UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Implementation of contact angles in pseudopotential lattice Boltzmann simulations with curved boundaries

Li, Q; Yu, Y; Luo, KH; (2019) Implementation of contact angles in pseudopotential lattice Boltzmann simulations with curved boundaries. Physical Review E , 100 (5) , Article 053313. 10.1103/PhysRevE.100.053313. Green open access

[thumbnail of PhysRevE.100.053313.pdf]
Preview
Text
PhysRevE.100.053313.pdf - Published Version

Download (1MB) | Preview

Abstract

The pseudopotential multiphase lattice Boltzmann (LB) model is a very popular model in the LB community for simulating multiphase flows. When the multiphase modeling involves a solid boundary, a numerical scheme is required to simulate the contact angle at the solid boundary. In this work, we aim at investigating the implementation of contact angles in the pseudopotential LB simulations with curved boundaries. In the pseudopotential LB model, the contact angle is usually realized by employing a solid-fluid interaction or specifying a constant virtual wall density. However, it is shown that the solid-fluid interaction scheme yields very large spurious currents in the simulations involving curved boundaries, while the virtual-density scheme produces an unphysical thick mass-transfer layer near the solid boundary although it gives much smaller spurious currents. We also extend the geometric-formulation scheme in the phase-field method to the pseudopotential LB model. Nevertheless, in comparison with the solid-fluid interaction scheme and the virtual-density scheme, the geometric-formulation scheme is relatively difficult to implement for curved boundaries and cannot be directly applied to three-dimensional space. By analyzing the features of these three schemes, we propose an improved virtual-density scheme to implement contact angles in the pseudopotential LB simulations with curved boundaries, which does not suffer from a thick mass-transfer layer near the solid boundary and retains the advantages of the original virtual-density scheme, i.e., simplicity, easiness for implementation, and low spurious currents.

Type: Article
Title: Implementation of contact angles in pseudopotential lattice Boltzmann simulations with curved boundaries
Open access status: An open access version is available from UCL Discovery
DOI: 10.1103/PhysRevE.100.053313
Publisher version: https://doi.org/10.1103/PhysRevE.100.053313
Language: English
Additional information: © 2020 American Physical Society. Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/).
Keywords: Fluid Dynamics, Lattice-Boltzmann methods, Multiphase flows
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Mechanical Engineering
URI: https://discovery.ucl.ac.uk/id/eprint/10088602
Downloads since deposit
61Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item