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Nano-brasses are emerging as a new class of composition-dependent applicable

materials. It remains a challenge to synthesize hydrophilic brass nanoparticles (NPs)

and further exploit them for promising bio-applications. Based on red/ox potential

of polyol and nitrate salts precursors, a series of hydrophilic brass formulations

of different nanoarchitectures was prepared and characterized. Self-assembly

synthesis was performed in the presence of triethylene glycol (TrEG) and nitrate

precursors Cu(NO3)2·3H2O and Zn(NO3)2·6H2O in an autoclave system, at different

temperatures, conventional or microwave-assisted heating, while a range of precursor

ratios was investigated. NPs were thoroughly characterized via X-ray diffraction

(XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM),

transmition electron microscopy (TEM), Fourier-transform infrared (FTIR) spectroscopy,

dynamic light scattering (DLS), and ζ-potential to determine the crystal structure,

composition, morphology, size, state of polyol coating, and aqueous colloidal stability.

Distinct bimetallic α-brasses and γ-brasses, α-Cu40Zn25/γ-Cu11Zn24, α-Cu63Zn37,

α-Cu47Zn10/γ-Cu19Zn24, and hierarchical core/shell structures, α-Cu59Zn30@(ZnO)11,

Cu35Zn16@(ZnO)49, α-Cu37Zn18@(ZnO)45, Cu@Zinc oxalate, were produced by each

synthetic protocol as stoichiometric, copper-rich, and/or zinc-rich nanomaterials. TEM

sizes were estimated at 20–40 nm for pure bimetallic particles and at 45–70 nm for

hierarchical core/shell structures. Crystallite sizes for the bimetallic nanocrystals were

found ca. 30–45 nm, while in the case of the core-shell structures, smaller values

around 15–20 nm were calculated for the ZnO shells. Oxidation and/or fragmentation

of TrEG was unveiled and attributed to the different fabrication routes and formation

mechanisms. All NPs were hydrophilic with 20–30% w/w of polyol coating, non-ionic

colloidal stabilization (−5mV < ζ-potential < −13mV) and relatively small hydrodynamic

sizes (<250 nm). The polyol toolbox proved effective in tailoring the structure and

composition of hydrophilic brass NPs while keeping the crystallite and hydrodynamic

sizes fixed.
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INTRODUCTION

Bimetallic nanoparticles (BMNPs) have gained excessive interest
over the last few years, as they appear to be ideal candidates for
a wide range of applications, such as catalysis, agrochemistry,
optoelectronics, and biomedicine (Wang et al., 2010; Gilroy
et al., 2016; Nasrabadi et al., 2016; Srinoi et al., 2018). The
attraction for BMNPs can be attributed to unique characteristics
of synergistic action of the two distinct elements that often gives
rise to collective properties (Song et al., 2009; Perdikaki et al.,
2016; Antonoglou et al., 2017). Among them, the substitutional
bulk alloy of the bioessential metals copper and zinc known as
brass is dated to be used centuries ago because of the superior
mechanical, anticorrosion, and germicidal properties (Kharakwal
and Gurjar, 2006; Mehtar et al., 2008; Michels et al., 2008).
The classification of brass alloys can be established according
to the proportion of copper and zinc contained, where different
characteristics also emerge (Wiame et al., 2008; Hong et al., 2014;
Keast et al., 2015; Liu and Cheng, 2019). Copper-rich phases that
crystallize in fcc structure, known as α-brasses, are considered to
be the most stable, containing a maximum of 38% Zn. Duplex
brass, or αβ-brass, is characterized by limited ductility, with a
maximum of 42% Zn content, where β-brass with a minimum
of 45% Zn is the intermetallic form of this alloy, displaying a
bcc crystal structure. Finally, the zinc-rich γ-phase of brass is
described by a 57–68% Zn content and an hcp crystal structure.
This phase is rather unstable, rendering it as quite challenging to
be obtained via synthetic pathways (Gourdon et al., 2007). Apart
from pure bimetallic phases, the heterostructure of Cu and ZnO
is also considered a brass material (Qi et al., 2009).

Nowadays, a growing interest concerns nanoscale brass where
additional advantages owing to nano-size can be exploited
(Shishidoa et al., 2007; Qi et al., 2009; Minal and Prakash,
2016; Manna et al., 2017; Gentzen et al., 2018; Jiang et al.,
2019). A variety of synthetic routes have been reported for
nanobrass, mainly top-down methods, such as laser ablation
or ball milling, while wet chemistry approaches are scarcely
reported. Specifically, solvated metal atom dispersion (SMAD)
method has been used for dealloying bulk brass (Bhaskar
and Jagirdar, 2017). Brass NPs were generated by ablation of
bulk brass in ethanol (Sukhova et al., 2014). Organometallic
compounds such as [Cu{OCH(Me)CH2NMe2}2] and Et2Zn have
been chosen as precursors in the synthesis of CuZn nanocolloids

TABLE 1 | Syntheses of all samples.

