Manuscript Number: EURHEARTJ-D-19-02443R1

Full Title: Dilated Cardiomyopathy: so many cardiomyopathies!

Article Type: Current Opinion

Keywords: dilated cardiomyopathy

Corresponding Author: Marco Merlo, MD
Cardiovascular Department, Azienda Sanitaria Universitaria Integrata of Trieste (ASUITS), University of Trieste, Italy
Trieste, ITALY

Order of Authors (with Contributor Roles):
- Gianfranco Sinagra (Conceptualization: Lead; Writing – original draft: Lead; Writing – review & editing: Lead)
- Perry M Elliott (Conceptualization: Equal; Writing – original draft: Equal; Writing – review & editing: Equal)
- Marco Merlo, MD (Conceptualization: Equal; Writing – original draft: Equal; Writing – review & editing: Equal)

Corresponding Author Secondary Information:

Corresponding Author's Institution: Cardiovascular Department, Azienda Sanitaria Universitaria Integrata of Trieste (ASUITS), University of Trieste, Italy

First Author: Gianfranco Sinagra

Order of Authors Secondary Information:

Abstract: n/a

Suggested Reviewers:

Opposed Reviewers:

Additional Information:

<table>
<thead>
<tr>
<th>Question</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Word Count:</td>
<td>1998</td>
</tr>
<tr>
<td>Word Count Manuscript-only (excluding references):</td>
<td>695</td>
</tr>
<tr>
<td>Did you cite ESC guidelines where appropriate?</td>
<td>yes</td>
</tr>
<tr>
<td>As Corresponding Author, I take full responsibility for all information declared in this notification.</td>
<td>Yes</td>
</tr>
<tr>
<td>As Corresponding Author, I agree to be the principal correspondent with the Editorial Office, review the edited manuscript and proof, and make decisions about releasing manuscript information to the media, federal agencies, etc.</td>
<td>Yes</td>
</tr>
<tr>
<td>Statement</td>
<td>Answer</td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>All persons who have made substantial contributions to the manuscript (e.g. data acquisition, analysis, or writing/editing assistance), but who do not fulfill authorship criteria, are named with their specific contributions in the Acknowledgements Section of the manuscript.</td>
<td>Yes</td>
</tr>
<tr>
<td>All persons named in the Acknowledgements Section have provided the Corresponding Author with written permission to be named in the manuscript.</td>
<td>Yes</td>
</tr>
<tr>
<td>If an Acknowledgements Section is not included in the paper then no other persons have made substantial contributions to this manuscript.</td>
<td>Yes</td>
</tr>
<tr>
<td>Please enter the names of the authors who did anything else on the manuscript other than what we have listed:</td>
<td>Giulia De Angelis Antonio Cannata</td>
</tr>
<tr>
<td>This manuscript represents valid and substantiated work.</td>
<td>Yes</td>
</tr>
<tr>
<td>If asked, I will provide or fully cooperate in obtaining and providing the original data on which the manuscript is based so the editors or their designates can examine it.</td>
<td>Yes</td>
</tr>
<tr>
<td>The paper under question is official ESC output being submitted by an ESC Association, Working Group or Council.</td>
<td>No</td>
</tr>
<tr>
<td>Each person listed as co-author has been entered as contributing to at least one part of the manuscript</td>
<td>Yes</td>
</tr>
<tr>
<td>TWITTER message (Please submit a catchy Twitter message of max. 280 characters, which we would use to promote this submission in the event of acceptance - Max 280 characters).</td>
<td>Dilated Cardiomyopathy: so many cardiomyopathies!</td>
</tr>
<tr>
<td>Corresponding Author and Co-authors: Identifying Information</td>
<td></td>
</tr>
<tr>
<td>Please enter your first name and last name and include a statement as follows: 'I confirm I am affiliated with this paper whose details are within this email.'</td>
<td></td>
</tr>
<tr>
<td>Corresponding Author and Co-authors: Relevant financial activities outside the submitted work:</td>
<td></td>
</tr>
<tr>
<td>Please select yes or no - if yes please confirm whether you have financial relationships (regardless of amount)</td>
<td></td>
</tr>
<tr>
<td>Corresponding Author and Co-authors: The Work Under Consideration for Publication:
Did you or your institution at any time receive payment or services from a third party (government, commercial, private foundation, etc.) for any aspect of the submitted work (including but not limited to grants, data monitoring board, study design, manuscript preparation, statistical analysis, etc.)? Are there any relevant conflicts of interest? Yes/No</td>
<td>No</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Corresponding Author and Co-authors: Intellectual Property – Patents & Copyrights:
Do you have any patents, whether planned, pending or issued, broadly relevant to the work? Yes/No</td>
<td>No</td>
</tr>
<tr>
<td>Corresponding Author and Co-authors: Relationships not covered above:
Are there other relationships or activities that readers could perceive to have influenced, or that give the appearance of potentially influencing, what you wrote in the submitted work?</td>
<td>No other relationships/conditions/circumstances that present a potential conflict of interest Relationships</td>
</tr>
</tbody>
</table>

First Author Secondary Information:
Dilated Cardiomyopathy: so many cardiomyopathies!

