
Rule-based Conditioning of Probabilistic Data
Integration and NLP Results

M. van Keulen1, B.L. Kaminski2, C. Matheja2, and J.P. Katoen1,2

1 University of Twente, {m.vankeulen,j.p.katoen}@utwente.nl
2 RWTH Aachen, {benjamin.kaminski,matheja,katoen}@cs.rwth-aachen.de

Abstract. Data interoperability is a major issue in data management
for data science and big data analytics. Probabilistic data integration
(PDI) is a specific kind of data integration where extraction and inte-
gration problems such as inconsistency and uncertainty are handled by
means of a probabilistic data representation. This allows a data inte-
gration process with two phases: (1) a quick partial integration where
data quality problems are represented as uncertainty in the resulting
integrated data, and (2) using the uncertain data and continuously im-
proving its quality as more evidence is gathered. The main contribution
of this paper is an iterative approach for incorporating evidence of users
in the probabilistically integrated data. Evidence can be specified as hard
or soft rules (i.e., rules that are uncertain themselves).

1 Introduction Partial data integration

Enumerate cases for 
remaining problems

Store data with 
uncertainty in 

probabilistic database

Improve 
data quality

Gather 
evidence

Use

Initial quick-and-dirty integration
C

ontinuous im
provem

ent

Fig. 1. Probabilistic data integra-
tion process [1, 2]

Data interoperability is a major issue in data
management for data science and big data an-
alytics. It may be hard to extract informa-
tion from certain kinds of sources (e.g., nat-
ural language, websites), it may be unclear
which data items should be combined when in-
tegrating sources, or they may be inconsistent
complicating a unified view, etc. Probabilis-
tic data integration (PDI) is a specific kind
of data integration where extraction and in-
tegration problems such as inconsistency and
uncertainty are handled by means of a prob-
abilistic data representation. The approach is
based on the view that data quality problems
(as they occur in an integration process) can
be modeled as uncertainty [3, 1] and this un-
certainty is considered an important result of the integration process [4].

The PDI process contains two phases (see Figure 1):

– a quick partial integration where certain data quality problems are not solved
immediately, but explicitly represented as uncertainty in the resulting inte-
grated data stored in a probabilistic database;



– continuous improvement by using the data — a probabilistic database can
be queried directly resulting in possible or approximate answers [5] — and
gathering evidence (e.g., user feedback) for improving the data quality.

For details on the first phase, we refer to [2, 3], as well as [6–8] for techniques
on specific extraction and integration problems (merging semantic duplicates,
merging grouping data, and information extraction from natural language text,
respectively). This paper focuses on the second phase of this process, namely
on the problem of how to incorporate evidence of users in the probabilistically
integrated data with the purpose to continuously improve its quality as more
evidence is gathered. We assume that evidence of users is obtained in the form
of rules expressing what is necessary (in case of hard rules) or likely (in case of
soft rules) to be true. Rules may focus on individual data items, individual query
results, or may state general truths based on background knowledge of the user
about the domain at hand. The paper proposes a method how the knowledge
of the rule can be incorporated in the integrated data by means of conditioning
the probabilistic data on the observation that the rule is true.

Contributions. This paper make the following contributions
– A technique to remap random variables (in this paper referred to as parti-

tionings) to fresh ones in a probabilistic database.
– An extension to probabilistic query languages to specify evidence as hard

and soft rules.
– The main result is an approach to incorporate such specified evidence in a

probabilistic database by updating it.

Outlook. The paper is structured as follows. Section 1.1 presents a running
example based on an information extraction scenario. Section 2 gives the back-
ground on probabilistic databases, the probabilistic datalog language we focus
on called JudgeD, and how results from probabilistic data integration can be
stored in a probabilistic database. Section 3 describes and explains all contri-
butions, namely how to rewrite (i.e., update) a probabilistic database with rule
evidence into one in which the evidence is incorporated. Section 4 presents a
sketch of the main proof: that the semantics of a probabilistic database with
evidence incorporated in it is equivalent with the semantics of a probabilistic
database with its evidence still separate.

1.1 Running example

Throughout the paper we use an information extraction scenario as running
example: the “Paris Hilton example”. Although this scenario is from the NLP
domain, note that it is equally applicable to other data integration scenarios
such as semantics duplicates [6], entity resolution, uncertain groupings [7], etc.

Paris Hilton example. This example and the problem of incorporating rule-
based knowledge by means of conditioning was first described in [9]. We sum-
marize it here.



Because natural language is highly ambiguous and computers are still inca-
pable of ‘real’ semantic understanding, information extraction (IE) from natural
language text is an inherently imperfect process. We focus in this example on
the sentence

“Paris Hilton stayed in the Paris Hilton.”

A named entity (NE) is a phrase that is to be interpreted as a name refering
to some entity in the real world. A specific task in IE is Named Entity Recogni-
tion (NER): detecting which phrases in a text are named entities, possibly also
detecting the type of the NE. The resulting data of this task is typically in the
form of annotations.

Here we have two NEs which happen to be the same phrase “Paris Hilton”. It
is ambiguous how to interpret it: it could be a person, a hotel, or even a fragrance.
In fact, we as humans unconsciously understand that the first mention of “Paris
Hilton” must refer to a person and the second to a hotel, because from the
3× 3 = 9 combinations only ‘person–stay in–hotel’ seems logical (based on our
background knowledge unknown to the IE algorithm).

