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Abstract 

Olive pomace is a widely available agro-industrial waste residue in Europe that has the 

potential to contribute towards a circular, low carbon bio-economy. This study demonstrated, 

for the first time, the ability to successfully pyrolyse olive pomace with microwaves for the 

production of bio-char and bio-oil. It was found that the energy requirement needed to pyrolyse 

up to 80 % of the olive pomace was as low as 3.6 kJ/g and bio-oil yields up to 30 % were 

produced. Microwave power did not influence the overall yields or the chemical composition 

of the obtained bio-oils, but did alter the textural properties of the generated bio-chars and their 

ability to remove methylene blue dye. Optimum processing conditions were found to be within 

the 3.6 kJ/g energy requirement with a microwave power of 200 W and processing time of 180 

sec. These conditions produced a bio-oil fraction containing mainly acetic acid (71.9 %) and a 

bio-char with a surface area of 392.3 m2/g, micropore volume of 0.15 cm3/g and a methylene 

blue removal efficiency of 40 qMB mg/g. The results acquired from this study reveal the 

superiority of microwave heating in a pyrolysis system and highlight a novel and prospective 

route for added value recovery from natural waste resources like olive pomace.   
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1 Introduction 

The new bioenergy policies that are being set by the European Union (EU) are driving to make 

sure that each EU Member State has their own mandatory renewable energy target to achieve 

by 2020; with the ultimate goal that up to at least 20 % of the EU’s total energy is replaced by 

renewable energy sources and that all EU countries use at least 10 % biofuel in transport fuels 

[1, 2]. Certain EU countries are currently adopting waste bio-refinery models that utilise 

agricultural residues for the production of bioenergy [3] and this combination which also 

facilitates waste management within the EU, is assisting the transition to an efficient circular 

waste-based bioeconomy [4]. The EU is the world leader in the production of olive oil where 

around 2.1 million tonnes are produced each year, contributing to around 68 % of the world’s 

total production [5]. Substantial amounts of OP wastes are generated in Spain, Greece and Italy 

as olive oil production is a major contributor to each of these countries’ respective economic 

sectors. Currently, however, there is no EU legislation regulating the disposal of OP and current 

disposal practices include landfill disposal, discharge into nearby lakes, rivers or seas, and 

storage/evaporation in lagoons [6].  

An array of studies have investigated alternative routes of processing OP in order to ensure that 

it is recycled back into the circular bio-economy. Studies have explored routes to convert OP 

into alternative forms of bioenergy, such as bioethanol [7, 8], biodiesel [9, 10] and hydrogen 

production (via catalytic hydrothermal gasification) [11]. Not only has it been trialled as a 

substrate for anaerobic digestion [12, 13], bacterial cellulose production [14] and solid-state 

fermentation (for xylanase and cellulase production) [15], OP has also been used as fertilizer 

[16, 17], tested as an adsorbent for heavy metal removal [18-20] and used as a filler based 

material for the development of novel polymer composites [21, 22]. Thermochemical 

approaches to process OP have also been studied, which include direct combustion [23-25], 



4 
 

gasification [26-28] and pyrolysis [29-32] to generate biofuels. Pyrolysis research has 

expanded in recent years due to its economical advantages and applicability within a bio-

refinery to process a range of different biomass feedstocks. The process thermally decomposes 

biomass by heating in the absence of oxygen to temperatures between 400 and 600 °C, yielding 

three main products; bio-char, bio-gas and bio-oil [33]. The bio-oil fraction contains a plethora 

of compounds derived from cellulose, hemicellulose and lignin and can be used directly as a 

fuel source or blended, or as a source of platform and speciality chemicals [34]. Bio-gas has a 

high calorific value and can be used as biofuel to drive the process, whilst the residual bio-char 

can also be used either directly as a biofuel, as a soil amendment agent or activated to prepare 

efficient adsorbents [33].   

Microwave (MW) heating has become an emerging and attractive technology to use for 

biomass pyrolysis compared to conventional pyrolysis, where the limitations associated with 

non-efficient energy transfer and slow heating rates are overcome [35, 36]. Additionally, the 

instantaneous volumetric heating and faster processing rates (up to ~200 sec) features 

associated with MW pyrolysis has the potential to produce range of specific products within 

the bio-oil fraction that result from the unique thermal gradients obtained in the heated biomass 

[35, 37, 38]. This was recently highlighted in a previous study by the authors that revealed the 

presence of a unique nitrogen-containing compound, L-Proline, 1-methyl-5-oxo-, methylester, 

in bio-oils generated from the MW pyrolysis of the seaweed Laminaria digitata and its 

extraction residue [38]. It is believed that the presence of this compound resulted from the 

inherently low temperatures attained in the MW pyrolysis system that was used and the fact 

that no MW susceptors were required in the study. Yet despite the encouraging attributes 

associated with MW pyrolysis, this form of green technology to process OP has never been 

explored in comparison to conventional pyrolysis of OP which can be found in the literature 