Sinagra G, Elliott PM, Merlo M

* Cardiovascular Department, Center for diagnosis and treatment of Cardiomyopathies, Azienda Sanitaria Universitaria Integrata (ASUITS), University of Trieste, Italy

* Centre for Heart Muscle Disease, Institute of Cardiological Sciences, University College London and St. Bartholomew’s Hospital, London, UK.

Total word count (including references and figure legend): 1698

Funding and disclosures: none

Issue category: current opinion

Address for correspondence:

Gianfranco Sinagra, MD, FESC,
Chief of Cardiovascular Department, Center for diagnosis and treatment of Cardiomyopathies, Azienda Sanitaria Universitaria Integrata (ASUITS), University of Trieste, Italy

Via P. Valdoni 7, 34100, Trieste, Italy

Tel: +390403994477

Fax: + 390403994878

e-mail: gianfranco.sinagra@asuits.sanita.fvg.it
Dilated cardiomyopathy: a simple definition for a multifaceted disease

The current definition of Dilated Cardiomyopathy (DCM) is relatively simple; namely, a heart muscle disease characterized by left ventricular (LV) or biventricular dilation and systolic dysfunction in the absence of either pressure or volume overload or coronary artery disease sufficient to explain the dysfunction [1]. In the last decades, the prognosis of patients with DCM has improved significantly with survival free from death and heart transplantation rising to more than 80% at 8-year follow-up [2]. This improvement in outcomes reflects the implementation of pharmacological and non-pharmacological therapeutic strategies, earlier diagnosis due to familial and sport related screening, and individualized long term follow-up with continuous re-stratification of risk.

Despite the relatively benign natural history overall, clinical management of patients and families with DCM is still challenging. DCM is currently the second most common heart failure phenotype and indication for heart transplantation, after ischaemic heart disease [3]. In fact, a non-negligible proportion of DCM patients still have an unfavorable prognosis, particularly in the short-term, with substantial heart-failure and arrhythmia-related risks. One reason for this is the complex and heterogeneous etiology of the disease [4]. DCM is an “umbrella” term that describes the final common pathway of different pathogenic processes and gene-environment interactions. There are many examples of Mendelian genetic disorders causing DCM, and it is probable that an individual genetic predisposition favors a dilated phenotype in the presence of trigger factors, such as inflammation, toxic insults from alcohol or drugs, and tachy-arrhythmias. DCM is also a feature of systemic disorders (i.e. autoimmune, endocrine, neuromuscular or infectious diseases, iron overload, sarcoidosis) that may be overlooked or diagnosed late in the course of disease. Distinguishing this complex etiological diversity is likely to result in better prognostic stratification and ultimately targeted therapy.

Can a precise diagnosis influence therapeutic decisions?
A thorough phenotyping and genotyping of DCM patients, through modern imaging techniques, such as speckle tracking echocardiography, cardiac magnetic resonance imaging, including a comprehensive tissue characterization analysis, and genetic testing on either selected gene panels or whole exome, represent the basis for the clinical management, but by themselves are often insufficient to define the aetiology. This requires better understanding of the complex interactions between environmental factors and genetic background, still an important gap of knowledge requiring focused research. A detailed etiological characterization of newly diagnosed DCM is crucial for clinical management aiming to improve outcomes of DCM patients, through the following different strategies:

- **Left ventricular reverse remodeling (LVRR) prediction:** DCM is a dynamic disease and LVRR is known as associated to better long-term outcomes [4], however the prediction of LVRR remains challenging. Etiological classification appears a pivotal tool, because DCM can undergo early and either significant or complete recovery after removal of the triggering insult, such as in the case of toxic/overload, infectious/inflammatory or chemotherapy/drug-associated forms [5-8]. Specific forms of inflammatory cardiomyopathies (such as giant cell, eosinophilic or sarcoidosis) have indication for early immunosuppression. In clinical practice, most of inflammatory cardiomyopathies derived from lymphocytic myocarditis. In those forms, recommendations to immunosuppression are based on expert opinions [9], rather than clinical trials. However, in inflammatory cardiomyopathies, the evidence of LVRR after an accurate diagnosis and treatment was associated to an excellent long-term prognosis [6,10]. Some reports describe particularly fast left ventricular reverse remodeling and a low rate of arrhythmic events in patients with DCM associated with hypertension [11]. Rhythm control in newly diagnosed DCM patients presenting with rapid and sustained supraventricular arrhythmias or frequent ventricular ectopy can lead to a reversal of cardiac dysfunction [5]. Similarly, correction of LV dyssynchrony induced by left bundle branch block with cardiac resynchronization therapy offers another route to recovery, particularly in the absence of likely pathogenic genetic variants or late gadolinium enhancement at
cardiac magnetic resonance [12]. Therefore, the identification of any possible removable trigger, should be systematically considered in the early management, and prognostication of DCM patients (Figure). In the absence of possible removable triggers, the detection of late gadolinium enhancement at cardiac magnetic resonance or specific mutations (such as cytoskeleton genes) are associated with lower probability of LVRR [4]. Finally, a red-flags approach, including a comprehensive multiparametric evaluation of the patient, should be systematically pursued in order to individualize the management [4].