Sample Heating method Synthesis temperature (◦C) Ramp heating step (min) Hold time Zn(NO3)2 (mmol) Cu(NO3)2 (mmol)

BM1 Microwave 240 15 30min 2 2

BM2 Microwave 260 16 30min 2 2

BM3 Solvothermal 240 45 8 h 0.5 0.5

BM4 Solvothermal 240 45 8 h 0.33 0.67

BM5 Microwave 240 15 30min 1.33 2.67

BM6 Solvothermal 240 45 8 h 0.67 0.33

BM7 Microwave 240 15 30min 2.67 1.33

via their thermolysis in hot coordinating solvents (Hambrock
et al., 2013). Another non-aqueous organometallic synthesis was
performed by co-hydrogenolysis of [CpCu(PMe3)] and [ZnCp∗2]
(Cokoja et al., 2006). Recently, brass alloy NPs were prepared
under microwave-induced decomposition of the amidinate
precursors {[Me(C(NiPr)2)]Cu}2 and [Me(C(NiPr)2)]2Zn in
([BMIm][BF4]) or in propylene carbonate (PC) liquids (Schütte
et al., 2014). Moreover, the synthesis of Cu@ZnO core-shell
NPs through digestive ripening process in SMAD, hot injection
experiments by the decomposition of copper(I) chloride and
zinc acetate in oleylamine, and surface modification with citric
acid and ammonia as a precipitator have been reported (Yang
et al., 2006; Kalidindi and Jagirdar, 2008; Chang et al., 2016).
Meanwhile, various methods like sol-gel, electrodeposition, or
procedures that include the use of plant extracts for the synthesis
of different morphologies, have been investigated (Jamali-Sheini
et al., 2014; Minal and Prakash, 2016; Manna et al., 2017;
Jiang et al., 2019). However, in the majority of the methods
referred above, the fabricated NPs were not hydrophilic, and
this greatly limits some important applications as antimicrobial,
agrochemical, and biomedical agents.

Among the plethora of wet chemical techniques, the polyol
method seems to be quite advantageous in the synthesis of
metal, metal oxides, and chalcogenides NPs (Altinçekiç and
Boz, 2008; Fiévet et al., 2008; Dong et al., 2015a). In this
process, polyalcohols are utilized in a triple role of solvent,
stabilizing, and reducing agent, while their high boiling points
and viscosity allow synthesis in relatively high temperatures,
favoring the formation of well-crystallized products, without
the need for post-annealing. The synthetic conditions enable
an effective control over the physicochemical characteristics of
the resulting products, specifically over size, shape, structure,
surface chemistry (4Ss) and dispersibility contributing to the NPs’
biocompatibility and hydrophilicity, along with the exclusion
of by-product formation. Furthermore, most of the inorganic
metal salt precursors are well-dissolved in these media, and
organometallic precursors can be avoided. It has previously
been reported in the literature (Caizer and Stefănescu, 2002;
Stefănescu et al., 2007; Biacchi and Schaak, 2011; Carroll et al.,
2011; Dong et al., 2015b; Teichert et al., 2018) and recently by us
(Vamvakidis et al., 2015; Antonoglou et al., 2017, 2018; Giannousi
et al., 2019; Tryfon et al., 2019) that synthetic conditions like
polyol properties (structure, molecular weight, reducing ability,
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and capping capacity), reaction temperature, utilized precursors,
and synthetic route affect the final structure and features of
the nanostructures.