Often ignored in NER, also the word “Paris” is a NE: it could be a first
name or a city. Note that interpretations are correlated: if “Paris” is interpreted
as a city, then “Paris Hilton” is more likely to be a hotel, and vice versa. The
evidence a user may want to express is
– words contained in phrases interpreted as persons, should not be interpreted

as cities, or
– ‘stay-in’ relationships between entities will not have buildings (such as hotels)

on the lefthand side and no persons on the righthand side.
In this example, we assume that the initial information extraction produces

a probabilistic database with uncertain annotations: the type of the first “Paris
Hilton” can be either a hotel, person, or fragrance with probabilities 0.5, 0.4, 0.1,
respectively. The second “Paris Hilton” analogously. Both mentions of “Paris”
are of type firstname or city. With the method of this paper, the user may
express the evidence as rules and condition the database accordingly resulting
in a database with less uncertainty and of higher quality (i.e., closer to the truth).

2 Background

2.1 Probabilistic database

A common foundation for probabilistic databases is possible worlds theory. We
follow the formalization of [10] as it separates (a) the data model and the mech-
anism for handling uncertainty, and (b) the abstract notion of worlds and the
data contained in them.

Probabilistic database. We view a database DB ∈ PA as a set of assertions
{a1, . . . , an}. For the purpose of data model independence, we abstract from
what an assertion is: it may be a tuple in a relational database, a node in an
XML database, and so on. A probabilistic database PDB ∈ PPA is defined as a



set of possible database states or worlds {DB1, . . . ,DBm}. We use the symbols
DB and w interchangeably. Note that if two databases are the same, hence the
uncertainty is indistinguishable, we regard this as one possible world.

Partitionings and descriptive sentences. Viewing it the other way around,
an assertion is contained only in a subset of all possible worlds. To describe
this relationship, we introduce an identification mechanism, called descriptive
sentence, to refer to a subset of the possible worlds.

A partitioning ωn introduces a set of labels l ∈ L(ωn) of the form ω =
v (without loss of generality we assume v ∈ 1..n). A partitioning splits the set
of possible worlds into n disjunctive subsets W (l). Ω is the set of introduced
partitionings. A descriptive sentence is a propositional formula of labels. Let
ω(ϕ) be the set of partitionings contained in ϕ. The symbols > and ⊥ denote
the true and false sentences. A sentence denotes a specific subset of worlds:

W (ϕ) =



PDB if ϕ = >
∅ if ϕ = ⊥
W (l) if ϕ = l

W (ϕ1) ∩W (ϕ2) if ϕ = ϕ1 ∧ ϕ2

W (ϕ1) ∪W (ϕ2) if ϕ = ϕ1 ∨ ϕ2

PDB \W (ϕ1) if ϕ = ¬ϕ1

(1)

A conjunction of one label for all partionings of Ω, called a fully described
sentence ϕ̄, denotes a set of exactly one world, hence can be used as the name
or identifier for a world. Let Φ(Ω) = {l1 ∧ . . .∧ lk | li ∈ L(ωnii )} be the set of all
fully described sentences where Ω = {ωn1

1 , . . . , ωnkk } and i ∈ 1..k. Note that the
following hold:

PDB =
⋃

ϕ̄∈Φ(Ω)

W (ϕ̄) (2)

PDB =
⋃

l∈L(ωn)

W (l) (∀ωn ∈ Ω) (3)

x=1 x=2 x=3

y
=
1
y
=
2

a1a2

a3

a1

a1

a2

a1 a3a3

Fig. 2. Illustration of a prob-
abilistic database CPDB =
〈D̂B, Ω〉. D̂B = {〈a1,¬x=3〉,
〈a2,¬x=2 ∧ y=1〉, 〈a3, y=2〉}.
Ω = {x3, y2}. W (CPDB) =
{{a1}, {a2}, {a3}, {a1, a2}, {a1, a3}}.

Compact probabilistic database. A
compact probabilistic database is a tuple
CPDB = 〈D̂B, Ω, P 〉 where D̂B is a set
of descriptive assertions â = 〈a, ϕ〉, Ω a
set of partitionings, and P a probability as-
signment function for labels provided that∑n
v=1 P (ωn=v) = 1. Figure 2 illustrates the

above notions. We consider CPDB to be
well-formed if all labels l used in CPDB are
member of L(ω) of some ω ∈ Ω and all asser-
tions a used in CPDB occur only once. Well-
formedness can always easily be obtained
but reconstructing Ω from the labels used



in CPDB and by ‘merging duplicate assertions’ using the transformation rule
〈a, ϕ1〉, 〈a, ϕ2〉 7→ 〈a, ϕ1 ∨ ϕ2〉. We use the terms assertion and data item in-
terchangeably. The possible worlds of a compact probabilistic database can be
obtained as follows

W (CPDB) = {DB | ϕ̄ ∈ Φ(Ω) ∧DB = {a | 〈a, ϕ〉 ∈ D̂B ∧ ϕ̄⇒ ϕ}} (4)

The formalism naturally supports expression of several important dependency
relationships:

– Mutual dependence: for 〈a1, ϕ〉 and 〈a2, ϕ〉 it holds that a1 and a2 both exists
in a world or neither, but never only one of the two.

