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Pulmonary inflammatory responses lie under circadian control;
however, the importance of circadian mechanisms in the underlying
fibrotic phenotype is not understood. Here, we identify a striking
change to these mechanisms resulting in a gain of amplitude and
lack of synchrony within pulmonary fibrotic tissue. These changes
result from an infiltration of mesenchymal cells, an important cell
type in the pathogenesis of pulmonary fibrosis. Mutation of the
core clock protein REVERBα in these cells exacerbated the develop-
ment of bleomycin-induced fibrosis, whereas mutation of REVERBα
in club or myeloid cells had no effect on the bleomycin phenotype.
Knockdown of REVERBα revealed regulation of the little-understood
transcription factor TBPL1. Both REVERBα and TBPL1 altered integrinβ1
focal-adhesion formation, resulting in increased myofibroblast
activation. The translational importance of our findings was estab-
lished through analysis of 2 human cohorts. In the UK Biobank,
circadian strain markers (sleep length, chronotype, and shift work)
are associated with pulmonary fibrosis, making them risk factors. In
a separate cohort, REVERBα expression was increased in human
idiopathic pulmonary fibrosis (IPF) lung tissue. Pharmacological tar-
geting of REVERBα inhibited myofibroblast activation in IPF fibro-
blasts and collagen secretion in organotypic cultures from IPF patients,
thus suggesting that targeting of REVERBα could be a viable
therapeutic approach.
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The circadian clock in the lung drives important physiological
responses, including temporal gating of a number of inflam-

matory (1–3) and antioxidant responses (4). Key cell types that are
known to be important are the nonciliated, bronchial epithelial
cells (club cells) (2) and alveolar macrophages (3, 5). In contrast,
alveolar structures typically exhibit weak circadian oscillations (6).
Genetic disruption of the Clock gene (4) impairs circadian pul-
monary oscillations and leads to exaggerated pulmonary responses
to bleomycin challenge, a model of pulmonary fibrosis (7).
Pulmonary fibrosis, including idiopathic pulmonary fibrosis

(IPF), is frequently fatal with existing treatments slowing pro-
gression rather than curing the disease (8). The causes and non-
genetic risk factors for IPF are poorly understood, with several
studies implicating age, sex, smoking, and more recently air pol-
lution (9). IPF is characterized histologically by the development
of fibroblastic foci in the lung parenchyma (10). Cells in these foci
are typically activated myofibroblasts (11) derived from multiple
sources (12, 13), including pulmonary fibroblasts and pericytes

(11, 14). Myofibroblasts secrete collagen, resulting in abnormal
lung function and are characterized by increased focal-adhesion
formation and acquisition of a contractile cytoskeleton with alpha
smooth muscle actin (αSMA)-positive stress fibers (15). In addi-
tion to fibroblasts, pulmonary fibrosis involves other cell types,
e.g., club cells (9) and macrophages (16), regulating the accumu-
lation of fibroblasts and therefore the deposition of the extracel-
lular matrix. As these cell types maintain autonomous circadian
oscillations (2, 5), examination of circadian factors and mecha-
nisms in the pulmonary fibrotic response is warranted.