- arrhythmic risk stratification: DCM patients are generally young (i.e. onset in 3rd to 5th decade of life) and barely symptomatic at diagnosis, thanks to early diagnosis due to systematic familial and sport activity screening programs. In these patients, the burden of life-threatening ventricular arrhythmias is particularly high in comparison to heart failure related events. Therefore, arrhythmic risk stratification remains challenging. The mono-parametric current risk stratification model, essentially based on severely depressed left ventricular ejection fraction, appears inadequate and an individualized multiparametric evaluation is warranted. Tissue characterization through a comprehensive cardiac magnetic study including late gadolinium enhancement presence and localization is emerging as a fundamental tool other than clinical parameters, ECG, Holter monitoring and echocardiographic findings [3,4]. Furthermore, the prognostic relevance of gene mutations in the setting of familial DCM is emerging. With the advent of next generation sequencing, the evidence that DCM is a genetic disease in a proportion of cases has strengthened [13] and large cohort studies are establishing important genotype-phenotype correlations. Beyond the widely known LMNA mutations, recently other genes (e.g. FLNC, PLN, DSP or RBM20) have been related to arrhythmic phenotypes, in so-called arrhythmogenic cardiomyopathy [14-17]. Mutations in the gene encoding titin appear to be most frequent and are associated with an arrhythmic phenotype and a particular susceptibility to environmental stressors [18].

- Etiological treatments: The definition of the precise genetic pathogenesis in many patients has shed light on the molecular mechanisms causing DCM and has stimulated research into new
treatments that directly target gene expression or the downstream pathways that mediate the disease [19]. Concurrently, advances have been made in the development of small molecules that can modulate the biophysical consequences of mutant proteins [20].

Despite gaps in knowledge, precision medicine in cardiology is no longer a theoretical vision, but a realistic opportunity for the future treatment of patients with DCM (Figure). The movement from symptomatic to treatments targeting specific disease mechanisms represents a conceptual shift from slowing disease progression to a paradigm of disease reversal or prevention as the main objective. A novel approach to DCM patients, including a comprehensive evaluation, from the identification of possible removal environmental triggers to the identification of likely pathogenic genetic variants, should be promoted in order to apply individualized therapeutic strategies.

Acknowledgements: we are grateful to Dr. Giulia De Angelis for her graphic support in performing the figure and Dr. Antonio Cannatà for his support in editing the final version of the manuscript.
References.

15. Martín F. Ortiz-Genga; Sofía Cuenca; Matteo Dal Ferro; Esther Zorio; Ricardo Salgado-Aranda; Vicente Climent; Laura Padrón-Barthe; Iria Duro-Aguado; Juan Jiménez-Jáimez; Víctor M. Hidalgo-Olivares; Enrique García-Campo; Chiara Lanzillo; M. Paz Suárez-Mier; Hagith Yonath; Sonia Marcos-Alonso; Juan P. Ochoa; José L. Santomé; Diego García-Giustiniani; Jorge L. Rodríguez-Garrido; Fernando Domínguez; Marco Merlo; Julián Palomino; María L. Peña; Juan P. Trujillo; Alicia Martín-Vila; Davide Stolfo; Pilar Molina; Enrique Lara-Pezzi; Francisco Calvo; Eyal Nof; Leonardo Calò; Roberto Barriales-Villa; Juan R. Gimeno-Blanes; Michael Arad; Pablo García-Pavia; Lorenzo Monserrat. Truncating FLNC mutations are associated with high-risk dilated and arrhythmogenic cardiomyopathies. 2016;68:2440-2451

altered mitochondrial energetics, increased fibrosis and long-term life-threatening arrhythmias.

Figure. Specific treatments and possible prognostic benefit derived from precise diagnosis of DCM.

Note the possible application of precision medicine in genetically determined DCMs, to be implemented in the next future.

Legend. DCM: dilated cardiomyopathy; ICD: implantable cardioverter defibrillator; LBBB: left bundle branch block.
Total word count (including references and figure legend): 1698
Click here to access/download
ICMJE Conflicts of Interest form (1 for each author listed)
GFS.pdf
Click here to access/download
ICMJE Conflicts of Interest form (1 for each author listed)
MME.pdf
Click here to access/download
ICMJE Conflicts of Interest form (1 for each author listed)
PME.pdf
Funding and disclosures: none