Recently, we reported a microwave-assisted polyol process
(MW-PP) for the preparation of polyol coated nanobrass by
using nitrate salt metal precursors and the biocompatible
polyol triethylene glycol (TrEG) (Antonoglou et al., 2018).
The applied process allowed us to isolate hydrophilic brass
BMNPs where both the α-phase and γ-phase were formed
with no zinc and/or copper oxide phases being produced. Such
hydrophilic brass BMNPs displayed enhanced antifungal activity
compared to monometallic copper NPs and no phytotoxicity,
rendering them ideal candidates for agrochemical applications.
Given that the 4Ss of BMNPs govern their activity, the
present study gives rise to novel hydrophilic structures and
compositions of brass BMNPs that can be crafted with
the polyol toolbox. In that vein, a series of experiments
are carried out where nitrate precursors Cu(NO3)2·3H2O
and Zn(NO3)2·6H2O are mixed with TrEG, which acted
in a triple role. A range of modifications in the reaction
temperature, heating method, and precursor ratio conditions
are investigated. Specifically, two reaction temperatures, 240
and 260◦C, are evaluated while synthesis is carried out under
either microwave-assisted or classic solvothermal conditions.
Finally, precursor ratios of 2:1 and 1:2 of copper and
zinc, respectively, are examined. All of the as-produced
BMNPs are characterized in detail via X-ray diffraction
(XRD), thermogravimetric analysis (TGA), scanning electron
microscopy (SEM), transition electron microscopy (TEM),
Fourier-transform infrared (FTIR) spectroscopy, dynamic light
scattering (DLS), and ζ-potential to identify the crystal structure,
composition, morphology, size, state of organic coating, and
aqueous colloidal stability.

MATERIALS AND METHODS

Microwave-Assisted Synthesis of Brass
NPs
MW-PP was employed using a commercial microwave-
accelerated reaction system, Model MARS 6-240/50-CEM. This
system runs at a maximum frequency of 2,450 MHz and a power
of 1,800W. The reaction was carried out in a double-walled
vessel consisting of an inner Teflon container liner where
temperature and pressure sensors are connected and an outer
composite sleeve. Zn(NO3)2·4H2O and Cu(NO3)2·3H2O were
mixed and dissolved in 40ml of TrEG, followed by transfer
to an autoclave. After MW-PP, cooling of the autoclave till
room temperature takes place during ∼30min, followed by
centrifugation at 5,000 rpm, where supernatants were discarded,
and a gray-black precipitate was acquired and washed three
times with ethanol, for the removal of unreacted precursors.

Sample BM1: Zn(NO3)2·4H2O (2.0 mmol) and
Cu(NO3)2·3H2O (2.0 mmol) were used. The reaction was
carried out at 240◦C with a hold time of 30min and a ramp time
heating step (from 25 to 240◦C) set at 15 min.

Sample BM2: Zn(NO3)2·4H2O (2.0 mmol) and
Cu(NO3)2·3H2O (2.0 mmol) were used. The reaction was
carried out at 260◦C with a hold time of 30min and a ramp time
heating step (from 25 to 260◦C) set at 16 min.

Sample BM5: Zn(NO3)2·4H2O (1.33 mmol) and
Cu(NO3)2·3H2O (2.67 mmol) were used. The reaction was
carried out at 240◦C with a hold time of 30min and a ramp time
heating step (from 25 to 240◦C) set at 15 min.

Sample BM7: Zn(NO3)2·4H2O (2.67 mmol) and
Cu(NO3)2·3H2O (1.33 mmol) were used. The reaction was
carried out at 240◦C with a hold time of 30min and a ramp time
heating step (from 25 to 240◦C) set at 15 min.

SCHEME 1 | Triethylene glycol oxidation pathway; one-end and/or two-end oxidation as well as fragmentation paths can be followed.
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Solvothermal Synthesis of Brass NPs
A modified polyol process under solvothermal conditions in
a Teflon container has been utilized. Zn(NO3)2·4H2O and
Cu(NO3)2·3H2O were mixed and dissolved in 10ml of TrEG,
followed by the transfer to the autoclave. After the solvothermal
process, the autoclave was cooled naturally to room temperature
followed by centrifugation at 5,000 rpm, where supernatants
were discarded, and a gray-black precipitate was acquired
and washed three times with ethanol, for the removal of
unreacted precursors.

Sample BM3: Zn(NO3)2·4H2O (0.5 mmol) and
Cu(NO3)2·3H2O (0.5 mmol) were used. The reaction was
carried out at 240◦C with a hold time of 8 h and a ramp time
heating step (from 25 to 240◦C) set at 45 min.

Sample BM4: Zn(NO3)2·4H2O (0.33 mmol) and
Cu(NO3)2·3H2O (0.67 mmol) were used. The reaction was
carried out at 240◦C with a hold time of 8 h and a ramp time
heating step (from 25 to 240◦C) set at 45 min.

Sample BM6: Zn(NO3)2·4H2O (0.67 mmol) and
Cu(NO3)2·3H2O (0.33 mmol) were used. The reaction was
carried out at 240◦C with a hold time of 8 h and a ramp time
heating step (from 25 to 240◦C) set at 45 min.

All syntheses are given in Table 1.

