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Purpose: we implemented a golden‐angle spiral phase contrast sequence. A  
commonly used uniform density spiral and a new ‘perturbed’ spiral that produces 
more incoherent aliases were assessed. The aim was to ascertain whether greater  
incoherence enabled more accurate Compressive Sensing reconstruction and  
superior measurement of flow and velocity.
Methods: A range of ‘perturbed’ spiral trajectories based on a uniform spiral trajec-
tory were formulated. The trajectory that produced the most noise‐like aliases was 
selected for further testing. For in‐silico and in‐vivo experiments, data was recon-
structed using total Variation L1 regularisation in the spatial and temporal domains. 
In‐silico, the reconstruction accuracy of the ‘perturbed’ golden spiral was compared 
to uniform density golden‐angle spiral. For the in‐vivo experiment, stroke volume 
and peak mean velocity were measured in 20 children using ‘perturbed’ and uniform 
density golden‐angle spiral sequences. These were compared to a reference standard 
gated Cartesian sequence.
Results: In‐silico, the perturbed spiral acquisition produced more accurate recon-
structions with less temporal blurring (NRMSE ranging from 0.03 to 0.05) than the 
uniform density acquisition (NRMSE ranging from 0.06 to 0.12). This translated in 
more accurate results in‐vivo with no significant bias in the peak mean velocity (bias: 
−0.1, limits: −4.4 to 4.1 cm/s; P = 0.98) or stroke volume (bias: −1.8, limits: −9.4 
to 5.8 ml, P = 0.19).
Conclusion: We showed that a ‘perturbed’ golden‐angle spiral approach is better 
suited to Compressive Sensing reconstruction due to more incoherent aliases. This 
enabled accurate real‐time measurement of flow and peak velocity in children.
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1  |   INTRODUCTION

Phase‐contrast magnetic resonance (PCMR) is a proven 
method of measuring blood flow in the clinical environ-
ment.1,2 Such acquisitions are usually cardiac‐gated, enabling 
collection of high spatio‐temporal resolution data. In chil-
dren, cardiac gating is often combined with signal averaging 
to allow free‐breathing acquisition with minimal respiratory 
artifact. However, this is a time‐consuming approach that 
significantly prolongs scan time. Accelerated breath‐hold 
PCMR is an alternative,3 but some children find even short 
breath‐holds difficult. Thus, a rapid free‐breathing approach 
is desirable.

One solution is real‐time imaging and several real‐time 
PCMR sequences have been described.4 Most rely on a com-
bination of parallel imaging (i.e., SENSE5 or GRAPPA6), 
efficient k‐space filling (i.e., spiral7 or EPI8) and temporal 
undersampling (i.e., UNFOLD9 or k‐t BLAST4) to reduce ac-
quisition time. Unfortunately, these methods fail at very high 
acceleration rates, limiting the achievable spatio‐temporal 
resolution.

It has been shown that compressive sensing (CS) can 
reconstruct high quality images from heavily undersampled 
k‐space data.10 However, a prerequisite of CS is that aliasing 
is incoherent. One way this can be achieved is by combin-
ing non‐Cartesian trajectories (i.e., radial11 or spiral12) with 
golden‐angle rotations. Spiral trajectories are of particular 
interest for PCMR due to short TEs and highly efficient fill-
ing of k‐space. Golden‐angle spiral imaging with CS recon-
struction has been shown to be sufficient for real‐time cine 
data.11,12 However, we have shown in a pilot study13 that CS 
reconstruction can cause temporal blurring of PCMR data 
that could result in underestimation of clinically important 
metrics. A possible solution may be modification of k‐space 
sampling to produce more incoherent aliases, which should 
improve data conditioning for the CS reconstruction.

The general aim of this study was to implement a per-
turbed spiral PCMR acquisition. The specific aims were to 
(1) find the optimum perturbed spiral trajectories for CS 
reconstruction of PCMR data using point spread functions 
(PSFs) and in silico simulations, and (2) validate the devel-
oped technique in vivo.

2  |   METHODS

2.1  |  Perturbed spiral design
All trajectories were designed using a modification of the 
method described by Pipe.14 The starting point for the new 
trajectory design was a uniform density spiral sequence with 
36 evenly spaced interleaves required to completely fill  
k‐space. To perform 1‐sided velocity encoding, each read-
out was acquired twice (velocity encoding and compensation 

acquisitions). The initial reference trajectory parameters were 
set to FOV = 450 × 450 mm, voxels = 1.76 × 1.76 × 6.0 mm, 
TR/TE = 8.54/1.93 ms, and velocity encoding = 200 cm/s. 
These uniform density readouts were continuously rotated by 
the golden angle (~222º), resulting in a golden‐angle spiral 
acquisition (GASuniform, Figure 1). To achieve the desired 
temporal resolution (< 30 ms), the GASuniform sequence was 
18‐times undersampled (2 interleaves per frame).

