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Abstract
Service networks are common throughout the modern world, yet understanding how their
individual services effect each other and contribute to overall system performance can be
difficult. An important metric in these systems is the quality of service. This is an often
overlooked measure when modelling and relates to how customers are affected by a service.
Presented is a novel perspective for evaluating the performance of multi-class queueing net-
works through a combination of operational performance and service quality—denoted the
“flow of outcomes”. Here, quality is quantified by customers moving between or remaining
in classes as a result of receiving service or lacking service. Importantly, each class may
have different flow parameters, hence the positive/negative impact of service quality on the
system’s operational performance is captured. A fluid–diffusion approximation for networks
of stochastic queues is used since it allows for several complex flow dynamics: the sequen-
tial use of multiple services; abandonment and possible rejoin; reuse of the same service;
multiple customers classes; and, class and time dependent parameters. The scalability of the
approach is a significant benefit since, the modelled systems may be relatively large, and the
included flow dynamics may render the system analytically intractable or computationally
burdensome. Under the right conditions, this method provides a framework for quickly mod-
elling large time-dependent systems. This combination of computational speed and the “flow
of outcomes” provides new avenues for the analysis of multi-class service networks where
both service quality and operational efficiency interact.
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1 Introduction

Throughout the modern world service systems such as health care services, telecommunica-
tions and computer networks are common and of significant importance to world economies.
Typically these systems consist several, semi-autonomous services that each have a distinct
function yet are linked by an overarching purpose to which they contribute to achieving. For
such systems, the quality of the service provided/received by customers is important (Seth
et al. 2005;Ghotbabadi et al. 2015). Particularly, the quality of service or the service outcomes
are a key metric for gauging how well services are performing, individually and as a whole,
and relate closely to the overarching system purpose. For example, in call centre systems the
overarching purpose may be to sell goods and the service outcomes are the extent to which
customer needs are met or what type of sale achieved. Within health care, the purpose of
services is partly to maintain and improve patient health; thus, key service outcomes here
may be the clinical impact on patient health (Palmer et al. 2017).

A combination of customer flow modelling and service quality is presented in this paper.
In a model of customer flow, the system is viewed as comprising a set of distinct states
through which discrete entities move. Often these systems are modelled from a purely oper-
ational perspective relating to how customers enter, leave and move between states that form
the service process, and how queues build up and dissipate (Côté 2000). The operational
modelling and measurement of such systems has a long history of research, but less work
has been done considering in addition the quality of service.

Here, quality is quantified by customers moving between or remaining in classes as a
result of receiving service or lacking service. Each class of customer may have different flow
parameters representing differing resource/service requirements and different capacities to
benefit from service. This combination broadens the perspective on how the performance of a
queueing systemmay be understood.Namely, through the “flowof outcomes”—aperspective
as to how individual services contribute to both the system’s service outcomes, e.g. the output
of customers in certain classes, and the system’s operational performance. Themodel’s output
is thus informed by the effect of service, or absence of it, on customer class and the effect of
customers with different service requirements.

At an individual level the “flow of outcomes” relates to how a single customer engages
with/is engaged by the system and the resultant effect on them and their needs. At a population
this aggregates to an understanding of how good and bad flowwithin the systemmay produce
better or worse service outcomes. This is important when considering scarce resources, the
possibility for multiple service interactions, and the subsequent effect that a changing mix
of customers may have on operational performance. Thus, this method can help to inform
resource allocation through new metrics that provide insight into service quality and opera-
tional efficiency.Whilst, the “flow of outcomes” may be applied to a single service, the appli-
cation to a network of diverse yet similarly purposed services highlight its significant benefits.

When customers’ use of a service relates to their service outcomes, the possible flow
dynamics in such systems can become complex (Deo et al. 2013). Examples of such dynamics
include the possibility for customers to use services multiple times or potentially use several
services sequentially. As a result the system may quickly become intractable for traditional
methods and the scale becomes large when considering multiple services and customer
classes. In turn, this may greatly increase the number of operations required to model the
system, thus increasing computational time and effort required.

To overcome these difficulties, presented in this paper is an application of a fluid–diffusion
approximation for a network of serviceswhich serve several classes of customer. Several com-
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plex flow dynamics are considered for which a general model is presented (these dynamics
are: the sequential use of multiple services; abandonment and possible rejoin; reuse of the
same service; multiple customers classes; and, class and time dependent parameters). The
classes in the model represent measurable aspects of a customer’s service needs, require-
ments, behaviours and opinions (or some amalgam) that may be influenced by the receipt of
service, or lack of it. Thus, when a customer leaves a service, they are modelled as being able
to remain or transition in class, representing a service outcome which may mark the quality
of service.

A fluid approximation is the limit in distribution for a stochastic process that is found
by scaling the size of the system (number of servers and new arrivals) and applying the
law-of-large-numbers. A diffusion limit can also be produced through an application of the
functional central limit theorem to the scaled process (Remerova 2014). The variance within
the queueing process of the system and performance measures can be calculated from the
resulting limit, providing insight into the system’s stochastic variability.

These approximations produce a continuous representation of the discrete process that
overcomes the computational difficulty of traditional methods (Hillston 2005). The approach
avoids blow-up of the state space in the analysis of large systems (Chen et al. 2016), which
is a useful property when considering multiple services and classes. Due to the scaling
process, the approximations produce more accurate results for large and heavily loaded
systems (Ko and Gautam 2013) and are appropriate for analysing both transient behaviour in
time-varying systems and the finite-horizon evolution of systems in steady-state (Yom-Tov
and Mandelbaum 2014).

There is wide literature on fluid–diffusion approximations ranging from mathematical
investigations to methodological developments/applications. In this paper, the method fol-
lows from and proceeds in a similar vein of Mandelbaum et al. (1998, 2002)—that is a
fluid–diffusion approximation is developed for a Markovian service network using a strong
law of large number limit theorem.Notably, in the presentedwork, the flowdynamics are sim-
ilar toDing et al. (2015) yet extended to apply to a network and include a further generalisation
of the flow dynamics. It should be noted however that there are several other methods for pro-
ducing fluid–diffusion approximations in general and for multi-class queues. Below are three
examples—this is not exhaustive. Pang et al. (2007) present a “review” of martingale proof of
many-server heavy-traffic limit theorems for Markovian queueing models working through
several in-depth proofs of the underlying theory. Alternatively, non-Markovian approaches
include the recent work by Pender and Ko (2017) in which fluid–diffusion approximations
are derived for queues where the general interarrival and service times are approximated
using phase-type distributions. Of note, a multi-class extension is possible in this latter case,
however the dynamics presented here are not currently captured. A further approach, this
time taking into account abandonment was produced by Massey and Pender (2013) in which
they build upon the work of Mandelbaum et al. (1998), and that of Ko and Gautam (2013)
to create a new three-dimensional dynamical system that is based on estimating the mean,
variance, and third cumulant moment.

Furthermore, the mathematical properties and optimality of fluid approximations in mod-
elling systems with multiple customer classes have been widely explored, in scenarios of
varying dynamics. For single server queues of multiple customer classes, see Guo (2012)
and Tahar and Jean-Marie (2012); systems with abandonment, see Whitt (2006) and Lar-
rañaga et al. (2015); systems with multiple servers which may only serve specific customers,
see Atar et al. (2011); and with non-fixed classes, see Tekin et al. (2012). Regarding appli-
cations of these methods, settings have included health care—in particular, acute care:
Cohen et al. (2014), Yom-Tov and Mandelbaum (2014), Chen et al. (2016) and Zychlinski
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et al. (2017)—computing: Pender and Phung-Duc (2016) and Mukherjee et al. (2017)—and
telecommunications: Mandelbaum et al. (2002) and Ding et al. (2015). However the scope
and applicability of these methods can extend to several other settings including other service
systems, computer systems and manufacturing.

Overall, themain aimof thisworkwas to produce amethod that both captures complexflow
dynamics for a network of services and quantifies the impact of the operational performance
and service quality.Ourmotivating contextwas in health care however themethod is presented
generally due to the potential for wider application. Given this, the main contribution is to
the modelling of multi-class queueing systems and the performance measurement of service
systems where service quality is important and may effect the future operation of the system.
Building upon current approximation methods (Mandelbaum et al. 2002; Ding et al. 2015),
a framework is produced that combines customer classes and flow modelling by using time
and class dependent parameters. The method developed is a generalisation of this previous
work and may be used to model systems with complex flow dynamics (such as service
reuse; abandonment and rejoins; and several services). Further distinctions of this method
are the inclusion of transitions between class, and the generalisation of customer movements
post-abandonment/post-service.