Materials
All of the reagents were of analytical grade and were
used without any further purification: Copper (II) nitrate
trihydrate, Cu(NO3)2·3H2O (Merck, ≥99.5%, M = 241.60
g/mol), zinc (II) nitrate tetrahydrate, Zn(NO3)2·4H2O (Merck,
≥99.5%, M = 261.44 g/mol), and TrEG (Merck, ≥99%,
M = 150.17 g/mol).

Characterization of Brass NPs
The crystal structure of the synthesized NPs was investigated
through XRD at ambient temperature on a Seifert XRD
3003-TT powder diffractometer using FeKa radiation in 2θ
steps of 0.05◦ for 10 s and analyzed by the means of the
Jade software (MDI’s) to determine crystal structure and
lattice parameters.

Powder morphology was determined by a JEOL 840A SEM
coupled with energy dispersive X-ray spectrometer (EDX) for
estimating the inorganic composition.

Particle size and morphology were determined by
TEM. The images were acquired with a JEOL JEM 1200-
EX microscope operating at an acceleration voltage
of 120 kV. For TEM observations, suspensions of
the NPs deposited onto carbon-coated copper grids
were used.

FTIR (2,000–900 cm−1) was recorded using a Nicolet FT-IR
6700 spectrometer with samples prepared as KBr pellets.

TGA was employed using SETA-RAM SetSys-1200 and
carried out in the range from room temperature to 900◦C at a
heating rate of 10◦C min−1 under N2 atmosphere.

The hydrodynamic size and ζ-potential of brass NPs were
determined by DLS measurements, carried out at 25◦C utilizing
a Nano ZS Malvern apparatus.

FIGURE 1 | Transmition electron microscopy (TEM) captions of BM1,

α-Cu40Zn25/γ-Cu11Zn24, (A,B), and BM2, Cu@Zinc oxalate, bimetallic

nanoparticles (BMNPs) (C,D).
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FIGURE 2 | The X-ray diffraction (XRD) patterns of BM1 (synthesized at 240◦C) and BM2 (synthesized at 260◦C) at 20–80◦ (A), 53–58◦ (B), and 27–40◦ (C),
respectively.

RESULTS AND DISCUSSION

Synthetic Aspects
Ligand-protected inorganic NPs are particularly attractive as
interfacial effects impact the properties of both organic and
inorganic components of these hybrid ensembles. The degree
of NP aggregation can be controlled; terminal ligand groups
determine the solubility of NPs and as such can be used to direct
NP self-assembly. Taking into account the plethora of organic
ligands that can be used, it is noted that a great number of possible
nanosized materials can be generated by suitable combinations
of organic and inorganic components. In this context, the polyol
toolbox has been used to achieve an efficient wet chemical design
for BMNPs formation, responsive to synthetic parameters, such
as reaction temperature, conventional or microwave heating,
and precursor ratio. Reduction and/or hydrolysis reactions can
take place and favor the formation of metallic and/or oxide
NPs, respectively (Poul et al., 2003). The fabrication mechanism
follows the formation of polyol-metal complexes that decompose,

giving rise to the nucleation and growth of brass BMNPs
(Biacchi and Schaak, 2011; Carroll et al., 2011; Antonoglou
et al., 2017, 2018; Teichert et al., 2018; Giannousi et al., 2019;
Tryfon et al., 2019). Both the formation and decomposition
of these intermediate polyol-metal complexes are very sensitive
to synthetic regulations. Oxidation of TrEG occurs during the
synthesis as seen in Scheme 1 where one-end and/or two-end
oxidation as well as fragmentation paths can be followed (Caizer
and Stefănescu, 2002; Stefănescu et al., 2007; Dong et al., 2015b;
Vamvakidis et al., 2015; Antonoglou et al., 2017; Tryfon et al.,
2019). As the heating method, ramp heating step, reaction
temperature and hold time change, different oxidized forms
and intermediates can be present, and finally different products
are isolated. Additionally, precursor ratio and conventional or
microwave heating affect the composition and structure of
the products. Excess of either copper or zinc will favor the
formation of copper-rich brasses or zinc-rich brasses/ZnO shells,
respectively. Moreover, microwave-assisted polyol synthesis can
even produce rather unstable bimetallic nanocrystals because
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FIGURE 3 | Linear fitting of zinc content in α-brass vs. lattice parameter. BM1

and BM2 represent the two boundaries of the fitting, maximum Zn in α-brass

and monometallic copper, respectively.

of the rapid nucleation process, high temperature, and fast
reaction time (Rao et al., 1999; Dahal et al., 2012). Hence, in the
present study, each synthetic path tested gave rise to hierarchical
structures and novel compositions of brass BMNPs as expected
and analyzed below.