[30, 39-43].  
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It is imminent that alternative processing technologies are explored to establish new and 

compatible ways of processing OP, particularly since there are currently no regulations 

regarding OP disposal. Furthermore, the application of microwaves to pyrolyse biomass has 

significant potential within an OP biorefinery process. Therefore, the aim of this study was to 

gain an insight into the feasibility of conducting MW pyrolysis on OP and to identify innovative 

applications of generated products; rending this study the first of its kind. The utilisation of 

specialised MW equipment with a well-defined electric field means that the specific energies 

required to induce pyrolysis (without the aid of microwave susceptors) can be determined, as 

these parameters are imperative for potential scalability of the process. The effects of specific 

energy and power on mass loss, bio-oil yield and quality are addressed with attempts of 

optimisation being explored. In addition, the generated bio-chars were characterised and 

assessed as potential adsorption materials for methylene blue dye removal properties and the 

bio-oil were characterised to identify compound of potential industrial interest.   

2 Materials and methods 

2.1 Reagents 

All reagents were of AnalaR grade and obtained from Sigma-Aldrich and Fisher Scientific 

unless otherwise specified. All water used was subjected to deionised reverse osmosis and of 

≥18 mega-ohm purity. 

2.2 Olive pomace collection and preparation for pyrolysis trials 

The OP used in this study was collected from a traditional olive mill in Kalythies village, 

Rhodes, Greece in February 2018 and was subsequently dried in a fan oven at 80 °C for a 

minimum of 48 h until dry, in order to remove the majority of the water present. The OP was 

then milled using a disc mill (TEMA Machinery Ltd, UK) until a fine homogeneous powder 

was obtained. For the MW pyrolysis trials, the powdered OP was densified in an 8 ton Specac 
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automatic pellet press. Samples (10 g) were loaded into a 31.75 mm pellet die and loaded to 8 

tons of pressure.  

2.3 Characterisation of olive pomace  

2.3.1 Biochemical composition 

A modified version of the method described by Fukushima and Hatfield [44] was used for the 

quantification of lignin. OP (100 mg) was incubated with 4.0 mL of 25 % acetyl bromide 

(AcBr) solution (in glacial acetic acid) at 50°C for 2 h and afterward the volume was made up 

to 16 mL with glacial acetic. An aliquot (0.5 mL) of this solution was further diluted with 

glacial acetic acid (2.5 mL) and 0.3 M NaOH (1.5 mL). A 0.5 mL aliquot of 0.5 M 

hydroxylamine hydrochloride solution and a further 5.0 mL of glacial acetic acid were added 

and the absorbance at 280 nm was measured (7315 spectrophotometer; Jenway, UK). Lignin 

concentrations were calculated using extinction coefficient generated from corresponding 

measurements using lignin standards. Experiments were conducted in triplicate. 

For quantification of cellulose and hemicellulose, a modified version of the Dubois assay [45] 

was followed where 1 mL of 12 M H2SO4 was added to 30 mg of OP and incubated at 37 °C 

for 1 h. Water (11 mL) was then added to the sample to dilute the acid concentration to 1 M. 

Samples were then incubated at 100 °C for 2 h. Liberated monosaccharides (glucose, galactose, 

arabinose and xylose) were analysed via Ion Chromatography using Dionex ICS-3000, using 

the method outlined in Kostas et al [46]. The CarboPacTM PA 20 column (3 x 150 mm) was 

used and the mobile phase was 10 mM NaOH with a flow rate of 0.5 mL/min. The injection 

volume was 10 μL and the column temperature was 30 °C. Authentic standards of 

monosaccharides (glucose, arabinose, galactose and xylose) with concentrations within range 

of 1 to 0.0625 g/L were used for monosaccharide quantification. The final monosaccharide 

concentrations were adjusted to an anhydrous correction factor to determine the percentage of 
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polysaccharides cellulose (glucose) and hemicellulose (summation of arabinose, galactose and 

xylose) on a dry weight basis. Experiments were conducted in triplicate.  

2.3.2 Ultimate analysis  

The elemental composition, C, H and N, of the samples was determined using a LECO CHN-

628 elemental analyser using 2,5-(Bis(5-tert-butyl-2-benzo-oxazol-2-yl) thiophene (BBOT) as 

a standard. O was calculated by difference (100 % - (C + H + N)). Samples were analysed in 

triplicate.  

2.3.3 Thermal characterisation 

TGA-DSC thermal profiles were obtained using TA Instruments Q5000 TGA (New Castle, 

DE, USA) according to the method outlined in Lester et al [47]. In brief, samples (10-15 mg) 

were placed in alumina pans and heated from room temperature to 900 ºC at 5 ºC/min with a 

nitrogen (N2) flowrate of 100 ml/min. At 900 ºC the gas was switched to air at 100 ml/min. 