Significance

The circadian clock plays an essential role in energy metabolism
and inflammation. In contrast, the importance of the clock in the
pathogenesis of fibrosis remains poorly explored. This study de-
scribes a striking alteration in circadian biology during pulmonary
fibrosis where the relatively arrhythmic alveolar structures gain
circadian but asynchronous rhythmicity due to infiltration by fi-
broblasts. Disruption of the clock in these cells, which are notwidely
implicated in circadian pathophysiology, results in a profibrotic
phenotype. Translation of these findings in humans revealed pre-
viously unrecognized important circadian risk factors for pulmonary
fibrosis (sleep length, chronotype, and shift work). In addition, tar-
geting REVERBα repressed collagen secretion from human fibrotic
lung tissue, making this protein a promising therapeutic target.
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The circadian clock operates as a cell-autonomous timing
mechanism (17), allowing temporal segregation of both physio-
logical and pathophysiological programs (18, 19). At the cellular
level, the circadian clock consists of a transcription–translation
feedback loop (20), in which the positive elements CLOCK and
BMAL1 drive expression of 2 negative-feedback arms controlled
by PERIOD/CRYPTOCHROME (PER/CRY) and the 2 paralogs,
REVERBα and REVERBβ. In turn, these negative-feedback arms
repress BMAL1/CLOCK heterodimer transactivation function
(PER/CRY) or BMAL1 expression (REVERBα/β). The resulting
24-h oscillations in protein expression can be disrupted through
environmental disruption (e.g., shift-work schedules) or genetic
deletion of core clock components, producing inflammatory and
metabolic phenotypes (5, 21, 22).
Here, we show that fibrotic mouse lungs exhibited amplified,

but asynchronous, circadian rhythms with a dominant role for
myofibroblasts. Disruption of the core clock protein REVERBα
in fibroblastic cells resulted in exaggerated pulmonary fibrotic
response to bleomycin in mice. In culture, REVERBα knock-
down resulted in increased myofibroblast differentiation via the
transcription factor TBPL1, through alteration of formation of
integrinβ1 focal-adhesion expression. Furthermore, exposure to
circadian stresses such as late chronotype, shift work, and altered
sleep duration are all associated with IPF, and clock-gene ex-
pression is altered in IPF versus normal human lung. Targeting
of REVERBα by a synthetic ligand repressed myofibroblast
differentiation and collagen secretion in cultured fibroblasts and
lung slices obtained from patients with lung fibrosis.

Results
Myofibroblasts Drive High-Amplitude, but Asynchronous, Circadian
Oscillations in Fibrotic Lung. Precision-cut lung slices (PCLS)
from transgenic mPER2::LUC mice (2) were used to track cir-
cadian oscillations in real time after bleomycin induction of fi-
brosis (Fig. 1 A and B, SI Appendix, Fig. S1 A and B, and Movie
S1). Fibrotic areas were identified by loss of lung architecture in
the bright-field image and confirmed with increased collagen
deposition when the slices were fixed for histology (SI Appendix,
Fig. S1 A and B). The amplitude of PER2 oscillations in the fi-
brotic areas was increased compared to nonfibrotic parenchyma
lung (Fig. 1 A–D). This fibrotic parenchyma also had a greater
degree of phase asynchrony compared to regions in the non-
fibrotic parenchyma (Fig. 1C) but retained the same overall 24-h
period (SI Appendix, Fig. S1C). One possible explanation may
relate to changes in cell density in the fibrotic parenchyma. To
explore this, PCLS were stained with Hoechst. There was a greater
intensity of staining in fibrotic areas compared to nonfibrotic
areas, but this did not correlate with bioluminescence (SI Ap-
pendix, Fig. S1 D–F). Another possible explanation is infiltration
by a more rhythmic cell type; therefore, we deleted the essential
core clock component BMAL1 (23) in both fibroblasts and club
cells to ablate cell-autonomous rhythms. BMAL1 deletion in club
cells (CCSP-Bmal1−/−), the main oscillatory cells in the lung (6),
had no effect on the increased amplitude seen in fibrotic regions
(Fig. 1 D and G, SI Appendix, Fig. S2A, and Movie S2). In con-
trast, BMAL1 deletion in pericyte/fibroblast lineage (Pdgfrb-
Bmal1−/−) restored the amplitude of lung oscillations in fibrotic