Effect of Reaction Temperature
Temperature is a readily accessible factor for a number
of different NP syntheses. To investigate the effect of the
temperature, two samples, BM1 and BM2, were synthesized via
the microwave-assisted process at 240 and 260◦C, respectively,
to get closer to TrEG’s boiling point (285◦C), where oxidation
and fragmentation of the organic ligand can be promoted. The
morphology and particle size of BM1 and BM2 were investigated
with TEM images. Figure 1 presents snapshots for the BMNPs,
where different morphologies are apparent. Truncated shapes
with faceted corners were observed for BM1 (Figures 1A,B). In
contrast, BM2 settled in a hierarchical type core/shell structure
with more spherical cores and well-shaped shells (Figures 1C,D).
Both BMNPs settle in nanoflower architectures that are not
considered aggregates, as reported before (Gavilán et al., 2017).
The particle sizes for BM1 and BM2 are estimated at 35–40 and
65–70 nm, respectively.

The composition of BM1 and BM2 was estimated via
SEM/EDX analysis (Figure S1) at Cu50.8Zn49.2 and Cu49.7Zn50.3,
respectively, revealing that the ratio of precursors (1:1) was kept
in the final composition. The crystal structure was investigated
through XRD at room temperature (Figure 2). Both BM1 and
BM2 displayed the peaks at around 55 and 65◦ that correspond
to the fcc lattice adopted by α-brass (#65-6567, space group
Fm-3m) and metallic copper (#04-0836, space group Fm-3m),
whereas BM1 also contained the γ-brass phase (#65-6566, space
group I-43m). Moreover, the black spots presented in the
TEM image (Figures 1A,B) can be correlated to the α-brass
and γ-brass phases that coexist in the BMNPs. However, it is

FIGURE 4 | X-ray diffraction (XRD) patterns of BM1 (microwave) and BM3

(solvothermal) (A). Transmition electron microscopy (TEM) images of

α-Cu59Zn30@(ZnO)11 (B,C).

clear from Figure 2B that BM1 crystallized as α-brass, whereas
BM2 crystallized as metallic copper. This is verified by lattice
parameter (a=b=c in the fcc lattice) values, estimated at 3.6159
Å (0.0028) and 3.6087 Å (0.0018) for BM1 and BM2, respectively,
where the increase is attributed to the zinc doping of the fcc
lattice. Additionally, in the case of BM2, Zn oxalate (#37-0718)
was produced and is clearly distinct from the graphitic crystallite
of BM1 (Figure 2C) (Dong et al., 2015b; Antonoglou et al., 2017,
2018; Tryfon et al., 2019). By utilizing the quantitative option of
MDI’s Jade, the % wt crystal composition is calculated at 65% α-
brass and 35% γ-brass for BM1 and 50% Cu and 50% zinc oxalate
for BM2. These results greatly emphasize the effect of reaction
temperature in the MW-PP, where an increase of 20◦C (BM2) led
to the oxalate forms of TrEG-zinc intermediates. The stable zinc-
oxalate tetrahedral complexes, with their stability being caused
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FIGURE 5 | Transmition electron microscopy (TEM) captions of α-Cu63Zn37
(A,B), α-Cu47Zn10/γ-Cu19Zn24 (C,D), α-Cu35Zn16@(ZnO)49 (E,F), and
α-Cu37Zn18@(ZnO)45 (G,H).

by chelate effect, failed to decompose and resulted in the 50%
Cu and 50% zinc oxalate structure/composition (Giannousi et al.,
2019). The crystallite sizes of BM2 were calculated by Scherrer
equation at 45 nm for Cu and 30 nm for zinc oxalate and are
in agreement with the 65–70 nm TEM size. The slightly bigger
crystallite size is attributed to the biphasic state of BM2, where
crystallites share volume in the particles and TEM size is smaller

FIGURE 6 | X-ray diffraction (XRD) patterns of BM4 (2:1 copper:zinc precursor

ratio, solvothermal), BM5 (2:1 copper:zinc precursor ratio, microwave) (A),
BM6 (1:2 copper:zinc precursor ratio, solvothermal), and BM7 (1:2

copper:zinc precursor ratio, microwave) (B).

than the sum of the two crystallites. This supports the core-
shell morphology revealed by TEM captions (Figures 1C,D) and
is very essential to classify this Cu@Zinc oxalate nanomaterial
as a heterostructured nanobrass alike the Cu@ZnO type. For
BM1, the estimated structure and composition are given as α-
Cu40Zn25/γ-Cu11Zn24 with maximum zinc contents of 38 and
68% in the α-brass and γ-brass phases, respectively. Crystallite
size was calculated at 33 nm and is very close to the TEM size
(40–45 nm).