– Mutual exclusivity : for 〈a1, ϕ1〉 and 〈a2, ϕ2〉 it holds that a1 and a2 never
occur in a world together if ϕ1 ∧ ϕ2 ≡ ⊥.

– Independence: Since each ωi is a partitioning on its own, it can be consid-
ered as an independent random variable making an independent choice. For
example, 〈a1, x=1〉 and 〈a2, y=1〉 use different partitionings, hence their ex-
istence in worlds is independent and world can contain both a1 and a2, only
of the two, or neither.

Probability calculation. Calculating probabilities of sentences, hence of worlds
and sets of worlds, can make use of properties like P (ω1=v1 ∧ ω2=v2) = P (ω1=v1)×
P (ω2=v2) and P (ω1=v1 ∨ ω2=v2) = P (ω1=v1)+P (ω2=v2) if ω1 6= ω2. The prob-
ability of existence of an assertion is defined as

P (〈a, ϕ〉) =
∑

w∈PDB,a∈w
P (w) =

∑
w∈W (ϕ)

P (w) = P (ϕ)

Probabilistic querying. The concept of possible worlds means that querying
a probabilistic database should be indistinguishable from querying each possible
world separately, i.e., producing the same answers.

Q(PDB) = {Q(w) | w ∈ PDB}

As explained in [10], we abstract from specific operators analogously to the
way we abstract from the form of the actual data items. Given a query lan-
guage, for any query operator ⊕, we define an extended operator ⊕̂ with an
analogous meaning that operates on the compact representation. It is defined
by ⊕̂ = (⊕, τ⊕) where τ⊕ is a function that produces the descriptive sentence of
a result based on the descriptive sentences of the operands in a manner that is
appropriate for operation ⊕. Obviously, a thusly expressed query Q̂ on a com-
pact probabilistic database CPDB should adhere to the semantics above and
Equation 4:

Q̂(CPDB) =
⋃

w∈W (CPDB)

Q(w) =
⋃

ϕ̄∈Φ(Ω)

{a | 〈a, ϕ〉 ∈ Q̂(D̂B) ∧ ϕ̄⇒ ϕ} (5)



2.2 Definition of JudgeD, a probabilistic datalog

As a representation formalism in which both probabilistic data as well as soft
and hard rules can be expressed, we choose JudgeD, a probabilistic datalog
[11]. Several probabilistic logics have been proposed in the last decades among
others pD [12] and ProbLog [13]. In these logics probabilities can be attached to
facts and rules. JudgeD is obtained by defining in the abovedescribed formalism
that a data item is a fact or rule. Moreover, datalog entailment is extended
with sentence manipulation [10]. The thus obtained probabilistic datalog is as
expressive as ProbLog regarding dependency relationships.

Probabilistic datalog. We base our definition of Datalog on [14, Chp.6] (only
positive Datalog for simplicity). We postulate disjoint sets Const , Var , Pred
as the sets of constants, variables, and predicate symbols, respectively. Let c ∈
Const , X ∈ Var , and p ∈ Pred . A term t ∈ Term is either a constant or
variable where Term = Const ∪ Var . An atom A = p(t1, . . . , tn) consists of an
n-ary predicate symbol p and a list of argument terms ti. An atom is ground iff
∀i ∈ 1..n : ti ∈ Const . A clause or rule r = (Ah ← A1, . . . , Am) is a horn clause
representing the knowledge that Ah is true iff all Ai are true. A fact is a rule
without body (Ah ← ). A set of rules KB is called a knowledge base or program.
The usual safety conditions of pure Datalog apply.

Let θ = {X1/t1, . . . , Xn/tn} be a substitution where Xi/ti is called a binding.
Aθ and rθ denote the atom or rule obtained by replacing each Xi occurring in
A or r by the corresponding term ti.

We use the notation (Ah ϕ← A1, . . . , Am) for the tuple 〈Ah ← A1, . . . , Am, ϕ〉.
Note that this not only allows the specification of uncertain facts, but also un-
certain rules as well as dependencies between the existence of facts and rules.

Probabilistic entailment. Entailment is defined as follows

r ∈ KB r = (Ah ϕ← A1, . . . , Am)
∃θ : Ahθ is ground ∧ ∀i ∈ 1..m : KB |= 〈Aiθ, ϕi〉

ϕ′ = ϕ ∧
∧
i∈1..m ϕi ϕ′ 6≡ ⊥

KB |= 〈Ahθ, ϕ′〉

In other words, given a rule r from the knowledge base and a substitution θ that
makes the atoms Ai in the body true for sentences ϕi, then we can infer the
substituted atom Ahθ in the head with a sentence that is a conjunction of all
ϕi and the sentence ϕ of the rule itself (unless the conjunction is inconsistent).
This definition of probabilistic entailment is obtained from applying the querying
framework of Section 2.1 to normal datalog entailment [10]. Observe that it is
consistent with Equation 5.

2.3 Representing PDI Results in JudgeD

Probabilistic data integration (PDI) is a specific kind of data integration where
extraction and integration problems are handled by means of a probabilistic data



a1 annot(id-ph,pos1-2,hotel) [x=1].

a2 annot(id-ph,pos1-2,person) [x=2].

a3 annot(id-ph,pos1-2,fragrance) [x=3].

a4 annot(id-p,pos1,firstname) [y=1].

a5 annot(id-p,pos1,city) [y=2].

a6 contained(pos1,pos1-2).