Fig. 1. Asynchronous circadian oscillations occur in pulmonary fibrosis. (A) Bioluminescent image along with heat maps of amplitude and phase taken from
the same PCLS obtained from a mPER2::luc mouse 14 d after in vivo bleomycin treatment (3 U/kg). Data are representative of 3 separate experiments. (Scale
bars, 500 μm.) (B) Bioluminescent intensity plotted against time for both parenchyma and bronchioles in fibrotic and nonfibrotic regions (data are repre-
sentative of 3 separate experiments). (C) Time to first peak for bronchioles and parenchyma in fibrotic and nonfibrotic areas. *P < 0.05 (ANOVA with post hoc
Dunnett test using 18, 19, and 48 representative sections for healthy airways, fibrotic airways, and fibrotic parenchyma, respectively, in the lung slice). Data are
representative of 3 separate experiments (mean ± SEM). (D) Bioluminescent intensity plotted against time (24-h moving average baseline subtracted) for the
representative slices shown in A and Ccsp-Bmal1−/− mice shown in SI Appendix, Fig. S2A. (E) Representative bioluminescent image along with bioluminescent
intensity plotted against time for a PCLS 14 d after in vivo bleomycin treatment in the Pdgfrb-Bmal1−/− mPER2::luc mouse (3 U/kg). Data are representative of 3
separate experiments. (Scale bar, 500 μm.) (F) Bioluminescent intensity plotted against time (24-h moving average baseline subtracted) for the Pdgfrb-Bmal1−/−

representative slice shown in E. (G) Difference in bioluminescence between fibrotic and nonfibrotic parenchyma over 3 d in PCLS from WT, Ccsp-Bmal1−/−, and
Pdgfrb-Bmal1−/− mice after in vivo bleomycin treatment (n = 3 animals). ns, not significant. *P < 0.05 (1-way ANOVA Dunnett post hoc test; mean ± SEM).
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lung to levels measured in unaffected lung tissue (Fig. 1 E–G, SI
Appendix, Fig. S2B, and Movie S3).
To test if fibrotic factors are capable of modifying circadian

signals, lung slices and fibroblasts were treated with TGFβ. TGFβ
induced changes in circadian phase (SI Appendix, Fig. S3A), with
the magnitude of effect being dependent on both concentration
and circadian phase (SI Appendix, Fig. S3 B and C). Lung physi-
ology is also changed in fibrosis, resulting in an altered mecha-
noenvironment (24). Since tensile strength has recently been
shown to play a key role in the regulation of tissue-based circadian
rhythms (25), we investigated whether lung inflation, a cause of
increased mechanical stretch, influenced circadian oscillations.
Here, PER2 oscillation amplitude was increased in inflated lungs
compared to noninflated controls, demonstrating that changes to
the local mechanoenvironment may alter circadian oscillations (SI
Appendix, Fig. S3D).

REVERBα in Fibroblasts Suppresses the Development of Pulmonary
Fibrosis. REVERBα is an orphan nuclear receptor and operates
both as an essential core clock factor and as a major clock output
pathway. Its function can be disrupted by deletion of its DNA-
binding domain, and small molecular ligands are available to
modulate activity. Therefore, we deleted the REVERBα DNA-
binding domain (Fig. 2A), under Pdgfrb control (26). This resulted
in an exaggerated fibrotic response (Fig. 2 B and C) and increased
accumulation of αSMA-positive myofibroblasts in response to
bleomycin (Fig. 2 D and E). Wild-type (WT) and transgenic mice
did not differ in lung parameters following saline inoculation (Fig.
2 B and E and SI Appendix, Fig. S4 A and B). Importantly,
REVERBα genetic disruption in myelomonocytic cells or bron-
chial epithelial cells did not affect the development of the fibrotic
phenotype (SI Appendix, Fig. S4 C and D).
Characterization of primary fibroblasts explanted from Pdgfrb-

Reverbα−/− lungs ex vivo revealed increased expression of αSMA
and increased secretion of collagen-1, markers of myofibroblast
activation (Fig. 2 F–H). This indicates a fibroblast-intrinsic change
driven by disruption of REVERBα, with culture on hard plastic
providing the environmental trigger for initiation of the myofi-
broblast differentiation program (Fig. 2I).