In the following section the stochastic system is described for which fluid–diffusion
approximations are produced and the dynamic server allocations are introduced. In Sect. 3,
the approximations for this system and the output measures that may be calculated are pre-
sented. Finally, in Sect. 4 the pragmatic constraints for the possible use and limitation of these
methods are discussed alongside the possible directions for future work.

2 Description of the stochastic system

Consider a network consisting of J multi-server services. For any service, during a time
interval [0, T ], customers may: arrive as a new customer; abandon the queue and potentially
rejoin it, seek to use an alternative service or leave the system as a loss (L); or, receive service
and potentially reuse the same service, use another service within the network, or exit having
completed service (E)—see Fig. 1. Each service therefore consists of five process orbits: the
service and queue (Q), the rejoin process (R), the reuse process (U ), the alternative service
process (A), and the other service process (O). Note that the term alternative service always
refers to a use of another service after abandonment, and that other service refers to a use of
another service having just completed service.

Suppose that at any time, a customer belongs to a class k ∈ {1, 2, . . . , K } = Cla. Each
class represents a level of progressive measure of quality/customer need that customers move
between as they proceed through the system. For a service i ∈ {1, 2, . . . , J } = Ser and class
k ∈ Cla, at time t ∈ [0, T ], denote:

Zk,Q,i (t) := number of customers in the queue or service,

Zk,R,i (t) := number of customers in the rejoin orbit,

Zk,U ,i (t) := number of customers in the reuse orbit,

Zk,A,i (t) := number of customers in the alternative service orbit,

Zk,O,i (t) := number of customers in the other service orbit,

Zk,L,i (t) := number of customers lost due to abandonment,

Zk,E,i (t) := number of customers leave after service.
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Fig. 1 Diagram of general customer flow in all classes through a single service within the stochastic queueing
network

For each service i ∈ Ser , a time-varying number of servers, ci (t), are available. For
tractability, customers are served in up to K parallel queues per service, each formed of a
single class. Notably, classes can be defined such that customers have equal priority within
each class; thus, they are served on a first come first served basis (FCFS).

The number of servers allocated to customers in class k queueing for service i at time t
is denoted Ck,i (t) such that

∑
k∈Cla Ck,i (t) = ci (t). In Sect. 2.1, two methods for allocating

servers are suggested. Since the number of servers for each queue may vary with time,
the number of servers may drop below the number of customers in service. This situation
is handled in the model by pre-emptive resumption (Mandelbaum et al. 2002). That is, the
number of customers in service is reduced to equal the number of servers by placing arbitrary
customers into an infinite buffer space. Their service thus paused and later resumed once a
server becomes available, with priority ahead of the queue.

New customers, in a class k ∈ Cla, arrive to a service i ∈ Ser according to a time-
inhomogeneous Poisson process of rate λk,i (t). If a server is free, customers are served
according to a time-inhomogeneous exponentially distributed process of rate μk,i (t). If no
servers are available, they wait within an infinite buffer space.Whilst waiting, customers may
lose patience and abandon the queue at a time-inhomogeneous exponentially distributed rate
θk,i (t).

Upon abandoning, one of three events may occur: (1) a customer may rejoin the queue
(seeking to access the service again) with probability rk,L,i,i (t). Such customers enter the
rejoin orbit, where they spend a time-inhomogeneous exponentially distributed amount of
time, rejoining the queue at rate δk,R,i (t); (2) a customermay seek to use an alternative service
with probability rk,L,i, j (t), i �= j, j ∈ Ser . These customers enter the alternative service
orbit for j , where they spend a time-inhomogeneous exponentially distributed amount of
time, joining the queue at a rate δk,A, j (t); (3) a customer will leave the system as a loss with
a probability rk,L,i,J+1(t) > 0. Notably:

∑J+1
j=1 rk,L,i, j (t) = 1, ∀t ∈ [0, T ].

Similarly, after completing service, one of three events may occur: (1) having used a
service i , a customer may seek further service within i with probability rk,S,i,i (t), entering
the reuse orbit. Customers spend a time-inhomogeneous exponentially distributed amount of
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time in this state, arriving to the service at rate δk,U ,i (t); (2) with probability rk,S,i, j (t), i �=
j, j ∈ Ser a customer may seek to use another service, entering the orbit of arrivals
from other services for j . They remain in this state for a time-inhomogeneous exponentially
distributed amount of time, and join the queue at a rate δk,O, j (t); (3) there is a probability
rk,S,i,J+1(t) > 0 that a customer will not require any further service and leave the system.
Notably:

∑J+1
j=1 rk,S,i, j (t) = 1, ∀t ∈ [0, T ].

A customer’s class may change throughout their interaction with the system and may
occur at: the completion of service; the point of abandoning the queue; or, upon joining the
queue as a rejoin, reuse, alternative service arrival or other service arrival. sk,l,m,i (t) is the
probability that a customer transitions from a class k to a class l given that they are leaving
a process state m ∈ {Q, R,U , A, O} at time t , or abandoning the queue when m = L .

Given the above, the stochastic process for this system, {Z(t), t ≥ 0}, can be defined as a
vector of length 7K J such that:

Z(t) := (Z1,1(t),Z2,1(t), . . . ,ZK ,1(t),Z1,2(t), . . . ,ZK ,2(t), . . . ,ZK ,J (t))
T . (1)

where for k ∈ Cla, i ∈ Ser :

Zk,i (t) := (Zk,Q,i (t), Zk,R,i (t), Zk,U ,i (t), Zk,A,i (t), Zk,O,i (t), Zk,L,i (t), Zk,E,i (t)).

This is a Markov process since the inter-arrival rates, service duration and orbit durations are
exponentially distributed, and class/service state transitions are Markovian. The state space
for this process is Z7K J+ .

2.1 Dynamic multi-class server allocations

To ensure tractability whilst modelling the differentiated service of different class customers,
each service is modelled using parallel queues that pertain to each class and share from a
single pool of servers. To maintain the FCFS assumption, servers must be allocated to each
queue.

The simplest method is to equally assign servers across queues. If K is not a factor of ci (t),

define: Ck,i (t) =
⌊
ci (t)
K

⌋
. If

∑K
k=1 Ck,i (t) < ci (t), assign ci (t) − ∑K

k=1 Ck,i (t) servers, one

at a time, to arbitrary queues until all servers are assigned.
In using constant allocations, the only interaction between the queues is through the class

transitions of customers, otherwise the queues act autonomously. However, in real world
systems, queues may affect one another through how customers use servers, i.e. by using a
server, a customer denies other customers the opportunity to be served by that server.

Oneway tomodel this is through a dynamic server allocation. There is awide and extensive
literature that is relevant to this type of allocation such as that for multi-class queues e.g.
Federgruen and Groenevelt (1988), Maglaras (1999) and Ata (2006) and scenarios where
the pool of servers are shared e.g. Zhang and Tian (2004) and Atar et al. (2004). Applied
here is an allocation which continually updates in response to the changes in the overall
demand for service, the attributes of different customer classes and customer mix. Within
the stochastic system the number of servers allocated to each queue is updated each time an
event occurs that changes the size of Zk,Q,i (t) e.g. an arrival (new or from a process state),
a completion of service or an abandonment. Thus, the fluid approximation will provide a
continuous, deterministic approximation.
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One method is to assign servers to each queue according to the proportion of customers
in each class k and in the queue/service state for a service i :

Ck,i (t) = Ck,i (Z(t)) =
⌊

ci (t)Zk,Q,i (t)
∑K

l=1 Zl,Q,i (t)

⌋

. (2)

Alternatively, a continuous weight or cost function, Bk,i (t), could be used to favour cus-
tomers in certain classes. For example, Bk,i (t)may be defined as 1/μk,i (t) to allocate servers
to the queues that will take the longest time to serve. Or, if Bk,i (t) = θk,i (t), servers are allo-
cated based on the potential for customers to abandon, seeking to mitigate losses in the
system. Thus, for the stochastic process servers may be allocated by:

Ck,i (Z(t)) =
⌊
ci (t)Bk,i (t)Zk,Q,i (t)
∑K

l=1 Bl,i (t)Zl,Q,i (t)

⌋

, for all t ∈ [0, T ]. (3)

In both cases, the method introduced above may be implemented to ensure that all the
servers are allocated when the total number does not divide evenly. Additionally, the system
must never be empty to ensure that the allocation is well-defined. A further limitation of these
allocations is that their fluid approximation must be continuously differentiable, a limitation
introduced by the calculation of the virtual waiting time (VWT), as discussed later.