@p(x=1) = 0.5.

@p(x=2) = 0.4.

@p(x=3) = 0.1.

@p(y=1) = 0.3.

@p(y=2) = 0.7.

a7 rule1 :- annot(Ph1,Pos1,city), annot(Ph2,Pos2,person), contained(Pos1,Pos2).

Fig. 3. Paris Hilton example (simplified) in JudgeD (sentences in square brackets; ‘@p’
syntax specifies probabilities).

representation. In this section, we illustrate JudgeD by showing how to represent
information extraction and semantic duplicates scenarios.

In the Paris Hilton example, the initial information extraction produces un-
certain annotations: the type of the phrase “Paris Hilton” occuring as the first
and second word of the sentence, can be either a hotel, person, or fragrance with
probabilities 0.5, 0.4, 0.1, respectively). Furthermore, the first word “Paris” can
either be a firstname or a city. We can represent this in JudgeD as in Figure 3.

A user may want to express evidence that words contained in phrases inter-
preted as persons, should not be interpreted as cities. In JudgeD we can express
this as a rule (see rule1 in Figure 3). Executing this rule provides the information
under which conditions the rule is true, in this case, x=2 ∧ y=2. In this case, it
is a negative rule, i.e., we ‘observe‘ the evidence that rule1 is false. As we will
see in the next section, this evidence can be incorporated by conditioning and
rewriting the database on ¬(x=2 ∧ y=2).

3 Conditioning

As the example in Section 2.3 illustrates, our approach is to specify evidence
with rules. Since a rule may only be true in a subset of worlds, the rule actually
specifies which worlds are consistent with the evidence. By executing the rule,
we obtain this information in terms of the evidence sentence ϕe. To incorporate
such evidence means that the database3 needs to be conditioned.

The usual way of conditioning in probabilistic programming [13, 15] is to
extend inference with an observe capability. Instead, we propose to rewrite the
database into an equivalent one that no longer contains observe statements:
the evidence is directly incorporated in the probabilistic data. By ensuring that
evidence incorporation can be done iteratively, the “Improve data quality” step
of Figure 1 can be realized without an ever-growing set of observe statements.

The intuition of conditioning is to eliminate all worlds that are inconsistent
with the evidence and redistribute the eliminated probability mass over the
remaining worlds by means of normalization. This can be realized directly on the
compact probabilistic database by constructing an adjusted set of partitionings
Ω′, rewriting the sentences of the data items, and removing any data items for
which the sentence becomes inconsistent (i.e., ⊥).

3 Note that we also refer to a JudgeD program as a database.



The approach is presented in several steps: Section 3.1 defines the semantics
of a probabilistic database with evidence. Section 3.2 explains how to reduce a
conditioning with a complex set of evidences to one or more simple conditionings.
Section 3.3 explains how to rewrite the original database into a conditioned one
whereby we focus on hard rules first. Section 3.4 explains how to condition with
soft rules. We conclude this section with a discussion on iterative conditioning.

3.1 Semantics of a database with evidence

We abstractly denote evidence as a set of queries/rules E that should be true

(positive evidence). We extend the definition of CPDB = 〈D̂B, Ω, P 〉 to a com-

pact probabilistic database with evidence CPDBE = 〈D̂B, Ω, P,E〉 with semantics

W (CPDBE) = {w | w ∈W (CPDB) ∧ ∀Qe ∈ E : Qe(w) is true}

Concrete probabilistic database formalisms may provide specific mechanisms
for specifying evidence. For JudgeD, we extend the language with a specific kind
of rule observe(Ae). A program containing k observed atoms Aie (i ∈ 1..k) defines
E = {A1

e, . . . , A
k
e}.

An evidence query Qie ∈ E has exactly two results: Qie(CPDB) = {〈true, ϕi〉,
〈false,¬ϕi〉}. Since evidence filters worlds that are inconsistent with it, we de-
termine an evidence sentence ϕe =

∧
i∈1..k ϕi. We use E and ϕe interchangeably:

W (CPDBE) = {w | w ∈W (CPDB) ∧ ϕe} (6)

The probability mass associated with eliminated worlds is redistributed over
the remaining worlds by means of normalization.

Pe(ϕ) =
P (ϕ ∧ ϕe)
P (ϕe)

(7)

Querying is extended in a straightforward manner by adapting Equation 5:

Q̂(CPDBE) =
⋃

w∈W (CPDBE)

Q(w)

=
⋃

ϕ̄∈Φ(Ω),ϕ̄⇒ϕe

{a | 〈a, ϕ〉 ∈ Q̂(D̂B) ∧ ϕ̄⇒ ϕ)} (8)

3.2 Remapping of partitionings

Figure 4 illustrates that in the Paris Hilton example of Figure 3, partitions x3

and y2 that were independent before now become dependent because one of the
six possible worlds is inconsistent with ϕe = ¬(x=2∧ y=2). When this happens,
we remap them, i.e., replace them with a fresh partitioning z6 representing their
combined possibilities. By simple logical equivalence, we can find formulas for
the labels of the original partitionings, for example, x=1 ⇔ z=1 ∨ z=4. These
can be used to rewrite sentences based on x and y to sentences based on z. Since
worlds and their contents are determined by sentences and these sentences are
replaced by equivalent ones, this remapping of two or more partitionings to a
single fresh one is idempotent.