Knockdown of REVERBα in Vitro Enhances Myofibroblast Activation
through the Transcription Factor TBPL1. Next, we set out to identify
REVERBα gene targets using small interfering RNA (siRNA)
knockdown of REVERBα in both mouse and human lung fi-
broblast cell lines (SI Appendix, Fig. S5A). REVERBα knock-
down resulted in myofibroblast activation in lung fibroblast cells
(Fig. 3 A and B and SI Appendix, Fig. S5 B–D). Although many
genes were regulated by REVERBα knockdown, only 3 (in-
cluding Reverbα) were consistently repressed at both time points
(12 and 24 h) and in both cell lines (Fig. 3C and SI Appendix, Fig.
S5 E and F). One was Plod2, a proline hydroxylase required for
collagen processing. The second was Tbpl1, a relatively unchar-
acterized transcription factor. Knockdown of either PLOD2 or
TBPL1 did not affect REVERBα expression (SI Appendix, Fig.
S6A). In addition, knockdown of PLOD2 repressed αSMA ex-
pression, therefore making it an unlikely downstream mediator
of the REVERBα effect (SI Appendix, Fig. S6B). Therefore, we
turned to TBPL1 and verified loss of protein expression with
REVERBα knockdown (Fig. 3D). Knockdown of TBPL1 caused
a similar induction of αSMA expression to that seen with
REVERBα knockdown (Fig. 3E), suggesting that REVERBα
and TBPL1 may lie on the same pathway.

REVERBα and TBPL1 Regulate Integrinβ1 Expression. To decipher
how REVERBα and/or TBPL1 suppress myofibroblast activa-
tion in fibrotic lungs and in the stiff cell culture environment, we
focused on focal adhesions, crucial mechanotransduction ele-
ments that control myofibroblast activation (27). Knockdown of

either REVERBα or TBPL1 resulted in increases of both size and
number of vinculin/tensin1-positive focal-adhesion complexes (Fig.
4A and SI Appendix, Fig. S7 A–C). This increase in size suggests
progression to the supermature focal adhesions involved in myofi-
broblast differentiation (27). In contrast, overexpression of REVERBα
or TBPL1 caused the opposite effect (Fig. 4B and SI Appendix, Fig. S7
D and E). Integrinβ1, the common subunit of all collagen1-binding
integrins, has previously been linked to myofibroblast activation in the
liver (28), lung (29), and scleroderma (30). Knockdown of either
REVERBα or TBPL1 resulted in an increase in both size and number
of integrinβ1-positive focal-adhesion complexes (Fig. 4A and SI Ap-
pendix, Fig. S7A). Furthermore, knockdown of integrinβ1 prevented
the induction of αSMA seen in fibroblasts cultures subjected to
REVERBα knockdown (Fig. 4 C and D), highlighting the require-
ment for integrinβ1 for REVERBα-mediated myofibroblast activation
(Fig. 4E).

Circadian Factors Are Associated with Pulmonary Fibrosis in Humans.
Several human factors have been associated with circadian or
sleep-deprivation strain, including evening chronotype, shift
work, and sleep duration. We therefore investigated whether
these factors were associated with pulmonary fibrosis in the UK
Biobank (n = 500,074) (31). Following adjustment for known risk
factors for pulmonary fibrosis (body mass index, smoking, sex,
and age), short or long sleep duration (<7 h or >7 h) were as-
sociated with pulmonary fibrosis (Fig. 5A and SI Appendix, Ta-
bles S1 and S2), with the size of the odds ratio (OR) being
greater than the established risk factors of age, sex, or smoking in
the multivariable model. Shift work (OR: 1.353; 95% confidence
interval [CI]: 1.069 to 1.710) and evening chronotype (OR:
1.040; 95% CI: 1.001 to 1.080) were also associated with pul-
monary fibrosis (SI Appendix, Tables S3–S6) by a smaller degree;
however, this is comparable to other diseases where these vari-
ables are risk factors (32–34).

