–invariant In of while (ξ) {C} with respect to f such that
ert [while (ξ) {C}] (f) = limn→∞ In.

Theorem 6 together with Theorem 4 shows that the set of invariant–based proof
rules presented in this section are complete. Next we study how to refine invari-
ants to make the bounds that these proof rules yield more precise.

5.3 Refinement of Bounds

An important property of both upper and lower bounds of the run–time of loops
is that they can be easily refined by repeated application of the characteristic
functional.

Theorem 7 (Refinement of bounds). Let f ∈ T, C ∈ pProgs and ξ ∈ DExp.

If I is an upper (resp. lower) bound of ert [while (ξ) {C}] (f) and F
〈ξ,C〉
f (I) � I

(resp. F
〈ξ,C〉
f (I) � I), then F

〈ξ,C〉
f (I) is also an upper (resp. lower) bound, at

least as precise as I.

Proof. If I is an upper bound of ert [while (ξ) {C}] (f) we have lfpF
〈ξ,C〉
f � I.

Then from the monotonicity of F
〈ξ,C〉
f (recall that ert is monotonic by Theorem 1)

and from F
〈ξ,C〉
f (I) � I we obtain

ert [while (ξ) {C}] (f) = lfpF
〈ξ,C〉
f = F

〈ξ,C〉
f (lfpF

〈ξ,C〉
f) � F

〈ξ,C〉
f (I) � I ,

which means that F
〈ξ,C〉
f (I) is also an upper bound, possibly tighter than I. The

case for lower bounds is completely analogous. ut

Notice that if I is an upper invariant of while(ξ){C} then I fulfills all necessary
conditions of Theorem 7. In practice, Theorem 7 provides a means of iteratively
improving the precision of bounds yielded by Theorems 3 and 5, as for instance
for upper bounds we have

ert [while (ξ) {C}] (f) � · · · � F
〈ξ,C〉
f

(
F
〈ξ,C〉
f (I)

)
� F

〈ξ,C〉
f (I) � I .

If In is an upper (resp. lower) ω-invariant, applying Theorem 7 requires checking

that F
〈ξ,C〉
f (L) � L (resp. F

〈ξ,C〉
f (L) � L), where L = limn→∞ In. This proof

obligation can be discharged by showing that In forms an ω-chain, i.e. that
In � In+1 for all n ∈ N.

20 Kaminski, Katoen, Matheja, Olmedo

6 Run–Time of Deterministic Programs

The notion of expected run–times as defined by ert is clearly applicable to de-
terministic programs, i.e. programs containing neither probabilistic guards nor
probabilistic assignments nor non–deterministic choice operators. We show that
the ert of deterministic programs coincides with the tightest upper bound on
the run–time that can be derived in an extension of Hoare logic [14] due to
Nielson [23,24].

In order to compare our notion of ert to the aforementioned calculus we
restrict our programming language to the language dProgs of deterministic pro-
grams considered in [24] which is given by the following grammar:

C ::= skip | x := E | C; C | if (ξ) {C} else {C} | while (ξ) {C} ,

where E is a deterministic expression and ξ is a deterministic guard, i.e. JEK(σ)
and JξK(σ) are Dirac distributions for each σ ∈ Σ. For simplicity, we slightly
abuse notation and write JEK(σ) to denote the unique value v ∈ Val such that
JE : vK(σ) = 1.

For deterministic programs, the MDP M0
σJCK of a program C ∈ dProgs and

a program state σ ∈ Σ is a labeled transition system. In particular, if a terminal
state of the form 〈↓, σ′〉 is reachable from the initial state of M0

σJCK, it is unique.
Hence we may capture the effect of a deterministic program by a partial function
CJ · K(·) : dProgs×Σ ⇀ Σ mapping each C ∈ dProgs and σ ∈ Σ to a program
state σ′ ∈ Σ if and only if there exists a state 〈↓, σ′〉 that is reachable in the
MDP M0

σJCK from the initial state 〈C, σ〉. Otherwise, CJCK(σ) is undefined.
Nielson [23,24] developed an extension of the classical Hoare calculus for total

correctness of programs in order to establish additionally upper bounds on the
run–time of programs. Formally, a correctness property is of the form

{ P } C { E ⇓ Q } ,

where C ∈ dProgs, E is a deterministic expression over the program variables,
and P,Q are (first–order) assertions. Intuitively, { P } C { E ⇓ Q } is valid,
written |=E { P } C { E ⇓ Q }, if and only if there exists a natural number
k such that for each state σ satisfying the precondition P , the program C ter-
minates after at most k · JEK(σ) steps in a state satisfying postcondition Q. In
particular, it should be noted that E is evaluated in the initial state σ.