Spiral aliases are observed as concentric rings15,16 in their 
PSFs (Figure 2), and the position of these aliases depends on 
the radial undersampling of the spiral trajectory. Thus, it is 
possible to increase the incoherence of these aliases by mod-
ifying the radial undersampling. To achieve this, we devel-
oped a trajectory design algorithm that sinusoidally varied 
the radial acceleration (αr) as a function of normalized dis-
tance from k‐space center (r). This can be described formula-
ically as follows (and graphically in Supporting Information 
Figure S1):

where α0 is the maximum prescribed radial acceleration,  
β is the number of oscillations in �r ∈

[
0.5, �0−0.5

]
 between 

the center and edge of k‐space, and ϕ0 is an additional phase 
offset. The parameters c0 and c1 (c0, c1 [0, 1] ∩ c0 ≤ c1) divide 
k‐space into 3 sections: (1) a central section (r < c0) with 
2‐times oversampling (αr = 0.5) and no oscillations; (2) a 
transition section (r≥ c0 ∩ r< c1) with linearly increasing ra-
dial acceleration and oscillation amplitude; and (3) an outer 
section (r≥ c1) with the maximum acceleration and oscilla-
tion amplitude (�r = 0.5�0 for �=0 or �r =�0−0.5 for 𝛽 >0).  
In this study, ϕ0 was varied between 0º and 360º with 10º 
increments. This produced a set of 36 perturbed trajectories 
for any given set of α0, c0, c1, and β with indices (j) between 
0 and 35. The exact perturbed trajectory used for any given 
readout (with an index [i] between 0 and infinity) was chosen 
using the following series index translation:

As with GASuniform, consecutive readouts were rotated 
by the golden angle, resulting in a perturbed golden‐angle 
spiral (GASperturbed) sequence. It should be noted that even 
though perturbed trajectories were reused (every 36 read-
outs), they were always in different k‐space position due to 
the golden‐angle rotation. Varying the values of α0, c0, c1, 
and β allows different perturbations to be designed, and 2 ex-
amples of perturbed spirals trajectories are shown in Figure 1  
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F I G U R E  1   Trajectory visualization. Shown are the uniform golden‐angle spiral acquisition (GASuniform), perturbed golden‐angle spiral 
acquisition (GASperturbed), and an additional example presenting possible perturbations induced to the spiral trajectory. The kx‐ky positions of 
composite trajectories are presented for 3 consecutive imaging frames. Also plotted are variations in the radial distance (r) of individual samples 
with their coordinates (kx and ky)
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(see Supporting Information Figure S2 for accompanying  
kx and ky versus time plots).

One issue with perturbed spirals is that the number of 
readout samples required to reach the edge of k‐space may 
vary. Consequently, we restricted the number of readout 
samples to the number in the shortest readout for a given 
set of parameters (α0, c0, c1, and β). This was done to en-
sure a constant TR throughout the acquisition and resulted 
in some readouts terminating before reaching k‐space edge 
(Figure 1). The GASperturbed can also have different sam-
pling acceleration (SA = Ni/Nt, in which Ni represents the 
image pixels and Nt the total trajectory samples) when com-
pared with GASuniform. Therefore, the number of readouts 
combined into an imaging frame had to be adjusted for each 
set of parameters, to ensure comparable acquisition times 
and SA. This was incorporated into test scripts using the 
GASuniform trajectory as a reference point (Nuniform

t
= 5862, 

SAuniform =∼11.2). Due to the impact of multiple excitation 
times and inability to split readout samples, the maximum 

number of readouts was set to 3 and the minimum sampling 
acceleration to 93% of SAuniform.

2.2  |  Point spread function evaluation
The GASpetrubed should produce more incoherent aliases 
than GASuniform. However, the level of incoherency will 
depend on α0, c0, c1, and β, which must be optimized. The 
PSF is used commonly to ascertain the features of a given 
sampling pattern and optimize trajectory parameters. In 
this study, we used the amount of energy leakage to the 
PSF side lobes17 as an incoherence metric (× point‐by‐
point multiplication):

The calculations were done for all combinations of  
α0, c0, c1, and β given in Table 1. The trajectory (GASperturbed, 
Figure 1) with the lowest average energy leakage (Figure 3, 

(3)Energy Leakage= ||PSFx,y×
(
x2+y2

) 1

4 ||2.

F I G U R E  2   Comparison of point spread functions (PSFs). Presented are the PSFs of GASuniform, GASperturbed, and the example trajectory 
from Figure 1 for 3 consecutive imaging frames. Additionally, the magnitude intensity projection (MIP) through time (90 consecutive frames) is 
shown. Multiple of rings that do not change their spatial location can be observed in the PSFs of GASuniform. These rings are clearly visible in the 
MIP image. The broader spatial distribution of the aliasing rings can be observed on all of the PSFs for the other trajectories; however, the selected 
GASperturbed trajectory is better in dispersing these patterns temporally, which resulted in a more uniform MIP image. The PSFs were prepared for a 
FOV of 450 mm and normalized to the central point. All PSFs have the same logarithmic color scale
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indicating higher incoherence of artifacts) was selected for 
further tests.