Disordered Clock-Gene Expression Occurs in Idiopathic Pulmonary
Fibrosis. To look for evidence of circadian-clock disruption in
IPF, we analyzed lung gene expression in a previously published
microarray from the lung genomics research consortium (35).
Comparison with normal lung revealed significant differences
in PER1/2, CRY 2, and REVERBα/β (Fig. 5B), all encoding
components of the negative-feedback arm of the core circadian
clock. In addition, TBPL1 was up-regulated in pulmonary fibrosis,
correlating with REVERBα expression (SI Appendix, Fig. S8A).

A REVERB Ligand Inhibits Myofibroblast Differentiation and Represses
Collagen Secretion in Tissue from Pulmonary Fibrotic Patients. Finally,
we tested whether a REVERBα ligand could repress pulmonary
fibrosis. The well-characterized REVERBα agonist GSK4112 (36)
repressed TGFβ-induced expression of αSMA (ACTA2) and
collagen-1 (COL1A1) in primary human lung fibroblasts from
patients with pulmonary fibrosis (Fig. 5C). Similarly, TGFβ in-
duction of αSMA and collagen 1 transcription was prevented by
GSK4112 treatment in precision-cut human lung, organotypic
slice cultures from healthy control subjects (Fig. 5D). Finally, we
studied the effects of this ligand in PCLS from IPF patients along
with an Alk5 inhibitor, known to inhibit Col1a1 secretion (37).
GSK4112 repressed Col1a1 secretion (Fig. 5E) in a similar man-
ner to the Alk5 inhibitor.

Discussion
Pulmonary fibrosis is an intractable and fatal disease. We have
previously identified the lung as a highly circadian organ and that
responses to environmental insults are regulated and shaped by
the circadian clock. Therefore, we analyzed mouse lung fibrosis,
finding newly-emergent, and strong circadian oscillations driven
by fibroblasts. The prevalent profibrotic growth factor TGFβ was
capable of transmitting timing information to recipient cells, and
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Fig. 2. REVERBα alters susceptibility to pulmonary fibrosis through its effect on myofibroblast differentiation. (A) Schematic showing generation of Pdgfrb-
Reverbα−/− mice combined with qPCR analysis of Reverbα expression in lung fibroblasts (n = 3 animals). **P < 0.01 (Student t test; mean ± SEM). (B) Hydroxy-
proline measurement in lungs from Pdgfrb-Reverbα−/−mice and littermate controls 28 d following challenge with intratracheal bleomycin (2 U/kg) or saline (n = 4
to 5 saline and 8 bleomycin per genotype). *P < 0.05; **P < 0.01 (2-way ANOVA Holm–Sidak post hoc test; mean ± SEM). (C) In a separate experiment, histology
(Picrosirius red) of lungs was examined 28 d following challenge with intratracheal bleomycin (representative image from 4 animals treated with bleomycin per
genotype). (Scale bars, 200 μm.) (D) Immunohistochemical staining of myofibroblasts (anti-αSMA, 3,3′-diaminobenzidine [DAB]) from Pdgfrb-Reverbα−/− mice and
littermate controls 28 d following intratracheal bleomycin challenge (representative image from 4 animals treated with bleomycin per genotype). (Scale bars,
200 μm.) (E) Histological scoring (grade 0 to 4) for the presence of αSMA staining 28 d following intratracheal bleomycin challenge (n = 3 saline and 4 to 5
bleomycin per genotype). *P < 0.05 (2-way ANOVA Holm–Sidak post hoc test; mean ± SEM). (F and G) Representative immunofluorescence images of primary lung
fibroblast cultures from Pdgfrb-Reverbα−/− mice and littermate controls showing intracellular αSMA (red) (n = 3 animals per genotype) (F) combined with a
representative immunoblot and quantification of intracellular αSMA from primary lung fibroblast cultures (n = 4 animals per genotype) (G). *P < 0.05 (Student
t test; mean ± SEM). DAPI, 4′,6-diamidino-2-phenylindole. (Scale bars in F, 10 μm.) (H) Representative collagen-1 ECM (extracellular matrix) images and quanti-
fication following culture of Pdgfrb-Reverbα−/− and Reverbαfl/fl primary lung fibroblasts (n = 3 animals per genotype). *P < 0.05 (Student t test; mean ± SEM). (Scale
bars, 50 μm.) (I) Schematic illustrating the action of REVERBα in inhibiting fibroblast/myofibroblast differentiation. FAs, focal adhesions.
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disruption to the core circadian clock in fibroblasts increased
fibrotic response to bleomycin instillation. In vitro analysis
identified a circuit linking the core clock through REVERBα, to
TBPL1, and the focal adhesions important for myofibroblast