Figure 4 is taken verbatim from [24] except for minor changes to match our
notation. Most of the inference rules are self–explanatory extensions of the stan-
dard Hoare calculus for total correctness of deterministic programs [14] which is
obtained by omitting the gray parts.

The run–time of skip and x := E is one time unit. Since guard evaluations
are assumed to consume no time in this calculus, any upper bound on the run–
time of both branches of a conditional is also an upper bound on the run–time
of the conditional itself (cf. rule [if]). The rule of consequence allows to increase
an already proven upper bound on the run–time by an arbitrary constant factor.
Furthermore, the run–time of two sequentially composed programs C1 and C2

wp–Reasoning for Expected Run–Times of Prob. Programs 21

{ P } skip { 1 ⇓ P } [skip] { Q [x/JEK] } x := E { 1 ⇓ Q } [assgn]

{ P ∧ E′2 = u } C1 { E1 ⇓ Q ∧ E2 ≤ u } { Q } C2 { E2 ⇓ R }
{ P } C1;C2 { E1 + E′2 ⇓ R }

[seq]

where u is a fresh logical variable

{ P ∧ ξ } C1 { E ⇓ Q } { P ∧ ¬ξ } C2 { E ⇓ Q }
{ P } if (ξ) {C1} else {C2} { E ⇓ Q } [if]

{ P (z + 1) ∧ E′ = u } C { E1 ⇓ P (z) ∧ E ≤ u }
{ ∃z• P (z) } while (ξ) {C} { E ⇓ P (0) } [while]

where z ∈ N, P (z + 1)⇒ ξ ∧ E ≥ E1 + E′, P (0)⇒ ¬ξ ∧ E ≥ 1

and u is a fresh logical variable

{ P ′ } C { E′ ⇓ Q′ }
{ P } C { E ⇓ Q } [cons]

where P ⇒ P ′ ∧ E′ ≤ k · E for some k ∈ N and Q′ ⇒ Q

Fig. 4. Inference system for order of magnitude of run–time of deterministic programs
according to Nielson [23].

is, intuitively, the sum of their run–times E1 and E2. However, run–times are
expressions which are evaluated in the initial state. Thus, the run–time of C2

has to be expressed in the initial state of C1;C2. Technically, this is achieved
by adding a fresh (and hence universally quantified) variable u that is an upper
bound on E2 and at the same time is equal to a new expression E′2 in the
precondition of C1;C2. Then, the run–time of C1;C2 is given by the sum E1+E′2.

The same principle is applied to each loop iteration. Here, the run–time of
the loop body is given by E1 and the run–time of the remaining z loop iterations,
E′, is expressed in the initial state by adding a fresh variable u. Then, any upper
bound of E ≥ E1 + E′ is an upper bound on the run–time of z loop iterations.

We denote provability of a correctness property { P } C { E ⇓ Q } and a
total correctness property { P } C { ⇓ Q } in the standard Hoare calculus by
`E { P } C { E ⇓ Q } and ` { P } C { ⇓ Q }, respectively.

Theorem 8 (Soundness of ert for deterministic programs). For all C ∈
dProgs and assertions P,Q, we have

` { P } C { ⇓ Q } implies `E { P } C { ert [C] (0) ⇓ Q }.

Proof. By induction on the program structure; see [17] for details.

Intuitively, this theorem means that for every terminating deterministic program,
the ert is an upper bound on the run–time, i.e. ert is sound with respect to the
inference system shown in Figure 4. The next theorem states that no tighter

22 Kaminski, Katoen, Matheja, Olmedo

bound can be derived in this calculus. We cannot get a more precise relationship,
since we assume guard evaluations to consume time.