Notably each of the above allocations depend on Zk,Q,i (t) and thus depend on Ck,i (t)
by definition. This however is not a limitation since a fall in the number of allocated servers
leads to customers who were formerly in service re-entering the queue such that Zk,Q,i (t) is
unchanged. Furthermore, allocations may be defined based on different orbits, process states
or queue as long as the definition remains continuously differentiable. In scenarios where
Ck,i (t) does not depend on the output of the stochastic system (e.g. a constant function) the
input parameters may be piecewise continuous.

These dynamic allocations may be used to understand how the service requirements of
customers in different classes and fluctuations in demand affect the operation of the system,
since the allocations continuously update in response to customer mix and server occupancy.
Likewise, this method overcomes the traditional inefficiency of parallel queues—that cus-
tomers of one class may be waiting, whilst servers assigned to other queues are inactive.
Overall, this method may be used to understand how the allocation of servers can help to
mitigate negative process outcomes.

3 Fluid and diffusion approximations for stochastic queueing networks
with heterogeneous customers

3.1 Fluid approximation for stochastic queueing networks with heterogeneous
customers

Conservation equations are first formulated for the stochastic system (1) in a similar manner
to Ding et al. (2015). The are here defined to include multiple classes, dynamic server allo-
cations, multiple services and the new orbits these introduce. Notably, these definitions are
also inline with the method set out by Mandelbaum et al. (2002).

Flux terms for modelling the movement of customers within the system must be defined
for each class k, l ∈ Cla and for each service i, j ∈ Ser . Firstly, the arrival process of new
customers �λk,i (t), is a Poisson process of rate λk,i (t). Secondly, the number of customers
leaving process states—service (S), abandonment from queue (L), rejoin (R), reuse (U),
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alternative service (A) and arrivals from other services (O)—are defined as independent
Poisson processes of rate 1 such that:

Dk,S,i (t) = �k,S,i

(∫ t

0
μk,i (u)min

(
Zk,Q,i (u),Ck,i (Z(u))

)
du

)

, (4)

Dk,L,i (t) = �k,L,i

(∫ t

0
θk,i (u)(Zk,Q,i (u) − Ck,i (Z(u)))+du

)

, (5)

Dk,m,i (t) = �k,m,i

(∫ t

0
δk,m,i (u)Zk,m,i (u)du

)

. (6)

m ∈ {R,U , A, O} = St, (x)+ := max(0, x). Proof of these statements may be produced
along the lines of Lemma 2.1 in Pang et al. (2007).

Thirdly, multinomial random variables are used to model the movement of customers
between classes. For customers who transition to a new process state according to Dk,m,i (t),
m ∈ {S, L, R,U , A, O}, a change in class is given by:

MSk,m,i (t) ∼ Mult(Dk,m,i (t), sk,m,i (t)). (7)

where MSk,m,i (t) is a vector of length K . Its l-th element, denoted MS(l)
k,m,i (t), gives the

number of customers who were in class k before moving to class l, according to Dk,m,i (t).
This process is governed by class transition parameters:

sk,m,i (t) = (sk,1,m,i (t), sk,2,m,i (t), . . . , sk,K ,m,i (t)).

where
∑K

l=1 sk,l,m,i (t) = 1 such that
∑K

l=1 MS(l)
k,m,i (t) = Dk,m,i (t).

Again, multinomial random variables are used to model the movement of customers after
abandoning/completing service. For customers who, upon abandoning/completing service
for i ∈ Ser , have moved to a class k,

∑K
l=1 MS(k)

l,n,i (t), n ∈ {S, L}, their post abandon-
ment/service movement is modelled by:

MRk,n,i (t) ∼ Mult

(
K∑

l=1

MS(k)
l,n,i (t), rk,n,i (t)

)

. (8)

whereMRk,n,i (t) is a vector of length J + 1. Its j-th element, denoted MR( j)
k,n,i (t), gives the

number of class k customers who enter the alternative/other service orbit for j ∈ Ser , j �=
i ; or, for j = i , enter the rejoin/reuse orbit of i ; or, for j = J + 1, leave the system
as a loss/exit the system upon completion of service. This process is governed by post-
abandonment transition parameters:

rk,n,i (t) = (rk,n,i,1(t), rk,ni,2(t), . . . , rk,n,i,J (t), rk,n,i,J+1(t)).

where
∑J+1

j=1 rk,n,i, j (t) = 1 such that
∑J+1

j=1 MR( j)
k,n,i (t) = ∑K

l=1 MS(k)
l,n,i (t).

Given these flux terms, the conservation equations for customer flow in (1), for t ∈ [0, T ),
for k, l ∈ Cla and i, j ∈ Ser , are:

Zk,Q,i (t) = Zk,Q,i (0) + �λk,i (t) +
K∑

l=1

∑

m∈St
MS(k)

l,m,i (t)

− Dk,S,i (t) − Dk,L,i (t), (9)

Zk,R,i (t) = Zk,R,i (0) + MR(i)
k,L,i (t) − Dk,R,i (t), (10)
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Zk,U ,i (t) = Zk,U ,i (0) + MR(i)
k,S,i (t) − Dk,U ,i (t), (11)

Zk,A,i (t) = Zk,A,i (0) +
J∑

j=1; j �=i

MR(i)
k,L, j (t) − Dk,A,i (t), (12)

Zk,O,i (t) = Zk,O,i (0) +
J∑

j=1; j �=i

MR(i)
k,S, j (t) − Dk,O,i (t), (13)

Zk,L,i (t) = Zk,L,i (0) + MR(J+1)
k,L,i (t), (14)

Zk,E,i (t) = Zk,E,i (0) + MR(J+1)
k,S,i (t). (15)

To formulate the fluid limit for Eqs. (9)–(15), consider a sequence of models where the η-th
model—denoted by the superscript (η)—has a scaled arrival rate ηλk,i (t) for new customers
and scaled number of servers ηci (t) for all k ∈ Cla and i ∈ Ser . The scaled fluid process

is defined as: Z
(η)

k,m,i (t) := Z (η)
k,m,i (t)

η
, for k ∈ Cla, i ∈ Ser , m ∈ {Q, R,U , A, O, L} and is

gained by replacing (4)–(8) with:

D
(η)

k,S,i (t) = �k,S,i

(

η

∫ t

0
μk,i (u)min

(
Z

(η)

k,Q,i (u),Ck,i

(
Z

(η)
(u)

))
du

) /

η,

D
(η)

k,L,i (t) = �k,L,i

(

η

∫ t

0
θk,i (u)

(
Z

(η)

k,Q,i (u) − Ck,i

(
Z

(η)
(u)

))+
du

)/

η,

D
(η)

k,m1,i (t) = �k,m1,i

(

η

∫ t

0
δk,m1,i (u)Z

(η)

k,m1,i (u)du

) /

η,

MS
(η)

k,m2,i (t) = MS(η)
k,m2,i

(t)

η
, MS(η)

k,m2,i
(t) ∼ Mult

(
ηD

(η)

k,m2,i (t), sk,m2,i (t)
)

,

MR
(η)

k,n,i (t) = MR(η)
k,n,i (t)

η
, MR(η)

k,n,i (t) ∼ Mult

(
K∑

l=1

MS(η)(k)

l,n,i (t), rk,n,i (t)

)

.

where m1 ∈ St,m2 ∈ {Q, R,U , A, O, L}, n ∈ {S, L}.
Furthermore, to construct the fluid limit for a time period [0, T ], k ∈ Cla and

i ∈ Ser the following initial conditions are required: (zk,Q,i (0), zk,R,i (0), zk,U ,i (0),
zk,A,i (0), zk,O,i (0), zk,L,i (0), zk,E,i (0)). From the above definitions and following the The-
orem 2.1 of Mandelbaum et al. (2002), the fluid approximation is as follows:

Theorem 1 Assuming that for the given initial conditions, limη→∞ Z
(η)

k,m,i (0) = zk,m,i (0),
where k ∈ Cla, i ∈ Ser, and m = {Q, R,U , A, O, L, E}. Then, by the law of large numbers

the fluid limit for (1) is limη→∞ Z
(η)

k,m,i (t) = zk,m,i (t)—where the convergence of t . This is
uniquely determined by the initial conditions and the following system of equations where
t ∈ [0, T ):

zk,Q,i (t) = zk,Q,i (0) +
∫ t

0
λk,i (u) − θk,i (u)

(
zk,Q,i (u) − ck,i (z(u))

)+
du

+
∫ t

0

K∑

l=1

∑

n∈St

(
sl,k,m,i (u)δl,m,i (u)zl,m,i (u)

)
du,

−
∫ t

0
μk,i (u)min

(
zk,Q,i (u), ck,i (z(u))

)
du, (16)
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zk,R,i (t) = zk,R,i (0) −
∫ t