Moisture and ash contents of the OP were determined by the produced TGA profile. 

The specific heat capacity was determined by using a TA Instruments SDT Q600 TGA-DSC. 

The OP (10 mg) was heated from room temperature to 900ºC at 10 ºC/min with a (N2) flowrate 

of 100 ml/min. The main output from the DSC measurement was the heat flow as a function 

of temperature. The heat flow values were used to calculate the temperature dependent specific 

heat capacity, Cp(T), of the OP as shown in Eq. 1. 

𝐶𝑝(𝑇) =  
−𝐻(𝑇)

𝑑𝑇

𝑑𝑡

           (1) 

where H(T) is the specific heat flow to the OP (W/g) at temperature T (ºC) and dT/dt is the heating 

rate (ºC/min). 
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2.3.4 Dielectric properties 

The dielectric constant (ε') and dielectric loss factor (ε") of the OP was determined using the 

cavity perturbation technique. The measurements were performed at 2470 MHz, from 20 to 

700 °C and a detailed description of the equipment is given in Adam et al [48]. ε′ is a measure 

of a material’s ability to store electromagnetic energy through polarisation, and ε" is a 

material’s ability to convert this stored energy into heat [49]. ε′ and ε" can be used to assess the 

general ability of a material to heat in an electromagnetic field, and this quantity is known as 

the loss tangent, tan δ: 

tan 𝛿 =
𝜀"

𝜀′
           (2) 

2.4 Microwave pyrolysis experiments 

The MW pyrolysis system used in the present study is described in Kostas et al [38] and can 

be seen in Fig. 1. In brief, the system was operated at frequency of 2450 ± 25 MHz and includes 

a generator with 2 kW maximum output power; an automatic three-stub tuner (S-TEAM STHD 

v1.5) connected to a rectangular WR430 waveguide. The automatic tuner was used for 

impedance matching, to minimise the reflected power and also to log the absorbed power over 

time so that an energy balance can be carried out. A cylindrical single mode TE010 cavity was 

connected by WR430 waveguide to the sliding short and the incident, absorbed and reflected 

powers were recorded. The pyrolysis reactor consisted of a quartz tube (35 mm ID) where the 

pelletised sample was placed. The condenser was placed below the microwave cavity so that 

any bio-oils that were condensed upon contact with the cold (N2) would flow under gravity to 

the rest of the collected bio-oil and avoid liquid droplets falling back onto the OP pellet.  

Before performing any pyrolysis experiments, optimal tuner settings were determined using a 

vector network analyser (Rohde & Schwarz ZVL) and adjusting the stub and sliding-short 

positions to minimise reflected power. Since it is not possible to obtain accurate temperature 

measurements in MW-heating experiments [50, 51], specific absorbed energy was used instead 
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of temperature as a control variable. This was determined by numerical integration of the 

absorbed power, (Pa), according to the following equation: 

𝐸 =  
∫ 𝑃𝑎𝑑𝑡

𝑀
           (3) 

where E is the specific absorbed energy (kJ/g), t is time differential (sec), and M is the initial 

mass of the pellet (g). 

Prior to running any experiments, the system was calibrated without a sample in order to ensure 

that no MW energy was absorbed by the MW cavity walls. Power losses were confirmed to be 

<5 %.  

MW pyrolysis experiments on the OP were carried out at powers of 150 – 900 W for 20 – 240 

sec to give specific energies of 1.8 (low), 2.4 (medium) and 3.6 (high) kJ/g, respectively (Table 

S1). The vapours produced during pyrolysis were quenched by a condenser and the bio-oil was 

collected in a flask and stored at 4 °C until further analysis (section 2.6). Any non-condensables 

were vented through an extraction system, as bio-gas productions and analysis was not within 

the scope of this study. The solid (bio-char) which remained at the end of the trials was 

collected, cooled and weighed to calculate the percentage mass loss. The bio-gas fraction was 

not collected, however the mass balanced of bio-gas was estimated by difference.    

The most suitable specific energy range that produced the greatest yields of bio-oil and highest 

mass loss for the OP was investigated in further pyrolysis trials in order to optimise and study 

the influence of a narrower power range (200 – 500 W) with varying pyrolysis run times (72 – 

180 sec); Table S2.  

2.5 Prediction of temperature simulations  

As it was not possible to measure the temperature that was reached during the pyrolysis 

experiments, the temperature distribution of 3 OP pellets (selected at random for proof of 

principal) that were pyrolysed within the tested specific energy groups were estimated. This 

was achieved using electromagnetic modelling based on the measured dielectric properties 
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(Section 2.3.4), the specific heat capacity (Section 2.3.3) and the thermal conductivity of OP 

obtained from Mason et al [52]. The Finite Element Method (FEM) was applied, using 

COMSOL Multiphysics 5.3 electromagnetic simulation software which involved constructing 

a tetrahedral mesh of the OP dimensions. Maxwell’s equations were calculated to derive the 

magnitude of the electric field and the power density distribution (amount of power absorbed 

into the OP pellet). Temperature coupling of the power density as a heat source was used 

alongside the material properties of the OP pellet to determine the temperature reached during 

the MW pyrolysis process. The boundary equations required for the computational simulations 

are presented in Table S3.  