Theorem 9 (Completeness of ert w.r.t. Nielson). For all C ∈ dProgs,
assertions P,Q and deterministic expressions E, `E { P } C { E ⇓ Q }
implies that there exists a natural number k such that for all σ ∈ Σ satisfying
P , we have

ert [C] (0) (σ) ≤ k · (JEK(σ)) .

Proof. By induction on the program structure; see [17] for details. ut

Theorem 8 together with Theorem 9 shows that our notion of ert is a conservative
extension of Nielson’s approach for reasoning about the run–time of deterministic
programs. In particular, given a correctness proof of a deterministic program C
in Hoare logic, it suffices to compute ert [C] (0) in order to obtain a corresponding
proof in Nielson’s proof system.

7 Case Studies

In this section we use our ert–calculus to analyze the run–time of two well–known
randomized algorithms: the One–Dimensional (Symmetric) Random Walk and
the Coupon Collector Problem.

7.1 One–Dimensional Random Walk

Consider program

Prw : x := 10; while (x > 0) {x :≈ 1/2 · 〈x−1〉+ 1/2 · 〈x+1〉} ,

which models a one–dimensional walk of a particle which starts at position
x = 10 and moves with equal probability to the left or to the right in each
turn. The random walk stops if the particle reaches position x = 0. It can be
shown that the program terminates with probability one [15] but requires, on
average, an infinite time to do so. We now apply our ert–calculus to formally
derive this run–time assertion.

The expected run–time of Prw is given by

ert [Prw] (0) = ert [x := 10] (ert [while (x > 0) {C}] (0)) ,

where C stands for the probabilistic assignment in the loop body. Thus, we need
to first determine run–time ert [while (x > 0) {C}] (0). To do so we propose

In = 1 + J0 < x ≤ nK ·∞

as a lower ω–invariant of loop while (x > 0) {C} with respect to 0; detailed
calculations for verifying that In is indeed a lower ω–invariant can be found in
the extended version of the paper [17]. Theorem 5 then states that

ert [while (x > 0) {C}] (0) � lim
n→∞

1 + J0 < x ≤ nK ·∞ = 1 + J0 < xK ·∞ .

wp–Reasoning for Expected Run–Times of Prob. Programs 23

Altogether we have

ert [Prw] (0) = ert [x := 10] (ert [while (x > 0) {C}] (0))

� ert [x := 10] (1 + J0 < xK ·∞)

= 1 + (1 + J0 < xK ·∞) [x/10]

= 1 + (1 + 1 ·∞) = ∞ ,

which says that ert [Prw] (0) � ∞. Since the reverse inequality holds trivially,
we conclude that ert [Prw] (0) = ∞.

7.2 The Coupon Collector Problem

Now we apply our ert–calculus to solve the Coupon Collector Problem. This
problem arises from the following scenario7: Suppose each box of cereal contains
one of N different coupons and once a consumer has collected a coupon of each
type, he can trade them for a prize. The aim of the problem is determining the
average number of cereal boxes the consumer should buy to collect all coupon
types, assuming that each coupon type occurs with the same probability in the
cereal boxes.

The problem can be modeled by program Ccp below:

cp := [0, . . . , 0]; i := 1; x := N

while (x > 0) {
while (cp[i] 6= 0) {

i :≈ Unif[1 . . . N]

};
cp[i] := 1; x := x− 1

}

Array cp is initialized to 0 and whenever we obtain the first coupon of type i,
we set cp[i] to 1. The outer loop is iterated N times and in each iteration we
collect a new—unseen—coupon type. The collection of the new coupon type is
performed by the inner loop.

We start the run–time analysis of Ccp introducing some notation. Let Cin

and Cout, respectively, denote the inner and the outer loop of Ccp . Furthermore,

let #col ,
∑N
i=1[cp[i] 6= 0] denote the number of coupons that have already

been collected.