0
δk,R,i (u)zk,R,i (u) du

+
∫ t

0
rk,L,i,i (u)

K∑

l=1

sl,k,L,i (u)θl,i (u)
(
zl,Q,i (u) − cl,i (z(u))

)+
du, (17)

zk,U ,i (t) = zk,U ,i (0) −
∫ t

0
δk,U ,i (u)zk,U ,i (u) du

+
∫ t

0
rk,S,i,i (u)

K∑

l=1

sl,k,S,i (u)μl,i (u)min
(
zl,Q,i (u), cl,i (z(u))

)
du, (18)

zk,A,i (t) = zk,A,i (0) −
∫ t

0
δk,A,i (u)zk,A,i (u) du

+
∫ t

0

J∑

j �=i

K∑

l=1

rk,L, j,i (u)sl,k,L, j (u)θl, j (u)

× (
zl,Q, j (u) − cl, j (z(u))

)+
du, (19)

zk,O,i (t) = zk,O,i (0) −
∫ t

0
δk,O,i (u)zk,O,i (u) du

+
∫ t

0

J∑

j �=i

K∑

l=1

rk,S, j,i (u)sl,k,S, j (u)μl, j (u)

× min
(
zl,Q, j (u), cl, j (z(u))

)
du, (20)

zk,L,i (t) = zk,L,i (0) +
∫ t

0

K∑

l=1

rk,L,i,J+1(u) sl,k,L,i (u)θl,i (u)

× (
zl,Q,i (u) − cl,i (z(u))

)+
du, (21)

zk,E,i (t) = zk,E,i (0) +
∫ t

0

K∑

l=1

rk,S,i,J+1(u) sl,k,S,i (u)μl,i (u)

× min
(
zl,Q,i (u), cl,i (z(u))

)
du. (22)

Analytical expressions cannot be found for (16)–(22); however, these equations can be
solved using common numerical schemes. By Theorem 1, fluid approximations are gained
for server allocations (2) and (3). For (2), the continuous fluid approximation is:

ck,i (z(t)) = ci (t)zk,Q,i (t)
∑K

l=1 zl,Q,i (t)
,∀t ∈ [0, T ]. (23)

For (3), the weighted allocation, the continuous fluid approximation is:

ck,i (z(t)) = ci (t)Bk,i (t)zk,Q,i (t)
∑K

l=1 Bl,i (t)zl,Q,i (t)
,∀t ∈ [0, T ]. (24)

Notably, the server allocation algorithm does not need to be implemented.
As previously noted, to calculate the VWT (Sect. 3.2), ck,i (z(t)) needs to be continuously

differentiable. Thus, zk,Q,i (t), ∀k ∈ Cla, i ∈ Ser must be continuously differentiable
throughout [0, T ], giving the requirement that all input parameters are continuous. The time
varying server allocation ck,i (z(t)) is a further output for the model.
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3.2 Diffusion approximation

Following the method set out by Mandelbaum et al. (1998, 2002), the diffusion limit can
be formulated for (1). The diffusion limit quantifies deviations from the first order fluid
approximation (Mandelbaum et al. 1998), providing a system of ODEs for calculating the
mean and covariance of the diffusion process. Since all of the flow functions are continuous,
the assumptions stated in Theorem 2.4 of Mandelbaum et al. (1998) are maintained; thus,
the diffusion approximation may be formulated as in Mandelbaum et al. (2002).

By Theorem 1 of this paper, limη→∞ Z
(η)

(t) = z(t) a.s. with uniform convergence on
compact sets of t (Mandelbaum et al. 2002). Thus, the diffusion limit is gained by applying
the functional central limit theorem to ẑ(t) = {ẑ(t)|T > t ≥ 0} (Mandelbaum et al. 1998).

Hence, if limη→∞
√

η(Z
(η)

(0) − z(0)) = ẑ(0) holds, with ẑ(0) constant, then:

lim
η→∞

√
η

(
Z

(η)
(t) − z(t)

)
d= ẑ(t).

This is a convergence in distribution of the processes (Mandelbaum et al. 1998). If the set
of time points {t ∈ [0, T ) |zk,Q,i (t) = ck,i (z(t))} has zeromeasure, ẑ(t) is a Gaussian process
(Mandelbaum et al. 2002). Thus, the mean vector and covariance matrix for the diffusion
process are the unique solutions to autonomous differential equations. Furthermore, for a
service j ∈ Ser bothmin(zk,Q, j (t), ck, j (z(t))) and (zk,Q, j (t)−ck, j (z(t)))+, are everywhere
continuous. Also, they are everywhere differentiable, except when zk,Q, j (t) = ck, j (z(t)).

Explicitly formulating this system for (1) the method in Mandelbaum et al. (2002) is
extended. First note Eqs. (16)–(22) may be rewritten in terms of column transition vectors
and locally integrable Lipschitz continuous rate functions αt,i (x(t)). Since ẑ(t) is a column
vector, for 0 ≤ t < T and for all x ∈ R

(7K J ), define:

αt (x(t)) ≡
∑

i∈I
αt,i (x(t))vi .

such that:

d

dt
E

[
ẑ(t)

] = AT
t E

[
ẑ(t)

]
.

d

dt
Cov[ẑ(t)] = Cov[ẑ(t)]AT

t + AtCov[ẑ(t)] + Bt .

where At = Dαt (z(t)) is the Jacobian of αt (z(t)) when differentiated at z(t) and Bt =∑
i∈I αt,i (z(t))vi ⊗ vi is the tensor product of two vectors forming a symmetrical matrix.

For 0 ≤ t < T , the matrices, A(t),B(t) and Cov[ẑ(t)] are of dimension 7K J × 7K J .
Workingwith amore explicit notation to highlight how thismethod applies to the extended

system, begin with the rate functions, for k, l ∈ H and i, j ∈ Ser :

αk,i,1(z(t)) = λk,i (t),

αk,l,i,2(z(t)) = sk,l,R,i (t)δk,R,i (t)zk,R,i (t),

αk,l,i,3(z(t)) = sk,l,U ,i (t)δk,U ,i (t)zk,U ,i (t),

αk,l,i,4(z(t)) = sk,l,A,i (t)δk,A,i (t)zk,A,i (t),

αk,l,i,5(z(t)) = sk,l,O,i (t)δk,O,i (t)zk,O,i (t),

αk,l,i,6(z(t)) = sk,l,L,i (t)rl,L,i,J+1(t)θk,i (t)(zk,Q,i (t) − ck,i (z(t)))+,

αk,l,i,7(z(t)) = sk,l,S,i (t)rl,S,i,J+1(t)μk,i (t)min
(
zk,Q,i (t), ck,i (z(t))

)
,
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αk,l,i, j,8(z(t)) = sk,l,L,i (t)rl,L,i, j (t)θk,i (t)(zk,Q,i (t) − ck,i (z(t)))+,

αk,l,i, j,9(z(t)) = sk,l,S,i (t)rl,S,i, j (t)μk,i (t)min
(
zk,Q,i (t), ck,i (z(t))

)
.

such that:

zk,Q,i (t) = zk,Q,i (0) +
∫ t

0
αk,i,1(u) +

K∑

l=1

(

αl,k,i,2(u) + αl,k,i,3(u) + αl,k,i,4(u)

+ αl,k,i,5(u) − αk,l,i,6(u) − αk,l,i,7(u)

−
J∑

j=1

(
αk,l,i, j,8(u) + αk,l,i, j,9(u)

)
)

du,

zk,R,i (t) = zk,R,i (0) +
∫ t

0

K∑

l=1

(

αl,k,i,i,8(u) − αk,l,i,2(u)

)

du,

zk,U ,i (t) = zk,U ,i (0) +
∫ t

0

K∑

l=1

(

αl,k,i,i,9(u) − αk,l,i,3(u)

)

du,

zk,A,i (t) = zk,A,i (0) +
∫ t

0

K∑

l=1

⎛

⎝
J∑

i=1; j �=i

αl,k, j,i,8(u) − αk,l,i,4(u)

⎞

⎠ du,

zk,O,i (t) = zk,O,i (0) +
∫ t

0

K∑

l=1

⎛

⎝
J∑

i=1; j �=i

αl,k, j,i,9(u) − αk,l,i,5(u)

⎞

⎠ du,

zk,L,i (t) = zk,L,i (0) +
∫ t

0

K∑

l=1

αl,k,i,6(u)du,

zk,D,i (t) = zk,D,i (0) +
∫ t

0

K∑

l=1

αl,k,i,7(u)du.