2.3  |  Reconstruction
Compressive sensing solves a set of nonlinear equations 
(representing the imaging process) through minimization of 
a cost function. The cost function used in this study is

The first term enforces data consistency, where ρ are the 
image data, E is the encoding matrix (the multicoil nonuni-
form Fourier transform operator), and y are the acquired 
k‐space data. The additional terms enforce sparse results 
through L1 norm regularization. In this study, finite differ-
ence operators (or total variation) were applied in space and 
time (TV [spatial], TVt [temporal]) as the sparse transforms.

The optimization was performed using a nonlinear con-
jugate gradient algorithm. For fast reconstruction, the de-
scribed CS algorithm was implemented on an external 

graphics processing unit–equipped computer (Tesla K40c; 
NVIDIA, Santa Clara, CA) with online communication to 
the native reconstructor.18 Acquired data were reconstructed 
in blocks of 90 frames with coil‐sensitivity maps calculated 
from the time‐averaged (flow‐compensated) data from each 
block. These blocks were overlapped by 3 frames on each 
side to counter potential jump discontinuities. If there was no 
adjacent block (the start and end of the first and last block), 
the expansion was achieved by mirroring frames.

Gridding of non‐Cartesian samples onto a rectilinear 
grid19,20 requires information about the density of the sam-
ples. This is not provided by the described trajectory gen-
eration algorithm. Consequently, density compensation 
coefficients were calculated using the method described in 
Bydder,21 which was chosen because it required no fine‐ 
tuning. The method uses a linear optimization process to find 
density distributions for a set of arbitrary trajectory points. 
The sample’s density calculation was implemented as the 
first step of the graphics processing unit–based MRI recon-
struction process.

2.4  |  In silico model
The GASuniform and chosen GASperturbed sampling patterns 
were first evaluated in an in silico model, enabling compari-
son with ground‐truth data. The in silico model (Supporting 
Information Figure S3) consisted of a cross section of the 
body through the ascending aorta. Aortic velocity, disten-
sion, signal intensity, and in‐plane motion were modeled 
on data extracted from a high temporal resolution (~20 ms)  

(4)argmin
�

{||E�−y||2
2
+�1||TVt�||1+�2||TV�||1

}
.

T A B L E  1   Range of the tested trajectory design parameters

c0 0.15, 0.2, 0.3

c1 0.3, 0.35, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1

α0 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 8, 9, 10

β 0.2, 0.25, 0.33, 0.5, 0.66, 0.75, 1, 1.25, 1.5, 2, 3, 4, 5, 6, 
7, 8, 9, 10 , 12, 15

F I G U R E  3   Energy leakage results for all of the tested trajectory parameters (Table 1). The gray color indicates the parameters that yielded an 
incompatible trajectory—the maximum number of readouts or the minimum samping acceleration were exceeded. The minimum energy leakage of 
4.73−4 was found for c0 = 0.2 (the middle grid row), c1 = 0.9 (the second grid column from the right), α0 = 2.5, and β = 0.33 (the third element in 
the last line of the pointed grid tile)
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Cartesian‐gated PCMR data set acquired in a healthy vol-
unteer. Respiratory motion was modeled using a function 
consisting of expansion (inhalation), a brief pause, and 
contraction (exhalation). The respiratory rate was set to 10 
breaths per minute with the maximum body contraction to 
98% of its original size.

Simulated MR data were created by generating the image 
data at each of the readout time positions. The readout time 
was set to the GASuniform TR of 8.54 ms. The complex phase 
component was generated through interpolation of the flow 
curve. The produced models were scaled with synthetically 
generated coil sensitivity maps (12 coils as in the in vivo ex-
periment). This was then transformed into k‐space and grid-
ded onto the tested trajectory.

The in silico reconstructions were performed with mul-
tiple regularization levels (λ1 ϵ {0.25e−4, 0.5e−4, 0.75e−4, 
1e−4, 2.5e−4, 2.75e−4, 3e−4, 3.25e−4, 4e−4, 5e−4, 7.5e−4} and 
λ2 ϵ {0.25e−5, 0.5e−5, 0.75e−5, 1e−5, 5e−5, 7.5e−5, 10e−5, 
12.5e−5}) to ensure that the reconstruction was optimized 
for the specific sampling pattern. Reconstructed in silico 
data were compared against a reference standard generated 
using a fully sampled uniform density regular angle spiral 
trajectory and reconstructed with a SENSE algorithm.5,7,22 
The assessment was done comparing differences between 
individual pixel’s phase values extracted from the sim-
ulated aortic cross sections using normalized RMS error 
(NRMSE).