As crystallite size is mainly governed by peak area and
width, the 2θ of the peak summit can be correlated with the
composition of the BMNPs that slightly alters the unit cell
(Antonoglou et al., 2017, 2018; Zhou et al., 2018). Moreover,
during atomic substitution in the wet chemical alloying process
of nanobrass, the relatively bigger size of zinc atoms enlarges
the lattice parameter when metallic copper turns into α-brass,
as illustrated in Figure 3. According to this diagram displaying
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FIGURE 7 | Linear fitting of zinc content in α-brass vs. lattice parameter for all

as-produced nanoparticles (NPs).

TABLE 2 | Zinc content in α-brass in correlation with estimated lattice parameter.

Sample Zinc content in α-brass
(%)

Lattice parameter
(Å)

BM1 38 3.6159 (0.0028)

BM4 37 3.6153 (0.0017)

BM3 34 3.6151 (0.0016)

BM7 32 3.6148 (0.0013)

BM6 31 3.6147 (0.0024)

BM5 18 3.6130 (0.0017)

BM2 0 3.6087 (0.0018)

the linear fitting of zinc content in α-brass, the lattice parameter
was calculated at 3.6159 Å (0.0028) and 3.6087 Å (0.0018) for the
α-Cu40Zn25 (BM1) and Cu (BM2), respectively. As the BM1 and
BM2 represent the two boundaries of the fitting (maximum Zn in
α-brass and monometallic copper, respectively), it can further be
very useful as a reference diagram for the estimation of α-brass
zinc content in multifaceted brass materials with ZnO phases in
the shell of the core nanocrystals.

Conventional or Microwave Heating
To find out if conventional heating instead of microwave
radiation can affect the composition and structure of the
produced brass BMNPs, the same self-assembly reaction was
tested through a solvothermal approach, where extended
nucleation and growth steps take place. The polyol process
solvothermal analog of a 30-min microwave polyol synthesis is
considered at 6–8 h. Sample BM3 was fabricated by means of an
8-h solvothermal route at 240◦C in the sole presence of TrEG.
The composition of BM3 was estimated via SEM/EDX analysis
(Figure S2) at Cu59Zn41 and is more copper-oriented than the
1:1 precursor ratio, still not very distant. Figure 4A depicts the
XRD diffractograms where the ZnO phase emerged during the
solvothermal synthesis (BM3). We assume that the zinc-rich

γ-brass transformed to ZnO due to the extended nucleation
and growth steps of solvothermal route that favors the most
thermodynamically stable products and hydrolysis reactions.
Regarding the α-brass zinc content of BM3, it was estimated via
Figure 3 linear fit at 34% w/w based on the calculated lattice
parameter of 3.6151 Å (0.0016), with an hierarchical overall
structure of α-Cu59Zn30@(ZnO)11. The ZnO is deposited as a
shell around the α-brass core, as shown in the TEM images
(Figures 4B,C). Crystallite sizes were calculated as 35 nm for the
α-Cu59Zn30 core and 13 nm for the ZnO shell, whereas TEM sizes
were estimated at 45–50 nm.

Effect of Precursor Ratio
As the structure/composition of brass BMNPs is greatly affected
by the content of the two metals, different precursor ratios
were investigated during the synthesis. Four samples were
prepared using solvothermal and microwave routes at 2:1
copper:zinc precursor ratio, BM4 and BM5, respectively, and
at 1:2 copper:zinc precursor ratio, BM6 and BM7, respectively.
Morphological characteristics of BM4, BM5, BM6, and BM7
were examined by TEM, and features (two captions for each
sample) are given in Figure 5. Characteristic morphological traits
appeared, namely, the core/shell hierarchy was observed for BM6
and BM7. Particle sizes were estimated at 25–30, 20–25, 55–65,
and 45–50 nm for BM4, BM5, BM6, and BM7, respectively.