Continuingwith this notation, now form a basis of transition vectors of length 7K J . Denoting
the m-th element of each vector as v(m)

k,i,1, the transition vectors are defined as:

v(m)
k,i,1 =

{
1, if m = 7K (i − 1) + 7(k − 1) + 1,

0, otherwise.

v(m)
k,l,i,2 =

⎧
⎪⎨

⎪⎩

1, if m = 7K (i − 1) + 7(l − 1) + 1,

− 1, if m = 7K (i − 1) + 7(k − 1) + 2,

0, otherwise.

v(m)
k,l,i,3 =

⎧
⎪⎨

⎪⎩

1, if m = 7K (i − 1) + 7(l − 1) + 1,

− 1, if m = 7K (i − 1) + 7(k − 1) + 3,

0, otherwise.

v(m)
k,l,i,4 =

⎧
⎪⎨

⎪⎩

1, if m = 7K (i − 1) + 7(l − 1) + 1,

− 1, if m = 7K (i − 1) + 7(k − 1) + 4,

0, otherwise.
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v(m)
k,l,i,5 =

⎧
⎪⎨

⎪⎩

1, if m = 7K (i − 1) + 7(l − 1) + 1,

− 1, if m = 7K (i − 1) + 7(k − 1) + 5,

0, otherwise.

v(m)
k,l,i,6 =

⎧
⎪⎨

⎪⎩

− 1, if m = 7K (i − 1) + 7(k − 1) + 1,

1, if m = 7K (i − 1) + 7(l − 1) + 6,

0, otherwise.

v(m)
k,l,i,7 =

⎧
⎪⎨

⎪⎩

− 1, if m = 7K (i − 1) + 7(k − 1) + 1,

1, if m = 7K (i − 1) + 7(l − 1) + 7,

0, otherwise.

v(m)
k,l,i, j,8 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− 1, if m = 7K (i − 1) + 7(k − 1) + 1, for j = 1, . . . , J ,

1, if m = 7K (i − 1) + 7(l − 1) + 2, for j = i,

1, if m = 7K ( j − 1) + 7(l − 1) + 4, for j �= i,

0, otherwise.

v(m)
k,l,i, j,9 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− 1, if m = 7K (i − 1) + 7(k − 1) + 1, for j = 1, . . . , J ,

1, if m = 7K (i − 1) + 7(l − 1) + 3, for j = i,

1, if m = 7K ( j − 1) + 7(l − 1) + 5, for j �= i,

0, otherwise.

In this case:

αt (z(t)) ≡
K∑

k=1

J∑

i=1

αk,i,1(z(t))vk,i,1 +
K∑

k=1

K∑

l=1

J∑

i=1

7∑

p=2

αk,l,i,p(z(t))vk,l,i,p

+
K∑

k=1

K∑

l=1

J∑

i=1

J∑

j=1

9∑

q=8

αk,l,i, j,q(z(t))vk,l,i, j,q ,

Bt =
K∑

k=1

J∑

i=1

αk,i,1(z(t))vk,i,1 ⊗ vk,i,1

+
K∑

k=1

K∑

l=1

J∑

i=1

7∑

p=2

αk,l,i,p(z(t))vk,l,i,p ⊗ vk,l,i,p

+
K∑

k=1

K∑

l=1

J∑

i=1

J∑

j=1

9∑

q=8

αk,l,i, j,q(z(t))vk,l,i, j,q ⊗ vk,l,i, j,q .

Both At and Bt are matrices of dimension 7K J × 7K J . For k ∈ H , i ∈ Ser , let u =
7K (i − 1) + 7(k − 1) + 1. For m = 1, . . . , 7K J define:

a(m,u)
t = dα

(m)
t (z(t))

dzk,Q,i (t)
, a(m,u+1)

t = dα
(m)
t (z(t))

dzk,R,i (t)
, a(m,u+2)

t = dα
(m)
t (z(t))

dzk,U ,i (t)
,

a(m,u+3)
t = dα

(m)
t (z(t))

dzk,A,i (t)
, a(m,u+4)

t = dα
(m)
t (z(t))

dzk,O,i (t)
,

a(m,u+5)
t = dα

(m)
t (z(t))

dzk,L,i (t)
, a(m,u+6)

t = dα
(m)
t (z(t))

dzk,D,i (t)
.
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The above system of equations provides the diffusion limit for approximating the variance
seen in stochastic system (1).

3.3 Virtual waiting time

A method for calculating the VWT for each service in (1) is now presented, adapting the
method of Mandelbaum et al. (2002).

Definition 1 For an infinitely patient “virtual customer” arriving to the service and queue at
a fixed time τ, T > τ ≥ 0, their virtual waiting time (VWT) is how long they wait until
their service begins. This is denoted: VWTk,i (τ ) for each i ∈ Ser and k ∈ Cla.

Due to the parallel queues and multiple services, to calculate the VWT over [0,∞), the
following assumptions are required:

1. ck,i (z(t)) are continuously differentiable with respect to time;
2. All μk,i (t) are continuous;
3. δk,R,i (t), δk,U ,i (t), δk,A,i (t), δk,O,i (t) and θk,i (t) are bounded on compact intervals.

The first assumption places the restriction that all input parameters are continuous, unless
the capacity allocation is independent of z(t)).

To calculate the VWT at time τ > 0, (9)–(15) are modified giving a new system denoted
Z∗. For τ > t ≥ 0 , Z∗(t) = Z(t); thus, Theorem 1 and the diffusion limit still hold in this
time period. For t > τ , the time after a virtual customer has arrived, the process differs as
follows:

1. There are no external arrivals, rejoins, reuses, uses of alternative service or arrivals from
other services;

2. Only customers remaining in the queue and service are served after τ ;
3. Any customer departing the service and queue process leaves the system;
4. There are no class transitions after τ .

Importantly, these assumptions simplify the calculation of theVWT, as each queue behaves
independently of each other for t > τ . Therefore, the VWT can be solved independently for
each queue as in Mandelbaum et al. (2002).

3.4 Production of service outcomes

Within a given time period, (9)–(15) may be adapted to measure the production of service
outcomes—the number of customers who leave a service at a point in time, in a given class.
This includes those who leave after completing service, Pk,E,i (t); leave the system as a loss,
Pk,L,i (t); remain in the system having completed service, Pk,S,i (t); or remain in the system
having abandoned the queue, Pk,A,i (t). Thus, over a period of time [ts, te] ⊆ [0, T ] the
production of customers in class k ∈ Cla from a service i ∈ Ser is:

Pk,E,i (t) =
K∑

l=1

MR(J+1)
l,S,i (te) − MR(J+1)

l,S,i (ts),

Pk,L,i (t) =
K∑

l=1

MR(J+1)
l,L,i (te) − MR(J+1)

l,L,i (ts),
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Pk,S,i (t) =
K∑

l=1

J∑

j=1

MR( j)
l,S,i (te) − MR( j)

l,S,i (ts),

Pk,A,i (t) =
K∑

l=1

J∑

j=1

MR( j)
l,L,i (te) − MR( j)

l,L,i (ts).

with the fluid approximation of:

pk,E,i (t) =
∫ te

ts

K∑

l=1

rk,S,i,J+1(u)sl,k,S,i (u)μl,i (u)min
(
zl,Q,i (u), cl,i (z(u))

)
du,

pk,L,i (t) =
∫ te

ts

K∑

l=1

rk,L,i,J+1(u)sl,k,L,i (u)θl,i (u)
(
zl,Q,i (u) − cl,i (z(u))

)+
du,

pk,S,i (t) =
∫ te

ts

K∑

l=1

J∑

j=1

rk,S,i, j (u)sl,k,S,i (u)μl,i (u)min
(
zl,Q,i (u), cl,i (z(u))

)
du,

pk,A,i (t) =
∫ te

ts

K∑

l=1

J∑

j=1

rk,L,i, j (u)sl,k,L,i (u)θl,i (u)
(
zl,Q,i (u) − cl,i (z(u))

)+
du.

This measure can help to understand how different capacity allocations and changes in time
varying systems may affect the output of customers in certain classes from a system, and the
system’s impact on customers’ classes.

4 Exploration of the accuracy of fluid–diffusion approximations

The accuracy of fluid–diffusion approximations have been widely discussed within the liter-
ature, including the work by Mandelbaum et al. (1998), Mandelbaum et al. (2002), Ko and
Gautam (2013) and Remerova (2014); Ding et al. (2015). It is known that these methods are
increasingly accurate for heavily loaded queues i.e. when long run demand is greater than
a service’s capacity such that queues grow infinitely long (when demand is not inhibited).
Ding et al. (2015) identified that for queues with customers who rejoin or reuse a service, an
effective traffic intensity (ETI) is required to account for the increased demand created by
these re-entrant customers: ρ̃ = λ

cμ(1−q)
, where q is the probability that a customer seeks to

reuse a service.
An illustrative analysis of the system is now presented to show how the accuracy of

the approximations developed in this paper is affected by multiple classes, dynamic server
allocations and several services. Of particular concern is when the system is effectively
heavily loaded. The analysis and insights gained add to those published inMandelbaum et al.
(2002) and Ding et al. (2015) since: the effect of changes in a range of different parameters is
considered, the analysis is conducted over a split time interval, and time dependent behaviour
is modelled. Analysing the system over two time intervals shows the accuracy of the model
during queue formation and as the system reaches steady state, informing on the accuracy of
modelling time varying behaviour. This also mitigates the bias that the length of the modelled
time period introduces (discussed below).