2.5  |  In vivo study
The GASuniform and chosen GASperturbed sampling patterns 
were also assessed in a patient population consisting of  
20 children referred for cardiac clinical MR (7 females and  
13 males; age range: 6‐16, median: 12.5 years). The only exclu-
sion criterion was irregular rhythm (i.e., multiple ectopic beats 
or atrial fibrillation). The National Research Ethics Committee 
approved the study (06/Q0508/124), and written consent was 
obtained from all patients or legal guardians of children.

All imaging was performed on a 1.5T MR scanner 
(Magnetom Avanto; Siemens Medical Solutions, Erlangen, 
Germany) using the standard 2 spine coils and 1 body matrix 
coil setup (giving a total of 12 coil elements) used in all chil-
dren at our institution. A vector electrocardiographic system 
was used for cardiac gating in the reference Cartesian‐gated 
PCMR acquisitions. The imaging plane for aortic flow as-
sessment was located in the ascending aorta just above the 
sino‐tubular junction. The reference standard flow acquisi-
tion was a conventional free‐breathing Cartesian retrospec-
tively gated PCMR sequence with the following parameters: 
FOV = 350 × 262 mm, voxels = 1.82 × 1.82 × 6.0 mm,  
TR/TE = 4.4/1.9 ms, flip angle = 30º, velocity encoding = 
200 cm/s, number of signal averages = 2, GRAPPA = 2, and 
temporal resolution = 18.5 ms.

Both real‐time GAS PCMR acquisitions were set to 
FOV = 450 × 450 mm, voxels = 1.76 × 1.76 × 6.0 mm, 
flip angle = 20º, and velocity encoding = 200 cm/s. The 
bandwidth per pixel was optimized separately to minimize 
the trajectory errors’ impact on image quality. This was 
done empirically based on a single in vivo case. These ad-
justments affected the length of a readout. The final TR/TE 
values were 6.7/1.9 ms for the GASperturbed and 7.5/1.9 ms 
for GASuniform acquisitions, resulting in a temporal resolution 
of approximately 26.6 ms (about 2.4 seconds for 90 frames) 
and approximately 29.9 ms (about 2.7 seconds for 90 frames), 
respectively. A relatively large FOV was chosen to ensure 
that even in older children there was no signal from outside 
the FOV.

The regularization parameters (λ1, λ2) were selected em-
pirically as a trade‐off between image quality and minimiza-
tion of spatial and temporal blurring.

2.6  |  Flow quantification
The aorta was segmented on the magnitude images using a 
semi‐automatic method based on the optical flow registra-
tion23 with manual operator correction using in‐house plugins 
for Osirix software (OsiriX Foundation, Switzerland).24 The 
resultant regions of interest (ROIs) were transferred to the 
phase images to produce flow and velocity curves. Maximum 
velocity was taken as the peak of the velocity curve. Stroke 
volume was calculated by integrating the resultant flow curve 
over a single r‐r interval. As multiple heartbeats are evaluated 
with real‐time PCMR, the stroke volume and peak velocity 
are averaged across all r‐r intervals.

2.7  |  Image quality
All quantitative analyses were carried out using in‐house 
plug‐ins for OsiriX software, version 9.0.24 True quanti-
fication of SNR and velocity‐to‐noise ratio (VNR) in im-
ages acquired with non‐Cartesian trajectories is nontrivial 
in the clinical environment due to the uneven distribution of 
noise.25,26 Therefore, in this study, estimated SNR and VNR 
were calculated as previously described.27 In summary, an 
ROI was drawn in stationary tissue, and estimated noise was 
calculated as the average SD of the pixel intensity (σs) or ve-
locity (σv) through time. Final estimates of SNR and VNR 
were made by dividing the mean signal intensity from an ROI 
drawn at peak systole by σs and σv, respectively.

Quantitative edge sharpness was calculated in peak sys-
tole by measuring the average maximum gradient of the nor-
malized pixel intensities across the aortic wall. The image 
data were resampled onto evenly spaced perpendicular lines 
crossing the vessel border (marked with the ROIs used to 
extract the velocity data). Lanczos resampling28,29 was used 
with a 0.5‐mm step between samples on the lines with a 
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distance of 20 mm. Furthermore, the smooth noise robust dif-
ferentiation30 was applied to extract the maximum gradient 
on the projections.

In real‐time data, the SNR, VNR, and edge sharpness 
measurements were performed in all peak systole frames, and 
the averaged values were used in comparisons.

Subjective image quality scoring for the GASuniform and 
GASperturbed sequences was done by 2 independent, experi-
enced observers (V.M. and D.K.) who were presented with 
the magnitude data for each patient in a blinded, randomized 
manner. The Cartesian data were not included, as they were 
obvious to the observer, which risked bias. The images were 
graded on a Likert scale (1 = very poor [major artifacts exist 
and the images are not clinically useful], 2 = poor [artifacts 
exist and clinical use is not advised], 3 = average [able to be 
used clinically], 4 = good [contains minor artifacts that do 
not affect clinical use], and 5 = excellent [no artifacts]).