Composition derived by SEM/EDX analysis (Figure S3) is
given as Cu63Zn37, Cu66Zn34, Cu35Zn65, and Cu37Zn63 for BM4,
BM5, BM6, and BM7, respectively, revealing a close match
to the initial precursors’ ratios. Figure 6 illustrates the XRD
patterns recorded for BM4, BM5 (Figure 6A), BM6, and BM7
(Figure 6B). In case of copper precursor excess (BM4 and
BM5), both samples were crystallized as pure BMNPs. Sample
BM4, prepared through solvothermal route, adapted the α-brass
structure, whereas BM5 fabricated via the microwave-assisted
way displayed both α-brass and γ-brass phases. Although the
initial zinc content was lower in both samples compared to
copper, interestingly, the γ-brass was still observed in BM5 that
was produced by the microwave synthesis. This indicates that the
γ-brass is formed under microwave irradiation even when the α-
brass is unsaturated while when extended nucleation and growth
steps used (solvothermal approach), it is transformed into α-brass
as a final point. The estimated composition/structure of BM4 is
given as α-Cu63Zn37 with 37% w/w zinc content in the α-brass.
By utilizing the quantitative option ofMDI’s Jade, the %wt crystal
composition for BM5 is calculated at 57% α-brass and 43% γ-
brass and an estimated composition/structure of α-Cu47Zn10/γ-
Cu19Zn24 with 18 and 68% w/w zinc content in the α-brass and
γ-brass, respectively. These values (37 and 18% w/w zinc content
in the α-brass) are very close to the theoretical magnitudes of
35% and 21% zinc content in α-brass estimated via Figure 3

linear fit for BM4 and BM5, respectively. Lattice parameters were
estimated at 3.6153 Å (0.0017) and 3.6130 Å (0.0017) for BM4
and BM5, respectively.

Samples prepared under zinc precursor excess (BM6 and
BM7) crystallized as hierarchical core-shell nanoarchitectures
of α-brass@ZnO alike sample BM3. The Figure 3 linear
fit was applied and gave 31 and 32% zinc content in the
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FIGURE 8 | Fourier-transform infrared (FTIR) spectra of the organic coating of bimetallic nanoparticles (BMNPs) synthesized by microwave irradiation (BM1, BM5,

BM7) (A–C) and solvothermal route (BM3, BM4, BM6) (D–F).

α-brass for BM6 and BM7, respectively with an estimated
composition/structure of α-Cu35Zn16@(ZnO)49 and α-
Cu37Zn18@(ZnO)45, respectively. Lattice parameters were
estimated at 3.6147 Å (0.0024) and 3.6148 Å (0.0013) for BM6
and BM7, respectively. This is expected to some extent because
an excess of zinc during the synthesis will lead to the most stable
phase of ZnO via hydrolysis reactions after partially doping
the α-brass. Crystallite sizes were calculated at 34, 35, 33/20,

and 30/12 nm for α-Cu63Zn37 (BM4), α-Cu47Zn10/γ-Cu19Zn24
(BM5), Cu35Zn16@(ZnO)49 (BM6), and α-Cu37Zn18@(ZnO)45
(BM7), respectively. Figure 7 depicts the overall chart of the
linear fitting of zinc content in α-brass vs. the calculated
lattice parameter of all as-produced NPs, whereas Table 2

illustrates the lattice parameter values. It is clearly demonstrated
that, with increasing zinc content in the α-brass, the lattice
parameter increases.
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State of the Organic Coating
The existence of the organic coating on the surface of the NPs has
been confirmed by the FTIR spectra of the samples (Figure 8).
The common nature of the polyols that have been used to
functionalize the NPs surface is indicative in all cases while
TrEG oxidation and fragmentation (Scheme 1) were inspected
(Figure 8 and Figure S4).

Peaks of interest are examined in the 2.000–900 cm−1 region
where ν-C=O (1.700–1.600 cm−1), ν-CH2 (1.500–1.400 cm−1),
ν-CH3 (1.400–1.300 cm−1), and ν- C-O-C (1.200–1.000 cm−1)
bonds are reflected. All samples displayed a broad large peak
at 1.700–1.600 cm−1 region that is attributed to the plethora of
oxidized forms of TrEG coming from one-end and/or two-end
oxidized forms, such as aldehydic, ketonic, carboxylic, oxalate
groups on the surface of BMNPs (Caizer and Stefănescu, 2002;
Stefănescu et al., 2007; Dong et al., 2015b; Vamvakidis et al.,
2015; Antonoglou et al., 2017; Tryfon et al., 2019). Broad peaks
indicate that NPs can simultaneously be functionalized with
more than one type of ligand. Furthermore, the ν-CH3 bends
(1.400–1.300 cm−1) appeared dominant in all BMNPs. However,
ν-CH2 (1.500–1.400 cm−1) and ν-C-O-C (1.200–1.000 cm−1)
bends were significantly weak fainted for samples synthesized by
the solvothermal route, revealing extensive fragmentation for the
TrEG molecules and in specific the ether-type bonds of TrEG.
Further evidence of the organic transformations is indicated
from BM2 samples where oxalate forms were produced after the
polyol fragmentation and finally Cu@Zinc oxalate BMNPs were
synthesized (Figure S4).