Analysis of the inner loop. For analyzing the run–time of the outer loop we need
to refer to the run–time of its body, with respect to an arbitrary continuation
g ∈ T. Therefore, we first analyze the run–time of the inner loop Cin . We propose
the following lower and upper ω–invariant for the inner loop Cin :

7 The problem formulation presented here is taken from [20].

24 Kaminski, Katoen, Matheja, Olmedo

Jgn = 1 + [cp[i] = 0] · g

+ [cp[i] 6= 0] ·
n∑
k=0

(
#col

N

)k (
2 +

1

N

N∑
j=1

Jcp[j] = 0K · g[i/j]

)
.

Moreover, we write Jg for the same invariant where n is replaced by ∞. A
detailed verification that Jgn is indeed a lower and upper ω–invariant is provided
in the extended version of the paper [17]. Theorem 5 now yields

Jg = lim
n→∞

Jgn � ert [Cin] (g) � lim
n→∞

Jgn = Jg. (?)

Since the run–time of a deterministic assignment x := E is

ert [x := E] (f) = 1 + f [x/E] , (z)

the expected run–time of the body of the outer loop reduces to

ert [Cin; cp[i] := 1; x := x− 1] (g) (†)
= 2 + ert [Cin] (g[x/x− 1, cp[i]/1]) (by z)

= 2 + Jg[x/x−1, cp[i]/1] (by ?)

= 2 + Jg[x/x− 1, cp[i]/1] .

Analysis of the outer loop. Since program Ccp terminates right after the execu-
tion of the outer loop Cout , we analyze the run–time of the outer loop Cout with
respect to continuation 0, i.e. ert [Cout] (0). To this end we propose

In = 1 +

n∑
`=0

[x > `] ·
(

3 + [n 6= 0] + 2 ·
∞∑
k=0

(
#col + `

N

)k)

− 2 · [cp[i] = 0] · [x > 0] ·
∞∑
k=0

(
#col

N

)k
as both an upper and lower ω–invariant of Cout with respect to 0. A detailed
verification that In is an ω-invariant is found in the extended version of the
paper [17]. Now Theorem 5 yields

I = lim
n→∞

In � ert [Cout] (0) � lim
n→∞

In = I , (‡)

where I denotes the same invariant as In with n replaced by ∞.

Analysis of the overall program. To obtain the overall expected run–time of
program Ccp we have to account for the initialization instructions before the
outer loop. The calculations go as follows:

wp–Reasoning for Expected Run–Times of Prob. Programs 25

ert [Ccp] (0)

= ert [cp := [0, . . . , 0]; i := 1; x := N; Cout] (0)

= 3 + ert [Cout] (0) [x/N, i/1, cp[1]/0, . . . , cp[N]/0] (by z)

= 3 + I[x/N, i/1, cp[1]/0, . . . , cp[N]/0] (by ‡)

= 4 + [N > 0] ·
(

4N + 2
∑N−1
`=1

(∑∞
k=0

(
`
N

)k))
= 4 + [N > 0] ·

(
4N + 2

∑N−1
`=1

N
`

) (
geom. series and
sum reordering

)
= 4 + [N > 0] · 2N · (2 +HN−1) ,

where HN−1 , 0 + 1/1 + 1/2 + 1/3 + · · ·+ 1/N−1 denotes the (N−1)-th harmonic
number. Since the harmonic numbers approach asymptotically to the natural
logarithm, we conclude that the coupon collector algorithm Ccp runs in expected
time Θ(N · log(N)).

8 Conclusion

We have studied a wp–style calculus for reasoning about the expected run–
time and positive almost–sure termination of probabilistic programs. Our main
contribution consists of several sound and complete proof rules for obtaining
upper as well as lower bounds on the expected run–time of loops. We applied
these rules to analyze the expected run–time of a variety of example programs
including the well-known coupon collector problem. While finding invariants
is, in general, a challenging task, we were able to guess correct invariants by
considering a few loop unrollings most of the time. Hence, we believe that our
proof rules are natural and widely applicable.

Moreover, we proved that our approach is a conservative extension of Niel-
son’s approach for reasoning about the run–time of deterministic programs and
that our calculus is sound with respect to a simple operational model.