2.8  |  Statistical analysis
All statistical analyses were performed using R software 
(R Foundation for Statistical Computing, Vienna, Austria) 
and a p‐value of less than .05 indicated a significant dif-
ference. All of the results are expressed as mean ± SD. 
Differences among the 3 imaging techniques were assessed 
using the 1‐way repeated‐measures analysis of variance. The 
imaging techniques were treated as the repeated measure fac-
tor. Significant results were further investigated with post 
hoc pairwise comparison using the Tukey method.

Qualitative image scores were compared using 1‐way 
analysis of variance, as previous work has shown that there is 
a lower chance of type II errors compared with nonparamet-
ric tests for Likert scale data.31 It is therefore more likely to 
detect differences among the techniques. The scores provided 
by the observers were treated as individual factor measures.

3  |   RESULTS

3.1  |  Trajectory optimization
Energy leakage results for the range of GASperturbed trajecto-
ries (Table 1) are presented in graphical form in Figure 3. The 
optimal trajectory was found for the following parameters: 
c0 =0.2, c1 =0.9, �0 =2.5, and �=0.33. This corresponds 
to a trajectory that is oversampled at the center with a low 
frequency oscillation in radial acceleration that slowly in-
creases in amplitude (Figure 1 and Supporting Information 
Figure S1). Consequently, each trajectory covers a different 
portion of k‐space and contributes unique information. These 
temporal sampling density distribution changes are visible in 
the PSFs as changes in distribution of the side lobes between 
frames (Supporting Information Figure S4 and Supporting 
Information Video S1). The PSFs of the GASuniform, the 

optimized GASperturbed trajectory, and 1 of the nonoptimized 
GASperturbed trajectories are shown in Figure 2 and Supporting 
Information Video S1. This visually demonstrates the greater 
incoherence provided by GASperturbed trajectories compared 
with GASuniform and the importance of optimizing the pertur-
bation to increase incoherence.

3.2  |  In silico model
Magnitude and phase data reconstructed with optimal regu-
larization parameters (the lowest NRMSE) for GASperturbed 
(NRMSE = 0.03, �1 =7.5e−5, �2 =7.5e−5) and GASuniform 
(NRMSE = 0.06, �1 =4.0e−4, �2 =5.0e−6) sequences are 
shown in Figure 4 along with the velocity curves extracted 
from these data sets. There is significant blurring of the 
GASuniform velocity curve compared with the ground truth, 
resulting in underestimation of the peak velocity. However, 
there is minimal blurring of the GASperturbed velocity curve 
with good agreement of peak velocity.

The effect of regularization parameters on NRMSE 
for GASperturbed and GASuniform is shown in Figure 5. For 
GASuniform, increasing temporal regularization (λ1) reduces 
NRMSE, whereas increasing spatial regularization (λ2) has a 
small detrimental effect. This pattern can also be appreciated 
in the extracted velocity curves at different levels of regular-
ization. At low levels of temporal regularization, curves ex-
hibit artifacts due to unresolved coherent aliasing (Figure 5). 
Increasing temporal regularization removes these artifacts, 
but results in temporal blurring. Changing spatial regulariza-
tion has minimal effect on the shape of the velocity curve 
for GASuniform. For GASperturbed, all NRMSE results are lower 
compared with GASuniform, with less variation as a function 
of regularization (Figure 5). The GASperturbed velocity curves 
with different regularization levels are very similar, with 
none exhibiting artifacts due to coherent aliasing. The highest 
NRMSEs were found with high levels of temporal regulariza-
tion, which caused temporal blurring. Conversely, the lowest 
NRMSEs were found with high levels of spatial regulariza-
tion and low levels of temporal regularization.

3.3  |  Feasibility
The PCMR data were successfully acquired in all 20 children 
during free breathing. Reconstruction time for each real‐time 
block of 90 frames from GASperturbed and GASuniform was about 
52 seconds, and all 270 frames were available for viewing on 
the scanner in about 160 seconds. The regularization levels 
were optimized separately for GASuniform and GASperturbed. 
The parameters were set to �1 =5.0e−5 and �2 =1.0e−5 for 
both reconstructions based on a visual assessment of results 
from a single subject. The mean heart rate of the study popu-
lation was 81 ± 12 (range: 60‐108) beats per minute. The 
reference standard Cartesian free‐breathing gated acquisition 
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required 84 heart beats to complete, resulting in 63 ± 10 sec-
onds (range: 47‐84 seconds) acquisition time.