2.6 Bio-oil analysis 

Samples of neat (undiluted) bio-oil were analysed by gas chromatography – mass spectrometry 

(GC-MS) in full scan mode (m/z 40-450) on a Varian CP-3800 GC interfaced to a Varian 1200 

MS (EI mode, 70 eV). Separation was achieved on a Zebron ZB-1701 fused silica capillary 

column (60 m x 0.25 mm i.d., 0.25 μm thickness), following injection in split mode (100:1), 

with Helium as the carrier gas, and an oven programme of 50°C (hold for 2 min) to 300°C 

(hold for 16 min) at 5 °C/min. Identification of individual compounds was performed by 

comparing experimental mass spectra with those in the NIST Mass Spectral library (NIST14 

database; National Institute of Standards and Technology, Maryland, USA). The percentage 

area method was used for the quantification of the compounds present in the bio-oil, to which 

then the values were converted to and expressed as proportion of total identified (%).   

2.7 Bio-char characterisation 

2.7.1 Ultimate and TGA analysis 

Ultimate and TGA analyses were performed on the bio-chars generated from the optimisation 

trial by following the methodologies outlined in sections 2.3.2 and 2.3.3.  
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2.7.2 True density determination  

The true density measurements of the OP and bio-chars were carried out using a Micromeritics 

AccuPyc II 1340 Pycnometer. Helium was used as the gas displacement medium, and all 

samples were dried using a vacuum oven at 120 °C for 24 hours prior to analysis. 

Approximately 250 mg was weighed into a 1 cm3 sample cell, with the sample purged 20 times 

with Helium, and then 20 analysis cycles were acquired. From the 20 analysis cycles the 

average true density was calculated. 

2.7.3 CO2 adsorption isotherms 

CO2 adsorption isotherms of the OP and bio-chars were acquired using a Micromeritics ASAP 

2420 instrument using CO2 as the adsorbate. Prior to analysis, approximately 250 mg of 

samples was weighed into a sample tube and degassed to remove adsorbed moisture and other 

gases under high vacuum at 120 °C for 15 h. Isotherms were carried out at 0 °C from 0.00005 

to 0.035 relative pressure (P/P0). The surface area and micropore volume was calculated using 

the Dubinin-Radushkevich model using Microactive Software V5.0. 

2.7.4 Surface morphology of OP and bio-chars 

A Scanning Electron Microscope was used to image the surface morphology of the OP and any 

morphological changes that occurred after MW pyrolysis of the OP. The OP and bio-chars 

generated by MW pyrolysis at 200 and 350 W were prepared by pouring a thin layer on carbon 

sticky tabs that were attached to stubs. The stubs were then platinum coated (approx. 10 nm) 

and SEM was conducted on a FEI Quanta 600i SEM with energy dispersive X-ray. The images 

were scanned at ~1500x magnification and the working distance was between 12.8 – 13.2 mm.  

2.8 Bio-char methylene blue (MB) absorption tests 

Adsorption experiments were carried out using Methylene blue dye (MB) purchased from 

Sigma Aldrich and used without further purification. The experiments were conducted in batch 
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systems using 20 mg of bio-char with 10 mL of 300 mg/L MB solution in polycarbonate 

cylindrical cells at 30 °C using an incubator at 160 rpm. After 24 h, bio-chars were decanted 

from the dye solution and the remaining liquid was analysed by UV–Vis spectrophotometry 

employing a Hach DR-5000 spectrophotometer. Each experiment was performed in triplicate 

under identical conditions. The dye concentration at equilibrium was calculated from the 

calibration curve, which was obtained at the wavelength of maximum absorbance (664 nm). 

Finally, the adsorbed amount was calculated using Eq. (4) 

𝑞 =
(𝐶0−𝐶𝑓)

𝑚
 x 𝑉                                                              (4) 

where q is the absorbed amount in mg/g, C0 and Cf   are the initial and equilibrium 

concentrations in mg/L, m is the mass of the bio-char (g), and V is the volume (L).  