Remapped 7→
Worlds ϕ̄ W (ϕ̄) P Renumbered Consistent Pe

x=1 ∧ y=1 {a1, a4, a6, a7} 0.15 z=1 7→ z=1
√

0.2083
x=2 ∧ y=1 {a2, a4, a6, a7} 0.12 z=2 7→ z=2

√
0.1667

x=3 ∧ y=1 {a3, a4, a6, a7} 0.03 z=3 7→ z=3
√

0.0417
x=1 ∧ y=2 {a1, a5, a6, a7} 0.35 z=4 7→ z=4

√
0.4861

x=2 ∧ y=2 {a2, a5, a6, a7} 0.28 z=5 ×
x=3 ∧ y=2 {a3, a5, a6, a7} 0.07 z=6 7→ z=5

√
0.0972

x=1 x=2 x=3

y
=
1

y
=
2

a1

a1

a2

a2 a3

a3

a6 a7 a6 a7 a6 a7

a6 a7 a6 a7 a6 a7

a4 a4 a4

a5 a5 a5

Inconsistent 
world 

x=2∧y=2

Fig. 4. Illustration of partitioning remapping

Remapping. For a sentence containing more than one partitioning, the parti-
tionings may become dependent and remapping is necessary. Let Ωe = ω(ϕe) =
{ωn1 , . . . , ωnk} be the set of partitionings to be remapped. We introduce a fresh
partitioning ω̄n where n = n1× . . .×nk. Let the bijection λΩe : Φ(Ωe)↔ L(ω̄n)
be the remapping function. A valid remapping function can be constructed in a
straightforward way by viewing the values in the labels of the partionings of a full
sentence as a vector of numbers v1, . . . , vk and compute the value v in the label of
ω̄n as v = 1+

∑
i∈1..k(vi−1)

∏
j∈i+1..k nj . For example, λΩe(x=3∧y=2) = (z=6)

because 1 + (3− 1)× 2 + (2− 1)× 1 = 6.
A sentence ϕ can be rewritten into λΩe(ϕ) by replacing every label lij =

(ωi=v
j
i ) with

∨
l∈L(ω̄n),lij∈λ−1

Ωe
(l) l. For example, λΩe(x=1 ∧ y=2) = ((z=1∨z=4)∧

(z=4 ∨ z=5 ∨ z=6)) = (z=4). Observe that, since all partitionings in a sentence
are rewritten into a single one, the rewritten evidence sentence is of the form
λΩe(ϕe) = (ω̄n=v1) ∨ . . . ∨ (ω̄n=vm) for some m.

Finally, given ϕe, a compact probabilistic database CPDB = 〈D̂B, Ω, P 〉 can

be rewritten into λΩe(CPDB) = 〈D̂B′, Ω′, P ′〉 where

D̂B′ = {〈a, λΩe(ϕ)〉 | 〈a, ϕ〉 ∈ D̂B} (9)

Ω′ = (Ω \Ωe) ∪ {ω̄n} (10)

P ′(l) =

{
P (λ−1

Ωe
(l)) if l ∈ L(ω̄n)

P (l) otherwise

Splitting. If many partitionings are involved, remapping may introduce parti-
tionings ωn with very high n. Note, however, that the procedure is only necessary
if the partitionings become independent due to the evidence. For example, if the
evidence would be ϕe = ¬(x=3) ∧ y=2, x and y remain independent. Therefore,
we first split ϕe into independent components and treat them seperately.

First ϕe is brought into conjunctive normal form ϕ1∧. . .∧ϕn whose conjuncts
are then ‘clustered’ intom independent components ϕie = ϕj1∧. . .∧ϕjk (i ∈ 1..m)
such that for maximal m, every conjunct is in exactly one component, and for
every pair of components ϕ1

e and ϕ2
e it holds ω(ϕ1

e) ∩ ω(ϕ2
e) = ∅.

Note that, because of independence between partitionings, the components
specify independent evidence that can be incorporated seperately. In the sequel,



we denote with ϕe a single component of the evidence sentence. Furthermore,
since remapping reduces an evidence sentence to one based on one partioning,
splitting and remapping togeher simplify conditioning to one or more condition-
ings on single partitionings.

3.3 Conditioning with hard rules by means of program rewriting

Given CPDBE = 〈D̂B, Ω, P, ϕe〉, let CPDB = 〈D̂B′′, Ω′′, P ′′〉 = Λϕe(CPDBE)
be a rewritten compact probabilistic database that incorporates ϕe in the prob-
abilistic data itself. We define Λϕe(CPDBE) as follows. The partitionings Ωe =
ω(ϕe) are remapped to fresh partitioning ω̄ using remapping function λΩe . Ef-

fectuating this remapping obtains 〈D̂B′, Ω′, P ′〉 = λΩe(〈D̂B, Ω, P 〉). The compo-
nent ϕe itself can also be rewritten into ϕ̄e = λΩe(ϕe) which results in a sentence
of the form ϕ̄e = l̄1 ∨ . . . ∨ l̄m where l̄j = (ω̄=vj) for some m.