3.4  |  In vivo flow quantification
Examples of velocity and flow curves generated by the 
Cartesian, GASuniform, and GASperturbed acquisitions from the 
same subject are shown in Figure 6. As in the in silico results, 
there is substantial blurring of the velocity curves derived 
from GASuniform data. This resulted in significantly lower 
(P < .001) peak velocity measured from the GASuniform data 
(68.7 ± 18.4 cm/s) compared with the Cartesian reference 

(72.4 ± 18.0 cm/s). This bias was also associated with rela-
tively broad limits of agreement (bias: −3.7, limits: −10.4 
to 3.0 cm/s; Figure 7). There was much less blurring of the 
velocity curve derived from GASperturbed data (72.3 ± 18.6 
cm/s) with no significant difference (P = .98) in the peak 
velocity compared with the Cartesian reference. In addition, 
there were narrower limits of agreement (bias: −0.1, limits: 
−4.4 to 4.1 cm/s; Figure 7).

Aortic stroke volume (Figure 7) results showed no sta-
tistical difference between Cartesian (73.2 ± 23.7 mL) and 
both GASperturbed (71.4 ± 23.4 mL, P = .19) and GASuniform 
(74.5 ± 26.0 mL, P = .40) acquisitions. The GASperturbed 

F I G U R E  4   In silico results. The imaging results of the in silico reconstruction present a frame at a peak velocity and a temporal cross section 
through the simulated ascending and descending aorta, as marked. The bottom plots compare the extracted mean flow aortic velocities for the 
regularization parameters giving the lowest normalized RMS error (NRMSE)
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F I G U R E  5   In silico regularization‐level optimization. The NRMSE results for GASperturbed (top left) and GASuniform (top right) are 
presented. The effects of regularization are shown with plots of 4 flow curves: the least accurate, the flow curve produced with the combination of 
regularization parameters that resulted in the worst NRMSE; the lowest spatial regularization (�

2
=0.25e

−5), the best result while varying only the 
temporal regularization (λ1); the lowest temporal regularization (�

1
=2.5e

−5), the best result while varying only the spatial regularization (λ2); and 
the most accurate, the combination of regularization parameters that produced the best NRMSE result. These were plotted against the flow curve 
extracted from the fully sampled spiral trajectory
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acquisition produced a small insignificant underestimation of 
−1.8 mL (limits of agreement: −9.4 to 5.8 mL), whereas the 
GASuniform acquisition produced a small, insignificant over-
estimation of 1.3 mL (limits of agreement: −8.8 to 11.4 mL).

3.5  |  In vivo image quality
Representative imaging results are shown in Figure 8 and 
Supporting Information Videos S2‐S4. No significant differ-
ence (P = .28) was found in the subjective image scoring 

between GASperturbed (3.5 ± 0.6) and GASuniform (3.3 ± 0.7) 
real‐time imaging.

There was no significant difference (P = .09) in SNR 
between GASperturbed (52.7 ± 25.8) and GASuniform (36.6 ± 
17.2) trajectories. However, both were substantially lower  
(P < 0.001) than Cartesian SNR (110.3 ± 38.6).

The VNR results showed no significant difference (P = 0.99)  
between Cartesian (16.1 ± 7.6) and GASperturbed (16.3 ± 5.8) 
images, with both having significantly (P < .02) higher VNR 
than GASuniform (12.1 ± 4.1) trajectory.

F I G U R E  6   Examples of flow and velocity curves from a single in vivo study subject. The mean velocity curves are shown in the left column 
(A,C,E) and the volume curves in the right column (B,D,F). The GASuniform results are shown in the top row (A,B) against the GASperturbed results in 
the middle row (C,D). For easier visual presentation, the individual r‐r curves were interpolated into an average r‐r curve. As electrocardiographic 
trigger points were not available, the r‐r interval selection was done manually. The interpolated average curves were plotted against the reference 
curve from the Cartesian‐gated acquisition in the bottom row (E,F)
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F I G U R E  7   Stroke volume and peak mean velocity Bland‐Altman plots

F I G U R E  8   Example of the in vivo 
imaging results
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The average edge sharpness measure trended (P = 0.14)  
toward being higher in the Cartesian acquisition (0.136 ±  
0.033 mm−1) compared with GASperturbed (0.119 ± 0.037 mm−1) 
images. However, the Cartesian images were significantly  
(P = .003) sharper than GASuniform (0.105 ± 0.034 mm−1)  
images. There was no statistically significant difference between 
the 2 GAS real‐time acquisitions (P = .27).

4  |   DISCUSSION

The main findings of the study were as follows: (1) CS re-
construction applied directly to GASuniform PCMR data re-
sults in clinically significant blurring of velocity data; (2) the 
proposed GASperturbed trajectory produces better conditioned 
data for CS reconstruction, as indicated with lower PSF en-
ergy leakage; and (3) this resulted in more accurate measure-
ment of peak aortic velocity in silico and in vivo.