3 Results and discussion 

3.1 Biochemical, thermal and dielectric characterisation 

The cellulose and hemicellulose contents were 15.9 and 13.6 % (d/w), respectively, whilst 

lignin represented the greatest component, contributing to 27.0 % (d/w) (Table S4). The loss 

tangent for the dielectric property profile is a highly non-linear function of temperature, with 

peaks at 100 °C, 205 °C followed by an exponential increase at temperatures in excess of 450 

°C (Fig 2 A). The changes in the dielectric profile result from the chemical transformations 

that are occurring within the OP as temperatures increase. The dielectric property behaviour 

can be related to the mass loss which results from the volatilisation of the OP (Fig. 2 B). The 

loss tangent value of the OP at room temperature, around 0.09, is considerably higher compared 

to other biomass feedstocks including seaweed (L. digitata) [38], pecan nut shell [53] and 

sycamore [36] which have loss tangent values of 0.01, 0.04 and 0.055, respectively. This may 

be to the presence of residual oil in the OP that remains with traditional olive oil processing 

techniques, and usually ranges from around 18 – 27 % [54]. The high loss tangent value at 
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room temperature compared to other biomasses is advantageous for MW processing, as 

biomass feedstocks are in general poor absorbers of MW [55]. In order to overcome this barrier, 

MW-absorbing materials such as bio-char and silicon carbide are often mixed with the biomass 

to induce heating and ultimately start the pyrolysis process [56]. Yet by exploiting the OP’s 

naturally high ability to absorb MWs, the MW pyrolysis of OP may be easily feasible without 

the use of MW absorbants.  

3.2 Microwave pyrolysis trials 

There was a positive trend between specific energy and mass loss, with higher energies 

generally leading to greater mass loss yields (Fig. 3 A). Maximum mass losses obtained in this 

scoping trial were between 78.0 – 80.6 % within specific energy ranges of 2.3 – 3.5 kJ/g. These 

specific energy requirements also take into account the energy that is required to remove any 

residual water from the OP pellet, during the pyrolysis process. This is the first study to report 

such high mass losses achieved from biomass MW pyrolysis at that particular specific energy 

range. Adam et al [36], who used a fluidised bed MW system to pyrolyse sycamore obtained 

mass loss yields between 60 – 70 % between higher specific energy range of 3.5 – 4.2 kJ/g, 

whilst another study that employed a different set-up of a gas-inerted fixed-bed system 

achieved a maximum 65 % mass loss of European Larch at a specific energy of 2.5 kJ/g [35]. 

In a previous study conducted by the authors using the same MW system as detailed in this 

work, mass loss yields of seaweed were within the ranges of 50 – 70 % at specific energies of 

1.6 – 3.0 kJ/g [38]. It appears that less energy is required to pyrolyse a greater degree of the 

OP and this may be attributed to the relatively high dielectric properties of OP exhibited at 

room temperature (Fig 2 A). There also appeared to be a positive trend with bio-oil yields 

against energy (Fig 3 B) with the majority of bio-oil yields falling within the range of 10.0 – 

28.7 %.  
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It is evident that there is a decrease in mass loss with an increase in MW power in the lower 

and medium tested energies (Fig. 3 C). On the contrary, for the higher energy range, there 

appeared to be no significant difference in mass loss yields as the power increased from 150 to 

750 W, yet a decrease from 78.0 to 62.9 % in mass loss is seen when a power of 900 W was 

used. For bio-oil yields, it is clearly evident that the lowest investigated power of 150 W 

produced the highest yields of bio-oil across the three energy ranges, although powers 

investigated in the higher energy range generated greater bio-oil yields (19.4 – 38.0 %) on 

average (Fig. 3 D). A power of 450 W (in the higher energy range) yielded the greatest amount 

of bio-oil (38.0 %), however it is noticeable from Figs. 3 C and D is that the lowest power input 

of 150 W across the three energy ranges always generated the greatest mass loss and bio-oil 

yields of the pyrolysis process. This indicates that lower powers are better suited however 

within a higher energy range of around 3.6 kJ/g. When higher energies are applied, greater 

temperatures can be reached during the pyrolysis process, essentially leading to greater thermal 

decomposition levels (resulting in significant mass losses being attained to an extent). This is 

evident in the predicted OP surface temperatures depicted in Fig. 4 which match the OP bio-

char images. These were simulated as accurate temperature measurements cannot be conducted 

within a MW system [55]. It is clear that greater temperatures were reached in the higher energy 

range (from 650 °C on the outside to 900 °C in the centre) compared to both the lower (100 °C 

on the outside to 500 °C in the centre) and medium (350 °C on the outside to 600 °C) energy 

ranges. 