The evidence sentence ϕ̄e specifies which worlds W (〈D̂B′, Ω′, P ′〉) are valid
namely those identified by each l̄j . Let L = {l̄1, . . . , l̄m}. The other worlds iden-

tified by L̄ = L(ω̄) \L are inconsistent with ϕ̄e. This can be effectuated in D̂B′

by setting labels identifying inconsistent worlds to ⊥ in all sentences occuring in
D̂B′. A descriptive assertion for which the sentence becomes ⊥ can be deleted
from the database as it is no longer present in any remaining world.

Let λL̄(ϕ) be the sentence obtained by setting l to ⊥ in ϕ for each l ∈ L̄. We

can now define D̂B′′ as follows

D̂B′′ = {〈a, λL̄(ϕ)〉 | 〈a, ϕ〉 ∈ D̂B′ ∧ λL̄(ϕ) 6= ⊥}

Finally, the probability mass of the inconsistent worlds needs to be redis-
tributed over the remaining consistent ones. Furthermore, since some labels l̄j
representing these inconsistent worlds should obtain a probability P ′′(l̄j) = 0,
these labels should be removed, and because we assume the values of a parti-
tioning ωn to range from 1 to n, we renumber them by replacing ω̄n with ω̂m.

Let Ω′′ = (Ω′ \{ω̄n}) ∪ {ω̂m}. The bijection f : L(ω̂m) ↔ L uniquely asso-
ciates each new ‘renumbered’ label with an original label of a consistent world.
In D̂B′′ replace every occurrence of a label l̄j ∈ L with f(l̄j). Note that labels

from L̄ will no longer occur in D̂B′′. P ′′ is defined by setting the probabilities of
the new labels as follows: P ′′(l̄j) = 1

pP
′(f(l̄j)) where p =

∑
l̄j∈L P

′(l̄j).
In the next section, we make rule1 into a soft rule and show what the end

result for the conditioned Paris Hilton example looks like (see Figure 6).

3.4 Conditioning with soft rules

A soft rule is an uncertain hard rule, hence the same principle of probabilistic
data can be used to represent a soft rule: with a partitioning ω2

r where labels
ω2
r =0 and ω2

r =1 identify all worlds where the rule is false and true, respectively.
For Figure 3, we write

a7 rule1 :- annot(Ph1,Pos1,city), annot(Ph2,Pos2,person), contained(Pos1,Pos2) [r=1].



x=1 x=2 x=3

y
=
1

y
=
2

a1

a1

a2

a2 a3

a3

a6 a6 a6

a6 a6 a6

a4 a4 a4

a5 a5 a5

Inconsistent 
world 

x=2∧y=2

r=0 r=1

a1

a6

a7

a4

a2

a6

a7

a4

a3

a6

a7

a4

a1

a6

a7

a5

a3

a6
a7

a5

z=1 z=2 z=3 z=4 z=5

Fig. 5. Illustration of applying a soft rule.

which effectively means that 〈a7,>〉 is replaced with 〈a7, r=1〉 in the database.
We now have 12 worlds in Figure 4: the original 6 ones, and those 6 again but
without a7 in them.

Executing rule1 results in {〈true, x=2 ∧ y=2 ∧ r=1〉, 〈false,¬(x=2 ∧ y=2 ∧
r=1)〉}. Since it is a negative rule, ϕe = ¬(x=2 ∧ y=2 ∧ r=1). Instead of direct
conditioning for this evidence, we strive for the possible worlds as illustrated in
Figure 5. Depicted here are the original worlds in case of r=0 and the conditioned
situation in case of r=1. It can be obtained by conditioning the database as if it
was a hard rule, but effectuate the result only for worlds for which r=1.

Soft rule rewriting. Given CPDBE = 〈D̂B, Ω, P, ϕe〉 and ϕe is a soft rule

governed by partitioning ωr. Let D̂B′ and ϕ′e be the counterparts of D̂B and ϕe
where in all sentences ωr=1 is set to > and ωr=0 to ⊥. Let Ω′ = Ω \{ωr}. Let P ′

be P restricted to the domain of Ω′. This effectively makes the rule a hard rule.
Let 〈D̂B′′, Ω′′, P ′′〉 = Λϕe(〈D̂B′, Ω′, P ′, ϕ′e〉) be the database that incorporates
the evidence as a hard rule.

From this result we construct a probabilistic database that contains both the
data items from the original worlds when ωr=0 and the data items from the
rewritten worlds when ωr=1. We define Λϕe(CPDBE) = 〈D̂B′′′, Ω′′′, P ′′′〉 where

D̂B′′′ = {〈a, (ϕ1 ∧ ωr=0) ∨ (ϕ2 ∧ ωr=1)〉 | 〈a, ϕ1〉 ∈ D̂B ∧ (ωr=0⇒ ϕ1) ∧ 〈a, ϕ2〉 ∈ D̂B′′}
∪{〈a, (ϕ1 ∧ ωr=0)〉 | 〈a, ϕ1〉 ∈ D̂B ∧ (ωr=0⇒ ϕ1) ∧ 〈a, ϕ2〉 6∈ D̂B′′}
∪{〈a, (ϕ2 ∧ ωr=1)〉 | 〈a, ϕ1〉 ∈ D̂B ∧ (ωr=0 6⇒ ϕ1) ∧ 〈a, ϕ2〉 ∈ D̂B′′}

Ω′′′ = Ω ∪Ω′′

P ′′′ = P ∪ P ′′

See Figure 6 for the conditioned database of the Paris Hilton example.