The benefit of combining CS with parallel imaging is that 
it allows much higher acceleration factors compared with par-
allel imaging alone (i.e., SENSE5) or temporal encoding (i.e., 
UNFOLD9 or k‐t BLAST4). However, the performance of CS 
is dependent on how well the algorithm’s requirements are met, 
with the most difficult being incoherent aliasing. This is be-
cause most MR systems cannot produce the sharp, nonsmooth 
changes in gradient moments needed for true random sampling. 
Several studies have been undertaken to identify MR data sam-
pling patterns that are conducive to CS.17,32-38 It should be noted 
that gradient waveform design optimization for more complex 
trajectories has been done. However, these can be time‐con-
suming algorithms with runtimes measured in minutes.39

A commonly taken approach is to combine non‐Cartesian 
sampling with golden‐angle rotations. Examples include 
both radial11 and spiral12 golden‐angle acquisitions that use 
temporal total variation L1 regularization to remove imaging 
artifacts without introducing clinically important temporal 
blurring. However, real‐time PCMR is a more challenging 
problem, as it requires higher acceleration factors (18 times 
in this study) due to the need for velocity‐encoded and com-
pensated readouts. In this study, we have shown that phase 
data are more susceptible to temporal regularization and that 
application of CS reconstruction to GASuniform data resulted 
in significant blurring of velocity curves.

One possible solution is to perturb spiral trajectories to 
generate more incoherent artifacts, as suggested by Lustig 
et al.40,41 However, to our knowledge, this approach has not 
been applied in clinical studies. This may be because in most 
applications adequate data quality can be obtained using 
more conventional methods. This is not the case for real‐time 
PCMR; therefore, we designed a family of perturbed spiral 
trajectories that could be implemented on a standard clinical 
scanner. Using PSF energy leakage, we showed that spirals 
that were oversampled at the center with a low frequency 

oscillation in radial acceleration that slowly increased in am-
plitude had the greatest incoherence. When this GASperturbed 
sampling pattern was tested in silico, it was demonstrated to 
be better conditioned for CS reconstruction than GASuniform. 
In particular, a high level of temporal regularization was 
required to remove coherent aliasing artifacts in GASuniform 
data, resulting in significant temporal blurring. On the other 
hand, GASperturbed data did not exhibit coherent aliasing ar-
tefacts, even at low levels of regularization. In addition, the 
greater spatial incoherence of the GASperturbed aliases enabled 
spatial regularization to be used to further improve the image 
quality.

In the clinical study, both the GASperturbed and GASuniform 
acquisitions produced good‐quality magnitude images with 
little residual artifacts. This is in keeping with previous stud-
ies that combined spiral imaging with CS reconstruction12 
and should be expected, as regularization was optimized for 
image quality. However, velocity and flow curves extracted 
from GASuniform data were blurred in time compared with the 
reference standard Cartesian‐gated data. This did not affect 
the quantification of stroke volume, as temporal blurring has a 
minimal effect on the integral of the flow curve. Nevertheless, 
it did result in significant underestimation of the peak mean 
velocities, which limits the clinical utility of GASuniform real‐
time PCMR. In contrast, the GASperturbed acquisition produced 
significantly less blurred flow and velocity curves. This re-
sulted in good agreement with the Cartesian reference for both 
stroke volume and peak velocity quantifications. We believe 
that this demonstrates that the greater incoherence provided 
by perturbed spiral trajectories allows more accurate recon-
struction of real‐time PCMR data. This in turn widens the 
clinical utility of this technique in children with heart disease.

One well‐recognized problem with spiral imaging is re-
duction in image quality due to trajectory errors. This can be 
mitigated by keeping readout lengths short and optimizing 
sampling bandwidth per pixel, as done in this study. There 
are also spiral deblurring algorithms available, although they 
were not used in this study as they would increase reconstruc-
tion time. A concern with perturbed spirals is that they might 
result in even greater trajectory errors. However, we saw no 
difference in qualitative image scores or edge sharpness be-
tween GASperturbed and GASuniform data. This suggests that 
trajectory errors were not seriously exacerbated by perturb-
ing the spiral trajectory. Nevertheless, edge sharpness was 
slightly lower in the spiral acquisitions compared with the 
Cartesian data. This might be due to trajectory errors, the ef-
fect of spatial regularization, and the slightly lower acquired 
spatial resolution of the spiral acquisitions.

Another problem with spiral real‐time approach is the 
lower SNR compared with the reference standard Cartesian 
acquisition. This is to be expected due to heavy undersam-
pling of the real‐time data and use of 2 signal averages for 
the Cartesian data. However, this does not appear to affect 
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subjective image quality. Interestingly, the VNR was lower 
in the GASuniform data compared with both the Cartesian and 
GASperturbed data. This can be attributed to the lower peak ve-
locity in the GASuniform data due to temporal blurring, rather 
than differences in the velocity SD.

A disadvantage of CS reconstructions is their complexity, 
translating into longer reconstruction times. This can become 
a bottleneck in the scanning protocol and consequently lim-
its the clinical uptake. In this work, CS reconstruction was 
implemented using our in‐house online graphics processing 
unit–based method.18 This enabled clinically acceptable re-
construction times of 2 minutes 39 seconds for 270 images—
the equivalent of about 7.2 seconds of scanning time. Further 
improvements could be achieved with adoption of faster re-
construction algorithms (i.e., ADMM42).