3.2.1 Microwave pyrolysis optimisation trial 

An optimisation study was performed in order to explore the effects of lower levels of power 

(200 – 500 W) within the higher specific energy range (3.6 kJ/g) on mass loss and bio-oil 

yields. The overall mass balance of the process for each of the processing conditions can be 

seen in Fig S1. Interestingly, no differences in OP mass losses are evident between the powers 
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(and time combinations – sec) that were tested (Fig. 5). There does appear to be a slight 

decrease in bio-oil yields when powers exceed 350 W which may be attributed to greater 

temperatures being reached with the greater powers (possibly leading to gasification of the 

process). During gasification, there is a shift in product proportion which results in a greater 

bio-gas fraction and lower bio-oil yields [57].  Despite the bio-gas fraction not being collected 

for analysis in this study as it was beyond the scope of the work, incorporating bio-gas 

collection in future studies would enhance the understandings of this process with OP and 

would be of benefit to the overall life cycle/techno-economical assessments. However, it was 

not directly evident which parameters are optimal for OP processing based off the initial 

findings in the optimisation study. In order to gain insight, more in depth analysis was 

conducted on the bio-char and bio-oil fractions that were produced from OP.  

3.3 Characterisation of bio-oil samples from OP 

Bio-oils that were generated from the optimisation MW pyrolysis trial were analysed by GC-

MS. Due to the high number of peaks found on the chromatograms and difficulties separating 

the peaks due to the complex composition of bio-oil, the most prominent compounds were 

semi-quantitatively evaluated and can be seen in Table 1. The bio-oils appear to have an 

abundance of different classes of compounds that are typically identified in bio-oils generated 

from lignocellulosic feedstocks; ketones, phenols, aldehydes, carboxylic acids, alcohols and 

anhydrosugars. Acetic acid was the main compound which was most prevalent and accounted 

for around 67 – 72 % of the total compounds that were identified. It is believed that the presence 

of acetic acid in pyrolysis bio-oil is derived from the breakdown of acetyl groups on the 

hemicellulose polymer [58]. Furthermore, it is known that levoglucosan is also sensitive to heat 

and decomposes to acetic acid at high temperatures [59], which would explain the lower levels, 

around 0.66 – 1.27 %, that were identified in the bio-oils generated herein. Levoglucosan is 

mainly a product of the β-1,4 glycosidic bond cleavage on the cellulose polymer [58] and a 
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prominent compound in pyrolysis bio-oil that is frequently used as a marker compound for 

cellulose breakdown. However, as simulated temperature profiles of the OP pellets were 

predicted to have reached between 650 – 900 °C in the higher tested energy range (Figs. 4 A 

and B), it is likely that levoglucosan underwent a secondary decomposition reaction to yield 

acetic acid.  Various studies attempting to understand the pyrolysis mechanism of levoglucosan 

have also identified acetaldehyde, glycolaldehyde, 1-hydroxy-2-propanone, acetone, 3-

hydroxy-2-butanone, 2,3-butanedione, furan, furfural and furfuryl alcohol as decomposition 

products [60, 61]. The presence of a range of phenol derivatives in the generated OP bio-oils 

(phenol, methoxyphenol and dimethoxyphenol) although at lower concentrations, are related 

to the thermal deconstruction of the principal monomers of lignin (coniferyl alcohol, p-

coumaryl alcohol and synapyl alcohol) [62].  

Even though it is clear that the compounds identified in the pyrolysis bio-oils are thermal 

degradation products of the main biochemical constituents of the OP, MW power did not 

directly influence bio-oil composition or favour the formation of specific compounds. 

However, the presence of compounds such as acetic acid, levoglucosan and phenol derivatives 

as raw chemical precursors, makes OP bio-oil an attractive feedstock for applications in a bio-

refinery.  

3.4 Investigating the abilities of generated OP bio-chars as methylene blue adsorbents 

The elemental composition of the bio-chars are shown in Table 2 and there are clear differences 

in composition between the non-pyrolysed OP and the generated bio-chars. The non-pyrolysed 

OP is mainly composed of carbon (51.1 %), oxygen (41.0 %), hydrogen (7.14 %) and nitrogen 

(0.73 %), which is in agreement with the literature [63]. The percentage of carbon in the bio-

chars increased from 51.1 % to be within similar ranges of 73.0 to 77.8 %. There also appeared 

to be an increase in ash content, as well as the density of the generated bio-chars, which is 
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typically expected post MW pyrolysis. However, there appeared to be no true overall effect of 

power on the composition of the generated OP bio-chars. 

MW power does appear to influence bio-char surface area and MB adsorption abilities (Fig. 6 

A). The surface areas of the generated bio-chars are significantly higher (ranging from 255.1 – 

392.3 m2/g) than the non-pyrolysed OP (44.7 m2/g). It is evident, however, that the surface 

areas of the bio-chars vary non-linearly with MW power. The micropore volume of the bio-

chars also displayed the exact same trend with surface area (seen in Fig 6 B), with micropore 

volumes ranging from 0.08 – 0.15 cm3/g, yet still much higher than OP (0.02 cm3/g). 

Interestingly, the non-pyrolysed OP removed the highest amount of MB (45.9 qMB mg/g), 

despite having the lowest surface area (Fig 6 A). This has been previously reported, 

nevertheless, where a MB adsorption value of 42.3 mg/g from OP was recorded, and it is known 

that biomass or waste residues in their natural forms are highly efficient at MB removal [64]. 