activation. In human IPF lung tissue, pharmacological targeting
of the clock impacted a surrogate measure of fibrotic progres-
sion, and we found an association between sleep duration, which
is a product of the circadian clock, and risk of pulmonary fibrosis.

Fig. 3. REVERBα alters myofibroblast differentiation via TBPL1. (A) Immunofluorescent staining and quantification for the myofibroblast marker αSMA after
control (nontargeting) or Reverbα siRNA knockdown in mLF-hT cells (n = 3 separate transfections). *P < 0.05 (Student t test; mean ± SEM). (Scale bars, 50 μm.)
(B) Immunoblot and densitometry for αSMA in MRC-5 cells after control (nontargeting) or REVERBα siRNA knockdown (representative immunoblot shown;
n = 3 separate transfections). *P < 0.05 (Student t test; mean ± SEM). (C) Schematic of RNA-seq sample preparation. Control (nontargeting) or Reverbα siRNA
knockdown was performed in 2 fibroblast cell lines (mLF-hT cells and MRC-5). Samples were collected for RNA-seq analysis 12 and 24 h after siRNA trans-
fection from 3 separate transfections for each cell line per time point. Pooled analysis of all 4 different RNA-seq experimental conditions is shown by a volcano
plot (mean fold change plotted against mean q-value). (D) Immunoblot of TBPL1 following control (nontargeting) or Reverbα or Tbpl1 siRNA knockdown in
mLF-hT cells (a representative immunoblot is shown; n = 3 separate transfections). **P < 0.01 (Student t test; mean ± SEM). (E) Representative immuno-
fluorescence and immunoblotting for αSMA after control (nontargeting) or Tbpl1 siRNA knockdown in mLF-hT cells (a representative immunoblot is shown;
n = 3 separate transfections). *P < 0.05 (Student t test; mean ± SEM). (Scale bars, 50 μm.) DAPI, 4′,6-diamidino-2-phenylindole.
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Several studies have found that circadian responses in the lung
are gated through club cells (2) or macrophages (5). A previous
report suggested that the acute inflammatory phase (7 d) of the
bleomycin response lay under circadian control (4); therefore,
we investigated circadian function in developing fibrosis. Sur-
prisingly, there were higher-amplitude circadian oscillations in fibrotic
tissue compared to normal lung tissue, but these oscillations were
asynchronous, suggesting a possible role for circadian mechanisms

(38). The process of fibrosis involves several different cell types
including club cells, macrophages, and fibroblasts (9), but as
genetic deletion of the only nonredundant circadian gene Bmal1
to the pericyte lineage stopped the emergent oscillations, the
importance of fibroblasts was established. The importance of the
fibroblast was further confirmed by finding that REVERBα de-
letion in these cells impacted the fibrotic response, but disrup-
tion in other cell types was without effect. These results build on