The % w/w percentage of organic coating was measured by
means of TGA. Figure 9 depicts the weight loss recorded for
all BMNPs during thermal treatment up to 800◦C, attributed
to the decomposition of the surface organic layer. For BMNPs
synthesized by microwave (BM1, BM5, BM7) 30–32% w/w
organic coating was recorded, whereas for the products of the
solvothermal route (BM3, BM4, BM6), 18–23% w/w. Moreover,
multiple decomposition steps were observed for the microwave
BMNPs that started from 150◦C and unveiled a wide range
of different forms of TrEG as coating. Also, the multiple
decomposition steps and the relative higher % w/w organic
content in case of microwave samples’ BM1, BM5, and BM7
can be correlated to the polyalcoholic nature that gave rise to
a “curl” type of coating around the BMNPs (Vamvakidis et al.,
2015; Antonoglou et al., 2017), and this is in agreement with the
displayed strong ν-C-O-C ether bonds (Figure 8). In contrast, a
single decomposition step was recorded for the solvothermally
prepared BMNPs that started right after 350◦C, and in this case,
a more thermally stable coating was established. Additionally,
the fragmentation of polyol that occurred led to shorter alcohol
chains that are unable to “curl” around the BMNPs and gave
lower % w/w organic content.

Aqueous Colloidal Stability
The colloidal stability of aqueous suspensions of BMNPs (pH
= 7) was evaluated with DLS and ζ-potential measurements to
provide the hydrodynamic size and surface charge. Results are
summarized in Table 3. Overall, values are very close among all
BMNPs with DLS sizes of 140–260 nm. In all cases, ζ-potential

FIGURE 9 | Thermogravimetric plots recorded during thermal treatment up to

800◦C for BMNPs synthesized by microwave irradiation (BM1, BM5, BM7) (A)
and solvothermal route (BM3, BM4, BM6) (B).

values were found negative but are not exceeding the −30mV
threshold that is referred to as electrostatic stabilization of
NPs, and thus, it is suggested that brass BMNPs are stabilized
by steric repulsion forces. More negative values, higher than
−10mV that were displayed for BM3, BM4, and BM6 can be
correlated with the presence of fragmented species of TrEG.
Different coating mechanisms revealed the “curl” type in the
case of non-fragmentation (BM1, BM5, BM7) vs. the fragmented
one (BM3, BM4, BM6) that leads to more electronegative
groups (carbonyl/carboxyl/hydroxyl) at the outer surface of
the BMNPs.

CONCLUSIONS

The physicochemical properties of BMNPs can be modulated
widely and precisely, providing wonderful opportunities to
improve their performance for many different technological
applications. At the present study, getting advantage of our
know-how on the use of the polyol toolbox was proven fruitful
and revealed important aspects of the formation mechanism of
brass NPs. The polyol process proved effective in fabricating
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TABLE 3 | Structure, organic coating state, hydrodynamic size, and ζ-potential of bimetallic nanoparticles (BMNPs).

Sample Structure Organic coating
(% w/w)

Fragmentation of polyol Hydrodynamic size
(nm)

ζ-potential
(mV)

BM1 α-Cu40Zn25/γ-Cu11Zn24 30 No 139 −5.4

BM3 α-Cu59Zn30@(ZnO)11 19 Yes 161 −10.5

BM4 α-Cu63Zn37 18 Yes 255 −12.6

BM5 α-Cu47Zn10/γ-Cu19Zn24 31 No 176 −7

BM6 Cu35Zn16@(ZnO)49 23 Yes 145 −13

BM7 α-Cu37Zn18@(ZnO)45 32 No 202 −6.1

different structures of hydrophilic nano-brass, namely, both
bimetallic (CuZn) and bimetallic-oxide hierarchical core-shell
(CuZn@ZnO) NPs with a variety of compositions ranging
from copper-rich to zinc-rich materials. Moreover, estimated
crystallite, particle, and hydrodynamic sizes were all very
close, and thus, controlled regulation of only compositions,
morphology, structure, and ZnO shell thickness was achieved. In
that manner, a hydrophilic brass NPs’ collection is accumulated,
and the diverse characteristics of these NPs can be evaluated
in antimicrobial, biomedical, and agrochemical applications. We
have already initiated the endeavor with phytotoxicity evaluation
and antifungal activity (Antonoglou et al., 2018) and aspire to
unveil the true potential of hydrophilic nano-brass with future
experiments and syntheses.
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