Sahasrabudhe, M;
Shu, Z;
Bartrum, E;
Güler, RA;
Samaras, D;
Kokkinos, I;
(2019)
Lifting AutoEncoders: Unsupervised Learning of a Fully-Disentangled 3D Morphable Model using Deep Non-Rigid Structure from Motion.
In:
Proceedings of the 2019 IEEE International Conference on Computer Vision.
IEEE: Seoul, Korea.
(In press).
Preview |
Text
LAE.pdf - Accepted Version Download (9MB) | Preview |
Abstract
In this work we introduce Lifting Autoencoders, a generative 3D surface-based model of object categories. We bring together ideas from non-rigid structure from motion, image formation, and morphable models to learn a controllable, geometric model of 3D categories in an entirely unsupervised manner from an unstructured set of images. We exploit the 3D geometric nature of our model and use normal information to disentangle appearance into illumination, shading and albedo. We further use weak supervision to disentangle the non-rigid shape variability of human faces into identity and expression. We combine the 3D representation with a differentiable renderer to generate RGB images and append an adversarially trained refinement network to obtain sharp, photorealistic image reconstruction results. The learned generative model can be controlled in terms of interpretable geometry and appearance factors, allowing us to perform photorealistic image manipulation of identity, expression, 3D pose, and illumination properties.
Type: | Proceedings paper |
---|---|
Title: | Lifting AutoEncoders: Unsupervised Learning of a Fully-Disentangled 3D Morphable Model using Deep Non-Rigid Structure from Motion |
Event: | 2019 IEEE International Conference on Computer Vision |
Open access status: | An open access version is available from UCL Discovery |
Publisher version: | http://openaccess.thecvf.com/ICCV2019_workshops/IC... |
Language: | English |
Additional information: | This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Computer Science |
URI: | https://discovery.ucl.ac.uk/id/eprint/10088674 |




Archive Staff Only
![]() |
View Item |