Acknowledgement. We thank Gilles Barthe for bringing to our attention the
coupon collector problem as a particularly intricate case study for formal ver-
ification of expected run–times and Thomas Noll for bringing to our attention
Nielson’s Hoare logic.

References

1. Arthan, R., Martin, U., Mathiesen, E.A., Oliva, P.: A general framework for sound
and complete Floyd-Hoare logics. ACM Trans. Comput. Log. 11(1) (2009)

2. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press (2008)
3. Berghammer, R., Müller-Olm, M.: Formal development and verification of approx-

imation algorithms using auxiliary variables. In: Logic Based Program Synthesis
and Transformation (LOPSTR). LNCS, vol. 3018, pp. 59–74. Springer (2004)

26 Kaminski, Katoen, Matheja, Olmedo

4. Brázdil, T., Kiefer, S., Kucera, A., Vareková, I.H.: Runtime analysis of probabilistic
programs with unbounded recursion. J. Comput. Syst. Sci. 81(1), 288–310 (2015)

5. Celiku, O., McIver, A.: Compositional specification and analysis of cost-based prop-
erties in probabilistic programs. In: Formal Methods (FM). LNCS, vol. 3582, pp.
107–122. Springer (2005)

6. Chakarov, A., Sankaranarayanan, S.: Probabilistic program analysis with mar-
tingales. In: Computer Aided Verification (CAV). LNCS, vol. 8044, pp. 511–526.
Springer Berlin Heidelberg (2013)

7. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall (1976)
8. Fioriti, L.M.F., Hermanns, H.: Probabilistic termination: Soundness, completeness,

and compositionality. In: Principles of Programming Languages (POPL). pp. 489–
501. ACM (2015)

9. Frandsen, G.S.: Randomised algorithms (1998), Lecture Notes, University of
Aarhus, Denmark

10. Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic pro-
gramming. In: Future of Software Engineering (FOSE). pp. 167–181. ACM (2014)

11. Hehner, E.C.R.: Formalization of time and space. Formal Aspects of Computing
10(3), 290–306 (1998)

12. Hehner, E.C.R.: A probability perspective. Formal Aspects of Computing 23(4),
391–419 (2011)

13. Hickey, T., Cohen, J.: Automating program analysis. J. ACM 35(1), 185–220 (1988)
14. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM

12(10), 576–580 (1969)
15. Hurd, J.: A formal approach to probabilistic termination. In: Theorem Proving

in Higher Order Logics (TPHOL), LNCS, vol. 2410, pp. 230–245. Springer Berlin
Heidelberg (2002)

16. Kaminski, B.L., Katoen, J.: On the hardness of almost-sure termination. In: Math-
ematical Foundations of Computer Science (MFCS), Part I. LNCS, vol. 9234, pp.
307–318. Springer (2015)

17. Kaminski, B.L., Katoen, J.P., Matheja, C., Olmedo, F.: Weakest precondition rea-
soning for expected run–times of probabilistic programs. ArXiv e-prints (2016),
http://arxiv.org/abs/1601.01001

18. Kozen, D.: Semantics of Probabilistic Programs. J. Comput. Syst. Sci. 22(3), 328–
350 (1981)

19. McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Sys-
tems. Springer (2004)

20. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press (2005)

21. Monniaux, D.: An abstract analysis of the probabilistic termination of programs.
In: Symposium on Static Analysis (SAS). Lecture Notes in Computer Science, vol.
2126, pp. 111–126. Springer (2001)

22. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press
(1995)

23. Nielson, H.R.: A Hoare-like proof system for analysing the computation time of
programs. Sci. Comput. Program. 9(2), 107–136 (1987)

24. Nielson, H.R., Nielson, F.: Semantics with Applications: An Appetizer. Undergrad-
uate Topics in Computer Science, Springer (2007)

25. Wechler, W.: Universal Algebra for Computer Scientists, EATCS Monographs on
Theoretical Computer Science, vol. 25. Springer (1992)

26. Winskel, G.: The Formal Semantics of Programming Languages: An Introduction.
MIT Press (1993)

http://arxiv.org/abs/1601.01001

	Weakest Precondition Reasoning for Expected Run–Times of Probabilistic Programs