Fig. 4. REVERBα and TBPL1 affect myofibroblast differentiation through changes in integrinβ1 expression. (A) Representative immunofluorescent images and
quantification per cell of vinculin, tensin1, and integrinβ1 following siRNA knockdown of Reverbα or Tbpl1 compared to control (nontargeting) siRNA in mLF-
hT cells (n = 3 separate transfections). **P < 0.01 (1-way ANOVA post hoc Dunnett test; mean ± SEM). Dots represent individual cells from 3 transfections. cont,
control siRNA; revα, Reverbα siRNA. (Scale bars, 10 μm.) (B) Representative immunofluorescence image after mLF-hT cells have been transfected with REVERBα-GFP
plasmid or an empty-GFP plasmid. Cells were stained for GFP, vinculin, and nuclei (4′,6-diamidino-2-phenylindole [DAPI]) (n = 3 separate transfections). **P < 0.01
(Student t test; mean ± SEM). Dots represent individual cells from 3 transfections with the focal-adhesion number being quantified per cell. (Scale bars, 10 μm.) (C)
Representative immunofluorescence images. (Scale bars, 50 μm.) (D) Quantification of the myofibroblast marker αSMA following dual siRNA knockdown (control
or Reverbα in the presence or absence of Itgb1) in mLF-hT cells (n = 3 separate transfections). **P ≤ 0.01 (1-way ANOVA post hoc Dunnett test; mean ± SEM).
(E) Schematic demonstrating how both REVERBα and TBPL1 regulate Integrinβ1, which in turn affects myofibroblast differentiation. ECM, extracellular matrix.
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previous discoveries showing that circadian oscillations in fibro-
blasts are robust (39) and alter wound-healing (40, 41).
Mechanistically, knockout or knockdown of REVERBα pro-

moted myofibroblast activation in vitro, with the reverse effects
seen with REVERBα overexpression. Analysis of REVERBα
gene targets revealed striking enrichment for a single transcrip-
tion factor, TBPL1, and the emergence of a coherent pathway
converging on increased formation of integrinβ1 focal-adhesion
complexes. To the best of our knowledge, TBPL1 has not been
previously implicated in fibrotic disease, but we found its expres-
sion elevated in human IPF tissue. This and the elevated REVERBα
expression are an apparent paradox, as both proteins inhibit myofi-
broblast activation. Therefore, we hypothesize that the increase in
both TBPL1 and REVERBα in fibrotic tissue results from tissue
compensation in response to fibrosis, making it a promising
therapeutic pathway. Integrinβ1 emerged as the final effector, and
the focal adhesions associated with it have previously been estab-
lished (28) to be important for myofibroblast activation.
We have successfully used large-scale human cohorts, such as

the UK Biobank, to explore connections between measures of
circadian strain (shift work, chronotype, and sleep) and prevalent
disease (34, 42, 43). Low-prevalence diseases such as pulmonary
fibrosis present unique challenges. To address this, we identified
people with pulmonary fibrosis participating in the UK Biobank
(31) and linked them with information from Hospital Episode
Statistic data (44). Importantly, patients were not screened for
pulmonary fibrosis on enrolling in the Biobank; therefore, we
cannot comment on causality, but it is clear that short sleep
length is associated with pulmonary fibrosis, and this is as least as
strong as existing risk factors for this disease (45), indicating

potential clinical relevance. An association with long sleep du-
ration was also found that may be biological (46) or due to
confounders (47).
We, and others, have developed tool compounds capable of

activating REVERBα (48, 49). These permit extension of our
studies to primary human tissue, which is hard to genetically
manipulate. Here, we show a marked inhibition of the myofi-
broblast phenotype, blunted fibrotic response to TGFβ stimula-
tion and reduced collagen-1 secretion in IPF PCLS. We, and
others, have also shown that these compounds have off-target ef-
fects (48, 50), and therefore it is reassuring that knockdown and
overexpression of REVERBα in human fibroblasts had similar
effects on both our mice studies and also the ligand. The recent
publication (50) that the only ligand with suitable pharmacokinetics
for in vivo experiments has significant off-target effects combined
with the lack of translation from the mouse bleomycin model to the
clinic (51) precludes an in vivo mouse experiment to confirm its
therapeutic effectiveness.
Taken together, our results identify a surprising and potent

role for the core circadian-clock factor REVERBα in the acti-
vation of myofibroblasts via a pathway incorporating a poorly
characterized transcription factor, TBPL1, which affects the
development of pulmonary fibrosis.