Traditionally, activated carbon, which has a porous structure with a large internal surface area 

resulting from chemical or physical activation, is the most widely used adsorbent for removing 

methylene blue (MB) dye from aqueous solutions. However, as commercially available 

activated carbons are relatively expensive, carbon adsorbents have been prepared from a 

number of different agricultural wastes and lignocellulosic biomasses as inexpensive and 

renewable alternatives via both conventional and microwave heating means [65, 66]. As such, 

it was important to also evaluate the abilities of the generated bio-chars to remove MB dye in 

this study. When waste residues such as OP are heated, the increase in the release of organic 

volatile compounds creates pore-like structures which enhance the surface area; simultaneously 

generating adequate dye adsorbing materials. This appeared to be the case for the OP bio-char 

that was generated by applying 200 W of power, which significantly had the highest surface 

area (393.3 m2/g) and greatest micropore volume (0.15 cm3/g) compared to the other generated 

bio-chars, and removed similar amounts of MB dye (41.0 qMB mg/g) as the non-pyrolysed OP 
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(45.9 qMB mg/g). The fact both the non-pyrolysed OP and the 200 W bio-char removed similar 

amounts of MB dye may be due to distinct alterations in surface chemistries. MB removal by 

the non-pyrolysed OP most likely results from interactions between different functional groups 

on the surface of the non-pyrolysed OP (such as alcoholic, carboxylic and phenolic groups) 

with the cationic group on the MB dye molecule [67]. Furthermore, hydrogen bonds could also 

be formed between the hydroxyl groups of the non-pyrolysed OP and the nitrogen atom of the 

MB dye [68]. On the contrary, a different mechanism of MB dye removal is predicted with the 

generated bio-chars. The increase in carbon and decrease in oxygen contents between the non-

pyrolysed OP and the bio-chars, suggests a rearrangement of the carbon structure between the 

samples (from aliphatic to aromatic). This evidently enhanced the formation of porous bio-char 

(as seen in Figs. 6 A and B and Figs. 7 A - C). It is suggested that MB adsorption onto the 

generated bio-chars may be controlled by the combination of π–π and electrostatic interactions, 

in addition to mechanisms of intra-particle diffusion of the MB dye molecule onto the porous 

structures of the bio-char [69]. The SEM micrographs in Fig. 7 A - C validate these premises, 

as it is clear that the non-pyrolysed OP has a more organised and intact surface structure (Fig. 

7 A), whereas the bio-chars generated by pyrolysing at 200 W and 350 W have a rougher 

texture (Fig. 7 B - C). It is also noticeable that there are more heterogeneous pores on the 200 

W bio-char (Fig. 7 B) compared to the 350 W bio-char (Fig. 7 C) which was chosen for analysis 

due to its weaker ability to remove the MB dye; these micrographs support the results in Figs. 

6 A and B. Further research to examine the OP bio-chars for the removal of a wider range of 

food and textile dyes as well as heavy metal ions (such as Pb (II), Cd (II), Zn (II), Ni (II), Cu 

(II)) would be of great interest in order to gain a better understanding of OP bio-char 

applications. Furthermore, the surface areas of the bio-chars generated from this optimisation 

study are actually higher than reported values of bio-chars produced from OP via conventional 

heating at 700 °C for 2 hours [70], which potentially highlights the superiority of MW heating.   
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4 Conclusions 

This study has demonstrated the potential of using OP as a source of bio-oil and bio-char via 

MW pyrolysis. Optimum MW pyrolysis conditions were found to be within the higher specific 

energy range of 3.6 kJ/g for greater mass loss (ca. 80 %) and bio-oil yields (ca 26 – 30 %). The 

overall yield and compound composition of the bio-oil was not influenced by MW power 

within this specific energy range, however acetic acid was the most prominent identifiable 

compound in all generated bio-oils (66.5 – 71.9 %). MW power did appear to effect the textural 

and the MB dye adsorption properties of the bio-chars, with 200 W for 180 sec (at 3.6 kJ/g 

specific energy) proving to be optimal processing conditions. The findings in this work provide 

evidence of the exciting potential for efficient bio-refinery processes for OP to be developed.  
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TABLE CAPTIONS 

Table 1. Composition of bio-oils obtained from the optimised microwave pyrolysis trial. 

Table 2. Characterisation of OP bio-chars obtained after optimised microwave pyrolysis 

trial. 
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FIGURE CAPTIONS 

Fig 1. Schematic of microwave pyrolysis rig used in this study. 

Fig 2. A) Dielectric properties (Loss Tangent), B) TGA (solid line)/DSC (dotted line) and 

C) specific heat capacity of olive pomace as a function of temperature. 

Fig 3. A) Mass loss and B) bio-oil yields of OP against specific energy and the influence 

of power on C) mass loss and D) bio-oil yield within each energy group. 