3.5 Iterative conditioning

The intention is to use this approach iteratively, i.e., whenever new evidence is
specified, the evidence is directly incorporated. One may wonder what happens
if the same rule is incorporated twice.



a1 annot(id-ph,pos1-2,hotel)

[(r=0 and x=1) or (r=1 and (z=1 or z=4))].

a2 annot(id-ph,pos1-2,person)

[(r=0 and x=2) or (r=1 and z=2)].

a3 annot(id-ph,pos1-2,fragrance)

[(r=0 and x=3) or (r=1 and (z=3 or z=5))].

a4 annot(id-p,pos1,firstname)

[(r=0 and y=1) or (r=1 and (z=1 or z=2 or z=3))].

a5 annot(id-p,pos1,city)

[(r=0 and y=2) or (r=1 and (z=4 or z=5))].

a6 contained(pos1,pos1-2).

@p(x=1) = 0.5.

@p(x=2) = 0.4.

@p(x=3) = 0.1.

@p(y=1) = 0.3.

@p(y=2) = 0.7.

@p(z=1) = 0.2083.

@p(z=2) = 0.1667.

@p(z=3) = 0.0417.

@p(z=4) = 0.4861.

@p(z=5) = 0.0972.

@p(r=1) = 0.8.

@p(r=2) = 0.2.

a7 rule1 :- annot(Ph1,Pos1,city), annot(Ph2,Pos2,person), contained(Pos1,Pos2) [r=1].

Fig. 6. Paris Hilton example with evidence of rule1 incorporated as a soft rule.

With hard rules the answer is simple: since all worlds inconsistent with the
rule have been filtered out, all remaining rules are consistent with the rule, i.e.,
when the evidence is a rule that has already been incorporated ϕe = >.

In case of soft rules, all original worlds, hence also the ones inconsistent with
the rule, are still present (see Figure 5). Observe, however, that all inconsistent
worlds have r=0 in their full sentences. Applying the rule again, will leave all
original worlds unaffected, because in those worlds the rule is not present. And
where the rule is true, the worlds inconsistent with the rule have already been
filtered out. Therefore, also for soft rules it holds that re-incorporating them
leaves the database unaffected.

If, however, a soft rule 〈r, r1=1〉 is incorporated again but governed by a
different partitioning, i.e., 〈r, r2=1〉, different probabilities for query answers are
obtained. Note, however, that this pertains to a different situation: with both
evidences based on r=1, the evidence effectively comes from the same source
twice, which provides no new evidence and the result is the same. With evidences
based on different partitions, the evidence effectively comes from two different
sources. Indeed, this provides extra independent evidence, hence probabilisties
are conditioned twice.

4 Validation

The main proof obligation is that the database without evidence obtained by
Λϕe(CPDBE) represents the same possible worlds as the original CPDBE.

Theorem 1. W (Λϕe(CPDBE)) = W (CPDBE)

Proof sketch. The proof sketch is based on showing that in each of the steps,
the possible worlds remain the same. The first step splits the evidence sentence
into independent components. Let ϕe = ϕ1 ∧ ϕ2. Since W (CPDBE) = {w | w ∈
W (CPDB) ∧ ϕe} (see Equation 6) and ϕ1 and ϕ2 share no partitionings, the
filtering of worlds on ϕ1 ∧ϕ2 is the same as filtering first on ϕ1 and then on ϕ2.

The second step is the remapping of the partitionings in the evidence sentence
component. The remapping introduces a single fresh partitioning ω̄n. Note that
the remapping function λΩe is a bijection uniquely relating each full sentence ϕ̄



constructed from Φ(Ωe) with one label l̄ ∈ L(ω̄n). In other words, W (ϕ̄) = W (l̄)
hence the possible worlds remain the same (see Equations 2, 4, and 9)

W (CPDB) = {DB | ϕ̄ ∈ Φ(Ω) ∧DB = {a | 〈a, ϕ〉 ∈ D̂B ∧ ϕ̄⇒ ϕ}}
= {DB | l̄ ∈ L(ω̄n) ∧DB = {a | 〈a, λΩe(ϕ)〉 ∈ D̂B ∧ l̄⇒ λΩe(ϕ)}}

Since λΩe(ϕ) replaces every label with an equivalent disjunction of fresh labels
ϕ̄ ⇒ ϕ is true whenever l̄ ⇒ λΩe(ϕ) is true. Therefore, remapping retains
the same possible worlds. This can also be illustrated with Figure 4. The six
possible worlds in a 2-by-3 grid are remapped to a 1-by-6 grid containing the
same distribution of assertions.