Only hypothetical examples of the models were used since the purpose of these inves-
tigations is to find the pragmatic constraints that the need for heavy loading places on the
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input parameters. Hence several scenarios are now explored to test the approximations and
identify key limitations.

The accuracy of the fluid–diffusion approximations is evaluated in comparison to the
averaged solution of a discrete event simulation (DES) of the stochastic system, gained from
1000 runs. Due to the lack of comparable data, the simulated solution is taken to be “true”.
The fluid–diffusion approximation and relevant simulations were computed on a node with
a Windows 10 operating system, a 2.4GHz quad-core processor and 8 GB RAM.

The error is calculated for the average number of customers in each process state, theVWT
and the variance of each. For m ∈ {Q, R, L,U , A, O}; p, q ∈ {0, 1, . . . , T /dt}; p < q
such that tp = dt × p:

zerr ,m(tq − tp) =
∑q

r=p EZm(tr ) − zm(tr )
∑q

r=p EZm(tr )
, (25)

zvarerr ,m(tq − tp) =
∑q

r=p Var(Zm(tr )) − Var(zm(tr ))
∑q

r=p Var(Zm(tr ))
, (26)

VWTerr (tq − tp) =
∑q

r=p WT Sim(tr ) − VWT(tr )
∑q

r=p WT Sim(tr )
, (27)

VWT var
err (tq − tp) =

∑q
r=p Var(WT Sim(tr )) − Var(VWT(tr ))

∑q
r=p Var(WT Sim(tr ))

. (28)

where WT Sim indicates the waiting time gained from the simulation. Notably, the waiting
time is computed for each simulated queue (rather than a simulated VWT) to determine
whether and under what conditions the VWT is an reasonable measure of actual waiting
time. This is because, in practice, actual waiting time is often the true metric of interest in
service systems.

For models that begin with zQ(t) < c(t), two distinct phases occur within the solution
relating towhen the queues form andwhen they stabilise. In a realworld systemwith available
serves, newarrivals immediately enter service until the system reaches a critical point zQ(t) =
c(t).When zQ(t) >= c(t) subsequent arriving customers form a queue fromwhich theymay
abandon. Due to random variation in the arrival process for a stochastic system, the existence
and size of the queue fluctuates in time such that abandonment may occur throughout the
whole time frame. However, since the fluid approximation is deterministic, this variation
does not occur. Instead, there is no queue or loss within the fluid system until the critical
point is reached. This delay causes an initial inaccuracy.

The error may then diminish as the system reaches steady state, hence the size of T then
affects the error measurements. As a result two errors are produced for the system by splitting
the modelled time interval to mitigate this bias. Firstly, errors are calculated as the queue
forms in the fluid approximation—for [0, TI ], where TI = max{t + 1|zQ(t) ≤ c(t)}—
denoted as the “formation error”. From this an initial error and the length of time over which
this error occurs (TI ) are both gained, providing understanding of how the size of the system
and the ETI affects the system. Secondly, errors are calculated for the remaining time period:
(TI , T ]. T is set so that the system reaches steady state.

Now presented are three hypothetical examples to illustrate how the extensions incorpo-
rated in this work alter the understanding of when the system is heavily loaded. The first is a
steady state case for two customer classes and a constant server allocation is used here. The
aim is to show how class transitions affect when the queues become heavily loaded. Build-
ing on this, the second example introduce class and time dependent parameters and thus a
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Table 1 Parameters used to
assess the accuracy of the
approximations—steady state
analysis of a single service and
two classes

Parameters Class

k = 1 k = 2

μk 1 1

θk 1 1

λk 20 20

ck 20 20

rk,L,1,1 0.3 0.3

rk,S,1,1 0.3 0.3

δk,R 1 1

δk,F 1 1

dynamic server allocation, again for two classes. This example is intended to show further
how the extensions in this paper affect the accuracy of themodel, particularly the definition of
effective heavy loading. From the two cases pragmatic constraints are highlighted regarding
the accuracy of this method, each of which inform the considerations that should be made in
seeking to apply this method. Finally, a larger, multi-service example is shown to illustrate
the findings gained from these two scenarios.

4.1 Single service and two classes: steady state analysis

This first steady state example uses a constant and equal allocation of servers across queues
and two customer classes k = 1 or k = 2, to show how the accuracy of the approximations
is affected by the multiple classes, class transitions and class dependent parameters. The
relevant parameters are set out in Table 1. Notably, in this example, customers from either
class have the same input parameters, such that the value of ρ̃ given by Ding et al. (2015) is
the equivalent for both queues. By modelling two groups with the same input parameters, the
effect that class transitions have on the accuracy of the approximations can be understood,
adding to the understanding provided by the aforementioned papers.

SS =
[
0.3, 0.7
0, 1

]

, SL =
[
1, 0
0.6, 0.4

]

, SR =
[
0.8, 0.2
0.5, 0.5

]

, SF =
[
0.8, 0.2
0.2, 0.8

]

.

The transition matrices are defined such that k = 2 is representative of a preferable class
(despite the lack of difference between their flow parameters). Thus it is more likely that
customers more to state k = 2 after receiving service denoting a potentially beneficial, but
not perfect, effect. Abandonment however has a similar reverse effect. Customers seeking to
rejoin may have an improvement in their class after rejoin—representing a delayed benefit of
service. Finally, for those who reuse the service, their class is assumed to change or stay the
same after their time in the relevant orbit but are more likely to remain in the class in which
they entered. Thesematrices highlight the differences in customers’ capacities to benefit from
service given the receipt or absence of service.

Table 2 presents the errors for this system over the formation period—[0, TI ), and the
error thereafter—[TI , 15]. There is a clear difference in the accuracy of the approximations
for the two classes with more accurate solutions for both zR(t) and VWT for k = 2 and
t > TI . This indicates that the k = 2 queue is “more effectively heavily loaded” since it
is well known that the accuracy of these outputs increases for more heavily loaded queues
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Table 2 Error between the
approximations and simulation as
a percentage of the simulated
solution—parameters from
Table 1

Parameters zerr zvarerr VWTerr VWT var
err

k = 1 Q 0.34 2.12 75.32 64.77

R 63.00 37.00 – –

t ≤ TI = 3.4 U 2.60 3.97 – –

k = 1 Q 0.46 1.45 12.03 6.30

R 4.24 1.95 – –

t > TI = 3.4 U 2.67 2.33 – –

k = 2 Q 0.24 1.79 52.56 54.32

R 65.50 47.85 – –

t ≤ TI = 2.9 U 3.48 4.22 – –

k = 2 Q 0.42 1.30 6.71 1.55

R 2.05 2.06 – –

t > TI = 2.9 U 1.41 1.59 – –

Table 3 Parameters used to
assess the accuracy of the
approximations—time-varying
analysis of a single service and
two classes

Parameters Class

k = 1 k = 2

μk 1/2 1

θk 1 1/2

λk Below 15

pk 0.5 0.3

qk 0.5 0.3

δk,R 1 1/2

δk,F 1 1/2

(Mandelbaum et al. 2002; Ding et al. 2015). Furthermore, there is a difference between the
length of the formation periods for the two class queues. A smaller TI indicates that the
system has a higher ETI since the queue grows faster due to a higher effective arrival rate.
Thus, this example shows that the ETI is no longer only dependent on customers who reuse
a service and ρ [as in Ding et al. (2015)], since, by their definition, ρ̃ is the same for both
groups.

A reason for the difference in ETI for this system is that customers may join a queue for
the class they did not arrive in through either the reuse or rejoin orbits. In Ding et al. (2015),
rejoining customers would be captured by λ in the steady state system; now however, this is
no longer true. Instead, arrivals at one queue may affect the others, such that class transitions
are influential when formulating the ETI with multiple classes. As a final observation, the
calculation of the approximations was over 250 times faster than the simulation with a CPU
time for the simulation of 502.98 s and 1.79 s for the fluid–diffusion approximation.