Fig 4. A) OP pellets post pyrolysis within energy ranges of 1.8, 2.4 and 3.6 kJ/g and 

simulated and B) temperature distribution  

Fig 5. Influence of power on mass loss and bio-oil yields during microwave pyrolysis 

optimisation study. 

Fig 6. Effect of power on the generated bio-char surface area and their methylene blue 

removal abilities, compared to non-pyrolysed OP. 

Fig 7. SEM images of the OP (A), bio-char generated from 200 W (B) and bio-char 

generated from 350 W (C) at ~1500x magnification.  
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Table 1 

 

  Proportion of Total Identified (%) 

Compound Name Retention Time (min) Run 1* Run 2* Run 3* Run 4* Run 5* Run 6* Run 7* 

Acetone 5.072 0.34 0.63 0.31 0.97 1.45 0.14 0.62 

Acetic acid methyl ester 5.131 0.63 0.77 0.52 0.64 0.77 0.37 0.56 

Acetic acid ethenyl ester 5.922 0.34 0.34 0.34 0.39 0.40 0.46 0.24 

Acetic acid 7.250 71.96 70.51 70.46 70.91 66.52 71.00 71.87 

Hydroxypropanone 8.125 12.45 12.74 13.31 13.07 15.06 12.10 13.35 

Propanoic acid 9.597 1.04 1.07 0.95 1.08 1.13 0.84 0.95 

Hydroxybutanone 10.556 3.87 4.06 3.99 4.20 4.72 4.15 3.87 

Furfural 12.316 0.24 0.33 0.20 0.41 0.33 0.48 0.35 

Cyclopentenone 12.351 0.71 0.68 0.71 0.55 0.73 0.56 0.55 

Furanmethanol 13.565 0.42 0.40 0.40 0.32 0.28 0.49 0.19 

Butanediol 13.755 1.07 1.10 1.01 1.06 1.20 1.08 1.04 

Cyclohexanone 15.691 0.41 0.42 0.33 0.23 0.22 0.51 0.18 

Hydroxybutanoic acid 17.071 0.76 0.78 0.77 0.71 0.77 0.75 0.66 

Furanone 17.331 0.51 0.54 0.59 0.58 0.64 0.65 0.53 

Methylcyclopentanedione 18.694 1.40 1.56 1.56 1.27 1.49 1.61 1.25 

Phenol 19.531 0.25 0.34 0.35 0.35 0.36 0.28 0.35 

Methoxyphenol 20.121 1.10 1.29 1.10 0.93 1.04 1.16 0.94 

Methylcyclopentanediol 21.300 0.71 0.65 0.80 0.66 0.76 0.85 0.65 

Dimethoxyphenol 28.207 1.13 1.19 1.32 0.91 1.06 1.26 0.87 

Levoglucosan 35.963 0.66 0.61 0.98 0.79 1.05 1.27 0.99 
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Table 2 

 

* Calculated by difference 

$ Determined from TGA 

 

Sample Power (W) Time (sec) C % H % N % *O % $Ash (%) $Moisture (%) True Density (g/cm3) 

Olive - - 51.1 ± 0.4 7.1 ± 0.1 0.7 ±  0.1 41.0 ± 0.4 1.6 ± 0.3 6.9 ± 0.6 1.3 ± 0.01 

1* 200 180 77.7 ± 0.3 1.7 ± 0.1 1.3 ± 0.1 19.4 ± 0.4 9.8 ± 0.7 4.7 ± 0.2 1.7 ± 0.01 

2* 250 144 77.8 ± 0.7 1.7 ± 0.3 1.3 ± 0.1 19.3 ± 1.0 10.8 ± 0.2 5.4 ± 0.6 1.6 ± 0.01 

3* 300 120 73.5 ± 1.0 3.2 ± 0.5 1.0 ± 0.1 22.3 ± 1.5 8.6 ± 0.4 5.0 ± 0.3 1.7 ± 0.01 

4* 350 103 76.7 ± 0.9 2.0 ± 0.1 1.2 ± 0.1 20.1 ± 1.0 10.2 ± 0.3 4.3 ± 0.2 1.6 ± 0.01 

5* 400 90 77.3 ± 0.2 2.9 ± 0.1 1.3 ± 0.1 18.5 ± 0.2 7.4± 0.3 4.5 ± 0.1 1.6 ± 0.01 

6* 450 80 76.9 ± 1.0 2.5 ± 0.2 1.3 ± 0.1 19.4 ± 1.1 8.4 ± 0.2 4.7 ± 0.1 1.3 ± 0.01 

7* 500 72 75.5 ± 1.4 2.4 ± 0.3 1.9 ± 0.1 20.9 ± 1.6 9.6 ± 0.1 5.1 ± 0.1 1.6 ± 0.01 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4  
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Fig. 5 
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Fig. 6 
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Fig. 7 

  