Methods
Mouse Lines. mPER2::luc transgenic mice were previously described (52). The
Rev-erbαfl/fl mouse (Rev-erbαDBDm) and Cre drivers targeting club cells
(CCSPicre) and myeloid cells (Lysmcre) are as previously described (1). The
PDGFRβcre mouse was a kind gift from N.C.H. and has been previously de-
scribed (14). The Bmal1fl/fl mouse has been previously described (2).

Fig. 5. Circadian factors are associated with IPF, where a REVERB ligand represses collagen secretion. (A) Odds ratio (OR) for the association between
pulmonary fibrosis and sleep duration (OR ± 95% confidence interval (CI); logistic regression; n = 500,074 subjects from the UK Biobank). (B) Changes in clock-
gene expression in IPF compared to control subjects from a previously published genome array (GSE47460) (fold change ± 95% confidence interval; n = 90
controls and 98 patients with IPF). (C) qPCR for αSMA (ACTA2) and Collagen1 (COL1A1) following TGFβ stimulation (2 ng/mL) in primary human lung fi-
broblasts obtained from patients with pulmonary fibrosis in the presence or absence of GSK4112 (10 μM) (n = 4 fibrotic patients). *P < 0.05 (Student t test;
mean ± SEM). (D) qPCR for αSMA (ACTA2) expression following treatment with TGFβ (2 ng/mL) and GSK4112 (10 μM) in human PCLS (n = 5 patients). *P < 0.05
(Student t test; mean ± SEM). (E) Enzyme-linked immunosorbent assay analysis of secreted collagen-1 in TGFβ-stimulated PCLS obtained from 3 patients with
IPF treated with the REVERB ligand GSK4112 (10 μM) and an Alk5 inhibitor (1 μM) as positive control (n = 3). *P < 0.05 (paired Student t test; mean ± SEM).
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Cell Culture. MRC-5 cells or mLF-hT cells (16) were cultured in Dulbecco
modified Eagle media.

In Vivo Bleomycin.Male mice were challenged intratracheally with bleomycin
(Sigma) or saline (vehicle).

Bioluminescence Microscopy. Organotypic PCLS were prepared as described
before (2). Bioluminescence images were obtained using a 2.5× objective
(Zeiss) and captured using a cooled Andor iXon Ultra camera over a 30-min
integration period.

Immunofluorescence. For αSMA staining, cells in 35-mm dishes were fixed in
4% paraformaldehyde (PFA)/0.2% Triton X-100, followed by ice cold methanol
fixation. For focal-adhesion proteins, cells were exposed to ice-cold cytoskel-
eton buffer (53) for 10 min followed by 4% PFA fixation for a further 10 min.

RNA Sequence. siRNA-transfected mLF-hT and Mrc5 cells were lysed, and RNA
was extracted using the ReliaPrep RNA miniprep system. RNA was sequenced
on an Illumina HiSEq 4000. Analysis of these data was performed using the
Ingenuity Pathway Analysis software (Qiagen).

UK Biobank. The UK Biobank was accessed January 2019, and the data were
combined with the Hospital Episode data set (54). Subjects were excluded a
priori if they took sleep-altering medication or had obstructive sleep apnea.

Microarray Analysis. Geo2R (55) was used to analyze GSE47460 generated by
the Lung Genomics Research Consortium (56).

Human PCLS. PCLS were cut at 400 μm on a vibrating microtome. TGFβ,
GSK4112, or vehicle (dimethyl sulfoxide) treatments were performed
each day with the slices being lysed after 4 d for qPCR analysis or 7 d for
supernatant analysis. Additional methods can be found in SI Appendix.

Data Availability. The RNA-sequence (RNA-seq) data have been deposited
in the ArrayExpress Archive of Functional Genomics Data (accession no.
E-MTAB-8499) (57). Matlab code for circadian analysis of Fig. 1 has been
deposited in Mendeley database (doi:10.17632/5wr5s3w4s7.1) (58).
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