4.2 Time varying analysis: dynamic server allocation

Extending the previous scenario, a time-varying system is now modelled with non-empty
initial condtions (zk,Q(0) = 15 for k = 1, 2) and two classes have different flow param-
eters, see Table 3. Customers in class k = 1 now have longer service times, a higher
propensity to abandon, a higher likelihood of rejoin or reuse, and require sequential ser-
vice sooner—representing more resource intensive customers. Here, a small spike in the
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Fig. 2 Number of customers in process states with corresponding variance envelopes—two classes with
dynamic server allocation, parameters from Table 3

Fig. 3 Number of servers allocated to each queue over time—two classes with dynamic server allocation,
parameters from Table 3

arrivals of customers in class k = 1 is also considered. Hence the proportional dynamic
allocation of servers, Eq. (23), is employed with c(t) = 30 ∀t ∈ [0, 15]. Since the input
parameters are required to be continuous to ensure that zQ(t) is continuously differentiable,
a continuous jump in arrivals is defined.

λ1(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

15, t ∈ [0, 4) ∩ [7, 15],
15 + 15 × (sin(π(t − 4) − π

2 ) + 1), t ∈ [4, 5),
45, t ∈ [5, 6),
15 + 15 × (sin(π(t − 6) + π

2 ) + 1), t ∈ [6, 7).
SS =

[
0.3, 0.7
0, 1

]

, SL =
[
1, 0
0.6, 0.4

]

, SR =
[
0.8, 0.2
0.5, 0.5

]

, SF =
[
0.8, 0.2
0.2, 0.8

]

.

Figure 2 shows that the approximations are accurate throughout the modelled time period
for both the number of customers in each process orbit and the variance.Notably, the increased
arrivals for k = 1 has little visual impact on the queue for k = 2, however there is a subtle
effect. This is made clearer by the effect on the dynamic allocation of servers, shown in
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Fig. 4 VWT for two class system with dynamic server allocation, parameters from Table 3

Fig. 3. The influx of k = 1 customers causes an increase in the number of servers allocated
to k = 1—hence, a longer queue exists for both customer classes. This results in a raised
rate of abandonment for both classes of customer. Thus, since customers who abandon from
either class are more likely to rejoin in class k = 1, there is a further increase the k = 1
demand. This is further confirmed by Fig. 4. For k = 2 the gradient of the VWT increases
at t = 4, reflecting the increased queue lengths and longer waits that occurs due to the loss
in allocated servers to k = 1. Additionally, there is a large increase in VWT for k = 1.
Whilst this queue gains more servers, causing an initial dip, the increase in new arrivals and
k = 1 rejoin customers raises the expected waiting time. There is a discrepancy between the
two results in Fig. 4. Primarily this is due to a comparison being made between simulated
waiting time and the VWT here. Qualitatively the VWT provides a good understanding of
the waiting time profile matching the result with reasonable accuracy.

Considering the variance of the VWT, Fig. 5, the fluid–diffusion approximations match
the behaviour but fail to capture the size of the simulated solution. For increased size and
reuse, the results may improve. However, since the variance of the simulated waiting time has
the most variability of the system outputs, when combined with the variability of the dynamic
server allocation, this increases the inaccuracy. Further investigation would be valuable.

Finally, the production of outcomes, measured by the rate at which customers in each
class leave the system over time, is affected—Fig. 6. The number of customers lost due to
abandonment and are in the worst class k = 1 greatly increases, whilst the number of served
customers leaving in class k = 2 decreases and the number lost in k = 2 increases. This is
understandable due to the reduced service of k = 2 customers.

The interaction between the queues and these additional outputs are helpful for under-
standing the “flowof outcomes”, in particular, how a service produces good and bad outcomes
over time in light of customer mix, demand, available/allocated capacity and flow dynamics.
The example above highlights the need for considered server allocations since an influx and
preference towards k = 1 considerably affects the output and operational performance of the
system—indicating a negative “flow of outcomes”. This provides a perspective on the qual-
ity of service and operation of the system in relation to process outcomes (such as customer
throughput and number of abandonments) and how the differing needs of customers impact
the system.

Of note, the simulation for 1000 runs took 601.49 s to run, whilst the fluid–diffusion took
4.75 s to run. Additionally, there are small discontinuities in Figs. 4 and 5 of order dt and
lasting for an amount of time of a similar order. To investigate these discontinuities, results
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Fig. 5 Variance of VWT for two class system with dynamic server allocation, parameters from Table 3

Fig. 6 The production of service outcomes for two class system with dynamic server allocation, parameters
from Table 3

are compared for a scenario with dt = 0.1, 0.05 and 0.01, Fig. 7. Clearly, as dt decreases,
the size of the jumps decrease; however, their frequency increases.

These discontinuities may be a result the fluid approximation becoming non-linear when
using a dynamic server allocation [the combination of (16)–(22)with (23) or (24)].Ultimately,
these errors do not have a significant impact on the solution of the VWT or its variance since
they last for short time intervals with potentially small magnitude, Fig. 7. By decreasing
dt , the size of the errors reduces; however, the time required to solve the numerical scheme
increases, in Table 4, creating a trade off between usability and accuracy. When the errors
are small compared to the overall solution, there is little benefit in reducing dt .

Summary of single service andmulti-class models

From this brief exploration, it has been shown that the appropriateness and applicability of
the approximations is maintained when extending to multiple classes with class transitions.
Importantly, there is an additional influence of the transitionmatrices on theETI since services
now have an effective arrival rate comprising new customers, reuse customers and rejoins,
including those who previously queued within another class.

This is important for systems where reuse is low for a particular class, since these methods
maybe accurately applied if there is a significant flowof customers arriving fromother classes.
Therefore, the ETI for each k ∈ Cla queue, when considering multiple classes, is dependent
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Fig. 7 Example of small errors in the solution of the VWT when using a dynamic server allocation. These
errors are of order dt

Table 4 Time taken to solve the
fluid approximation for different
sizes of dt

dt 0.1 0.05 0.01

Time (s) 6.72 25.50 605.06

on the combination of: λk(t), ck(z(t)), μk(t), Sk,m(t), qk(t) and pk(t),∀k ∈ Cla and m ∈
{S, L, R,U }.

4.3 Extending tomultiple services

The analysis presented above indicates the parameters that determine accuracy of the fluid–
diffusionmodel in comparison to simulation. Notably these findings holdwhen applying both
the approximations and the simulation to larger systems since this is equivalent to modelling
an amalgamation of these smaller models. As such, the modelling of larger systems may be
implemented through amodular programming of the codewhichwould increase its flexibility
and scalability for modelling these scenarios.

By introducing multiple services, the flow dynamics of the other service orbits and alter-
native service orbits are introduced. A new comparison with simulation is not required to
understand the accuracy of the systems since it is fundamentally similar to the previous.
Rather, any further changes to how the ETI is understood may be inferred from the model’s
structure.

In the analysis of multiple services, reuses and rejoins are governed by rk,m,i,i , m ∈
{S, L} respectively. Since customers may use other services after completing service, or use
alternative services having abandoned, rk,m,i, j ,m ∈ {S, L}, j �= i may be small for systems
of multiple services. However, customers may now arrive from other/alternative services,
increasing the number of arrivals to each queue.

Thus, in considering the effective traffic intensity of a service in the network, alongside the
parameters previously noted, the values of rk,m,i, j ,m ∈ {S, L}, for all k ∈ Cla; i, j ∈ Ser
should also be considered, helping to understand when the approximations are accu-
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rate for the multiple service extension. Thus, in such scenarios, the size and value of
Sk,m,i ,Rk,Q,i ,Rk,L,i , for all k ∈ H , i ∈ Ser and m ∈ {S, L, R,U , A, O} may combine to
increase the model’s accuracy.

To illustrate the application to a larger system, a fluid–diffusion approximation for a three
service and three class system with has all the dynamics described in Fig. 1 is now anal-
ysed. The input parameters used to populate this example are provided in the supplementary
material. Service 1 is modelled to be likely to serve customers in classes considered to be
worse and represent services that are short in length. From service 1 customers may then
use service 2 or 3 depending on their needs. Service 2 has longer service durations and may
serve customer in any class, whilst service 3 has the longest service duration and typically
serves customers in classes that are considered to be better. Furthermore, a customers class
is considered to improve only through service, and may decline in between service.

This scenario highlights how the model may be used to represent a system of diverse
services that each have a different purpose, type of service (indicated by service rate) and
customer mix. Notably, given its small initial condition and arrival rate, the effective traffic
intensity for service 3 is significantly increased by the flow of customers from other services.
Figure 8 shows the number of customers in each process orbit, the variance is not shown
to improve the readability of the figure. Figure 9 gives the VWT and its variance for each
queue, whilst Figure 10 shows the dynamic capacity allocation for each class and service in
the system.