The above steps have transformed W (CPDBE) into

W (CPDBE) = {DB | l̄ ∈ L(ω̄n)

∧DB = {a | 〈a, λΩe(ϕ)〉 ∈ D̂B ∧ l̄⇒ λΩe(ϕ)}
∧λΩe(ϕe)}

It has already been noticed that, λΩe(ϕe) is of the form λΩe(ϕe) = (ω̄n=v1)∨
. . .∨(ω̄n=vm) for some m. The third step is setting labels identifying inconsistent
worlds to ⊥, i.e., labels l̄ 6∈ {(ω̄n=v1), . . . , (ω̄n=vm)}. Figure 4 illustrates how the
world identified by z=5 is eliminated, and the resulting database is

{〈a1, z=1 ∨ z=4〉, 〈a2, z=2〉, 〈a3, z=3 ∨ z=6〉, 〈a4, z=1 ∨ z=2 ∨ z=3〉, 〈a5, z=4 ∨ z=6〉,
〈a6, z=1 ∨ z=2 ∨ z=3 ∨ z=4 ∨ z=6〉, 〈a7, z=1 ∨ z=2 ∨ z=3 ∨ z=4 ∨ z=6〉}

The label renumbering for ω̄n and redistribution of probability mass to labels
(ω̄n=v1), . . . , (ω̄n=vm) in the remapped label space is equivalent with Equation 7.

Figure 4 illustrates how the worlds remaining in W (CPDBE) = {w | w ∈
W (CPDB) ∧ ϕe} (Equation 6) after applying a soft rule are constructed by
effectively taking the union of the ωr=0 partition ofW (CPDB) with the rewritten
worlds of the ωr=1 partition of W (CPDB).

5 Conclusions

The main contribution of this paper is an iterative approach for incorporating
evidence of users in probabilistically integrated data, evidence which can be
specified both as hard and soft rules. This capability makes the two-phase prob-
abilistic data integration process possible where in the second phase, the use
of integrated data could lead to evidence which can continuously improve the
data quality. The benefit is that a data integration result can be more quickly
obtained as it can be imperfect.

The first objective for future work is the engineering aspect of the approach:
developing a software prototype with the purpose of investigating the scalabil-
ity of the approach. Furthermore, more future work is needed to complete and
improve aspects of the PDI process such as indeterministic approaches for other
data integration problems, improving the scalability of probabilistic database
technology, and application of PDI to real-world scenarios and data sizes.



References

1. van Keulen, M.: Probabilistic data integration. In Sakr, S., Zomaya, A., eds.:
Encyclopedia of Big Data Technologies. Springer (2018) 1–9

2. van Keulen, M., de Keijzer, A.: Qualitative effects of knowledge rules and user
feedback in probabilistic data integration. VLDB Journal 18(5) (2009) 1191–1217

3. van Keulen, M.: Managing uncertainty: The road towards better data interoper-
ability. IT - Information Technology 54(3) (May 2012) 138–146

4. Magnani, M., Montesi, D.: A survey on uncertainty management in data integra-
tion. JDIQ 2(1) (2010) 5:1–5:33

5. Dalvi, N., Ré, C., Suciu, D.: Probabilistic databases: Diamonds in the dirt. Com-
munications of the ACM 52(7) (July 2009) 86–94

6. Panse, F., van Keulen, M., Ritter, N.: Indeterministic handling of uncertain deci-
sions in deduplication. JDIQ 4(2) (March 2013) 9:1–9:25

7. Wanders, B., van Keulen, M., van der Vet, P.: Uncertain groupings: Probabilistic
combination of grouping data. In: Proc. of DEXA. Volume 9261 of LNCS., Springer
(2015) 236–250

8. Habib, M., Van Keulen, M.: TwitterNEED: A hybrid approach for named entity
extraction and disambiguation for tweet. Natural Language Engineering 22 (5
2016) 423–456

9. van Keulen, M., Habib, M.: Handling uncertainty in information extraction. In:
Proceedings of the 7th International Conference on Uncertainty Reasoning for the
Semantic Web. Volume 778 of CEUR-WS., CEUR-WS.org (2011) 109–112

10. Wanders, B., van Keulen, M.: Revisiting the formal foundation of probabilistic
databases. In: Proceedings of the 2015 Conference of the International Fuzzy
Systems Association and the European Society for Fuzzy Logic and Technology,
IFSA-EUSFLAT 2015. Advances in Intelligent Systems Research, Atlantis Press
(June 2015) 47

11. Wanders, B., van Keulen, M., Flokstra, J.: Judged: a probabilistic datalog with
dependencies. In: Proceedings of the Workshop on Declarative Learning Based
Programming, DeLBP 2016. Number WS-16-07, Association for the Advancement
of Artificial Intelligence (AAAI) (February 2016)

12. Fuhr, N.: Probabilistic datalog: a logic for powerful retrieval methods. In: Pro-
ceedings of the 18th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, ACM (1995) 282–290

13. Raedt, L.D., Kimmig, A., Toivonen, H.: Problog: a probabilistic prolog and its
application in link discovery. In: Proceedings of 20th International Joint Conference
on Artificial Intelligence (IJCAI 2007), AAAI Press (2007) 2468–2473

14. Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Springer
(1990) ISBN 3-540-51728-6.

15. Jansen, N., Kaminski, B.L., Katoen, J.P., Olmedo, F., Gretz, F., McIver, A.: Con-
ditioning in probabilistic programming. In: The 31st Conference on the Mathe-
matical Foundations of Programming Semantics (MFPS XXXI). Volume 319 of
Electronic Notes in Theoretical Computer Science. (2015) 199–216