The described trajectory generation does not provide a 
simple sample density function. Furthermore, it is possible 
for readout paths to cross, which in some density calculations 
can lead to abnormal results (e.g., infinity, values smaller or 
equal to zero). To overcome this problem, we used the solu-
tion described by Bydder et al.21 This algorithm takes a set 
of trajectory samples and returns optimal density compensa-
tion weights both flexibly and rapidly. However, this could be 
substituted with other more preferable sample density calcu-
lation algorithms if desired.

We recognize that the adopted golden‐angle rotation be-
tween readouts dictates a fixed ordering of trajectory spiral 
arms. This, combined with a finite number of trajectory per-
turbations, restricts the range of possible trajectory variations. 
Relaxation of this condition could result in more incoherent 
sampling. However, this would substantially increase the 
computational cost of the optimal perturbation search process.

An additional difficulty lies in the selection of optimal 
regularization parameters. These can vary between studies 
and subjects. In this work, we used a composite L1 regular-
ization (2D spatial and temporal total variation). A range of 
regularization parameters were tested for the in silico tests, 
and the parameters giving the lowest NRMSE were selected. 
In the in vivo study, no reference data were available, so we 
used an image quality–based optimization process in a single 
case. The parameters were then fixed for the whole study, but 
ideally this optimization process would be repeated for each 
patient. Unfortunately, this would be very time‐consuming 
and not be feasible in the clinical environment. A solution 
might be the data‐driven auto‐tuning presented in the sparsity 
adaptive composite recovery algorithm.43

5  |   CONCLUSIONS

We have validated a novel perturbed spiral PCMR acquisition 
for CS reconstruction. The work presents a significant im-
provement in spatio‐temporal resolution of real‐time PCMR 

data for cardiac MRI. The technique proved to be suitable for 
clinical use with the benefits of short acquisition times and no 
breathing artifacts. We believe the new technique has the po-
tential to be a valuable tool in cardiovascular assessments, par-
ticularly in those patients for whom breath‐holding is difficult.
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SUPPORTING INFORMATION

Additional supporting information may be found online in 
the Supporting Information section.

FIGURE S1 Visual representation of Equy 1. The plots were 
done for 3 sets of parameters, including the optimized 
GASperturbed. The plots show a ramped increase in radial  
acceleration (from c0 to c1). From the k‐space center to c0, the 
acceleration is constant (αr = 0.5 ‐ oversampling). From c0 to 
c1, the maximum acceleration increases linearly from 0.5 to 
α0 = 0.5, where it stabilizes. Also, starting from c0, the sinu-
soidal oscillations are imposed onto the radial acceleration. 
The value of ϕ0 does not vary with progression of a trajectory 
through k‐space. It is a constant based on a starting angle of a 
trajectory readout from the k‐space center. The left plots 
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show radial acceleration (αr) variations for 3 readouts. These 
come out of the k‐space center in 3 evenly distributed direc-
tions: �
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FIGURE S2 Trajectory visualization. Shown are the 
GASuniform, GASperturbed, and an additional example present-
ing possible perturbations induced to the spiral trajectory. 
The kx‐ky positions of composite trajectories are presented for 
3 consecutive imaging frames. Additionally, variations in the 
coordinates (kx and ky) are plotted against time
FIGURE S3 In silico phantom. The model consisted of a big 
ellipse representing a chest cross section. Additional 3 inter-
nal ellipses were used to portray ascending aorta, descending 
aorta, and pulmonary arch. The outer ellipse was surrounded 
with a high‐intensity border representing subcutaneous fat. 
Internal cavities were inserted to represent lungs. The upper 
part of the figure presents imaging results of the SENSE‐
reconstructed in silico data generated on a uniform density 
spiral trajectory. The bottom plots show temporal changes in 
phase (flow data), size of the body, as well as size and posi-
tion of the aorta
FIGURE S4 Comparison of PSFs. A, The PSFs of the ini-
tial trajectory (GASuniform). B, The PSFs of the final selected 

GASperturbed trajectory. C, The PSFs for an example of per-
turbed trajectory. Multiple of rings that do not change their 
spatial location can be observed in the PSF of GASuniform (A). 
A broader spatial distribution of the aliasing rings can be ob-
served on the PSFs of the perturbed trajectories
VIDEO S1 Normalized PSFs of GASuniform and GASperturbed 
plotted using logarithmic scale
VIDEO S2 Magnitude and phase of the Cartesian‐gated 
phase‐contrast magnetic resonance (PCMR) reconstruction 
for the example presented in Figure 7
VIDEO S3 Magnitude and phase of the GASuniform real‐time 
PCMR reconstruction for the example presented in Figure 7
VIDEO S4 Magnitude and phase of the GASperturbed real‐time 
PCMR reconstruction for the example presented in Figure 7
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