Figure 11 illustrates the benefits of the production output in this scenario. For each service
the output of customers in different classes over time is given by the loss and service com-
pletion curves. Additional curves correspond to customers who remain in the system having
completed service or abandoned the queue for each service. Together, these plots provide
greater insight into the flow of customers and service outcomes in the system and may be
used to identify negative and positive patterns of flow. For example, whilst service 3 has the
highest rate of customers leaving the system in good classes, there is a significant flow of
customers from other services who are in good classes. Thus, this service does not achieve
good service outcomes in isolation. Rather, this shows how services combine to produce good
service outcomes as customers participate in multiple interactions and use several services.

5 Summary and discussion

This paper makes two contributions to how multi-class service networks may be modelled
and their performance measured—particularly when service quality is important. The first
contribution is the extension of current fluid–diffusion approximation methods (Mandel-
baum et al. 2002; Ding et al. 2015) to include multiple classes, class transitions and dynamic
server allocations. These approximations provide an efficient method for modelling systems
of queues with several complex flow dynamics including: the sequential use of multiple ser-
vices, abandonment, rejoin, reuse, multiple classes, and class and time dependent parameters.
Importantly, there is a dependency between overall demand and system capacity such that
these dynamics introduce a feedback loop of delayed demand. For example, having arrived,
queued and completed service, a customer seeking to reuse will wait for a period of time
before re-entering the queue. Understanding the effect of these flow dynamics, and how
resources may be managed in light of them, is important since ignoring them may lead to
under or over staffing in scenarios where they are significant.
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Whilst parallel queues are traditionally inefficient due to the possibility of inactive servers,
this limitation is overcome by using a dynamic server allocation. Since servers are continu-
ously reallocated, they cannot become inactive if there are customers in any class waiting for
the service. Thus the benefits of using multiple queues to represent different classes may be
fully utilised. That is, the flow of customers with differing service requirements and different
capacities to benefit from service can be modelled.

This leads to the second contribution, the measuring of system performance from a new
perspective, denoted the “flow of outcomes”. Through the inclusion of multiple classes and
transitions, the flows for customers with differing resource/service requirements and different
capacities to benefit from service may be modelled. Importantly, this may reflect real life
scenarios where customers with varying needs have markedly different interactions with a
service.

Thus, the system’s performance can be understood by how individual services contribute
to the system’s service outcomes and the system’s operational performance. In particular, the
effect of service, or absence of it, on customers—as measured by service outcomes—and
the effect of customers with different requirements—e.g. service times—on the operation
of the system can both be understood. This is captured by the production measure which
provides insight into the positive and negative effects of a system’s process outcomes on the
quality/impact of service over time.

For example, in scenarios where access to services is poor and there is high abandonment,
the possible negative impact on customers may be better understood by using these methods.
For instance, having abandoned, customers may re-enter the queue in a “worse” class than
before and thus require a more resource intensive service, increasing the future burden on
the system. This represents a scenario of poor “flow of outcomes” and would result in a high
production of customers in worse classes and fewer customers being produced in classes that
reflect good service outcomes.

Alternatively, the combination of transitions in class, reuse and uses of other services, helps
to understand how multiple service interactions combine to produce good service outcomes.
For example, the receipt of service may affect a customer’s future use of services through a
positive service impact, such as an improvement in class. In this case customers may require
fewer interactions, reducing their future demand and the intensity of service needed, reflecting
a positive “flow of outcomes”. This can be understood by using the production output as the
time varying output of customers in better classes may be higher throughout time due to a
combination of services and interactions, as in the example in Fig. 11.

5.1 Limitations

Fluid and diffusion approximations are most accurate for large and heavily loaded sys-
tems, potentially limiting when and how these approximations may be used Ko and Gautam
(2013). Furthermore, in considering multiple services, several classes and time dependence,
the method can become more complex and unwieldy due to the number of input parameters.
Thus, editing and changing the inputs can be time consuming depending on the implemen-
tation, especially if several configurations of the system are analysed. As a result a careful
implementation of these methods is required. One way to overcome this is to use a config-
urable interface or scheme for entering the input parameters.

Another potential limitation may occur when compared to data for real world systems
given the strict Markovian assumptions. Thus, these methods may be better used for a stylis-
tic representation of a system to help understand the dynamics of service networks and the
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consequences of changes in the system. Alternative methods such as simulation and system
dynamics have a greater flexibility in this respect; however, may be hindered by runtime.
Depending on the desired analysis and requirements of the model computation time may
not be an issue; however, it will limit how a model may be used. For example, heuristic
approaches or scenario analysis both require a wide range of scenarios to be computed such
that computational timewill determine howmany iterationsmay be run. Thus, despite the lim-
itations that theMarkovian assumptions introduce, the speed and efficiency of fluid–diffusion
approximations facilitate their use for larger,more intensive analysis. This is discussed further
below.

5.2 Possible avenues for future work

It would be beneficial to explore further the use of “flow of outcomes” in understanding
system performance. Having developed an illustrative method of the potential benefits in this
paper, it would be insightful to apply these methods to the large, multi-service real world
systems for which they were intended. Likewise it would be worthwhile to explore their
benefits and limitations in comparison to other modelling methods, such as system dynamic
and Markov chain approaches. One particular direction for this would be to explore the
combination of these methods with optimisation and heuristic approaches given the speed of
calculation and ODE representation of the system.

In particular, the flexibility in the definition of Ck,i (Z(t)) and the inclusion of classes
introduces the possibility for novel constraints and objectives, such as: how best to allocate
servers to maximise the production of good service outcomes in a system; or, to minimise
the flow of customers through patterns of service that lead to poor service outcomes and that
increase flow problems. This may lead to new avenues of analysis and insight for service
networks where both operational efficiency and the quality of the service are important.

Additionally, future extensions to this work include the relaxation of the Markovian
assumptions to form a more generalisable approximation to overcome the current limita-
tions. Recent work by Pender and Ko (2017) and Aras et al. (2018) are both promising in this
regard. As such it would also be beneficial to also explore different parameter definitions.
This includes mechanisms for loss that are dependent on the number of customers in different
parts of the system, or the introduction of finite waiting space. As well as different definitions
of the dynamic server allocations to increase the range of possible analyses such as heuristic
optimisation, capacity allocation and priority queueing. Likewise, extending the method by
Ko and Gautam (2013) to a network setting, with service reuse and customer classes would
be another promising direction for future work. This especially so given the greater accuracy
of their method in transient settings and their direct comparison to the methods presented in
Mandelbaum et al. (1998, 2002).

Similarly, alternative definitions of the class transition process should be explored in
particular those that include a time dependence such that customers may change class whilst
continuing to reside in a given process state. Two possible directions are to investigate the use
of fluid–diffusion approximations for feedback queue and the state-dependent queues, for
example (Cheah and Smith 1994;Mitchell and Smith 2001; Zhu et al. 2017). In such cases, the
capacity allocation functions C may be defined to reflect how upstream nodes are dependent
on the traffic congestion of downstream nodes—hence reflecting longer and shorter waiting
times. Likewise, the time dependent service rate and routing matrices for customers moving
between outcome classes may also be defined to this end—especially with regards to state-
dependent queues where the service rate of a queueing system is dependent on the number
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of customers in it. It is also possible that the fluid–diffusion approximation may be used to
model queueing networks with time-dependent proportional routing (Liu and Whitt 2011),
this would be a prudent direction for new work.

6 Conclusions

In this paper we have presented a method for modelling queues of heterogeneous customers
who may change class throughout the service process. The development of these methods
has made several contributions to the way in which networks of services may be modelled,
and how system performance may be understood.

There is a methodological benefit since the approximations form set of ODEs that are
efficient to solve, even as the system grows large, providing informative performance mea-
sures. These include: the number of customers within different classes, process orbits and
services in the systems; the virtual waiting time for each service; the variance of each; and,
the production of service outcomes. Furthermore, complex dynamics may be modelled using
these methods, such as: customers reusing a service; future uses of other services; and, the
potential for customers to abandon and potentially rejoin the queue or use another service.

This leads to the benefit that the combination of classes and flow provides: new avenues for
insightful analysis within service systems. The methods highlight how two key perspectives
of performance in service networks may be united in a single modelling framework. These
methods may be used to help understand: how customers use services; the effect of multiple
interactions on customer class; the effect of delayed demand/reuse of services on the operation
of the system and on customer class; and, how a dependency between capacity of the system
and the future arrival process affects the system.

Finally, by extending existing fluid–diffusion approximation methods, the scope for the
application and use of these approximations has been increased for various settings.
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