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A B S T R A C T   

Predicting Retinal Pigment Epithelium (RPE) cell functions in stem cell implants using non-invasive bright field 
microscopy imaging is a critical task for clinical deployment of stem cell therapies. Such cell function predictions 
can be carried out using Artificial Intelligence (AI) based models. In this paper we used Traditional Machine 
Learning (TML) and Deep Learning (DL) based AI models for cell function prediction tasks. TML models depend 
on feature engineering and DL models perform feature engineering automatically but have higher modeling 
complexity. This work aims at exploring the tradeoffs between three approaches using TML and DL based models 
for RPE cell function prediction from microscopy images and at understanding the accuracy relationship between 
pixel-, cell feature-, and implant label-level accuracies of models. Among the three compared approaches to cell 
function prediction, the direct approach to cell function prediction from images is slightly more accurate in 
comparison to indirect approaches using intermediate segmentation and/or feature engineering steps. We also 
evaluated accuracy variations with respect to model selections (five TML models and two DL models) and model 
configurations (with and without transfer learning). Finally, we quantified the relationships between segmen
tation accuracy and the number of samples used for training a model, segmentation accuracy and cell feature 
error, and cell feature error and accuracy of implant labels. We concluded that for the RPE cell data set, there is a 
monotonic relationship between the number of training samples and image segmentation accuracy, and between 
segmentation accuracy and cell feature error, but there is no such a relationship between segmentation accuracy 
and accuracy of RPE implant labels.   

1. Introduction 

Age-related macular degeneration (AMD) is a disease that affects the 
eye macula. There are 10 million people in the United States of America 
diagnosed with AMD and the occurrence of AMD is more likely for 
people over 50 years of age. AMD disease is caused by the death of 
Retinal Pigment Epithelium (RPE) cells in an eye retina [2,8,29]. RPE 
cells form a single layer with pigment granules, have tight junctions, and 
appear to have a hexagonal shape in a healthy implant [15,35]. These 
visual signs of healthy RPE cells have been shown to be the key quali
tative attributes during the 155 day long bio-manufacturing process of 
RPE cell implants [12,15]. 

Before a cell implant is delivered to a patient, it must be evaluated for 

healthy cell function during the implant preparation. Several biological 
studies have related cell shapes to the implant “quality” [12]. Based on 
these studies, the microscopy imaging community has been developing 
supervised and unsupervised automatic methods for RPE cell segmen
tation as the segmentation can be useful for 1) shape analysis, 2) 
discrimination of cell regions that are healthy or unhealthy, and 3) 
measurements of cell count and density [9,23]. 

In addition to cell shape measurements, Trans-Epithelial Resistance 
(TER) and Vascular Endothelial Growth Factor (VEGF) measurements 
have been used for assessing the health of RPE cell implants. TER is a 
quantitative technique to measure the integrity of tight junction dy
namics in cell culture models of epithelial monolayers of an eye retina. 
The ranges of TER and VEGF values can be indicators of healthy 
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(TER > 400 Ω:cm2, VEGF ​ ratio > 3) or unhealthy (TER < 400 Ω:cm2 

and VEGF ​ ratio < 3) RPE cell functions in an implant. However, these 
measurement ranges can vary depending on the particular measurement 
approach (Chopstick or Endohm approach) and the types of polymer 
inserts [30,34]. 

To deliver RPE cell implants with high quality, one can quantify both 
shape-based and TER/VEGF-based criteria by analyzing segmented 
bright field images and by predicting TER/VEGF values. For performing 
segmentation and prediction analyses, Artificial Intelligence (AI) based 
models can be used. AI models can be divided into Traditional Machine 
Learning (TML) and Deep Learning (DL) based models. TML models 
depend on feature engineering while DL models perform feature engi
neering automatically but have higher modeling complexity. In addi
tion, the use of these TML and DL models requires a preparation of 
annotated data, a model selection or its design, optimization of model 
parameters, engineering of relevant features, and so on. This motivates 
our work to explore the tradeoffs of TML and DL models to predict TER/ 
VEGF/cell count of RPE cell implant. In this paper we used three pre
diction approaches using TML and DL models and these three prediction 
approaches are constructed directly or indirectly from calibrated bright 
field microscopy images with or without segmentation and feature 
extraction. The three prediction approaches are described as follows:  

� Approach 1 (indirect label prediction with segmentation and 
feature extraction): Segment raw images into foreground (cells) 
and background using a Deep Learning model (DL_Seg), extract 
features from segmented cells, and predict the cell functions using 
machine learning (TML_Reg) model.  
� Approach 2 (direct label prediction): Predict the cell functions 

directly from raw images using a Deep Learning (DL_Reg) model.  
� Approach 3 (indirect label prediction with feature extraction): 

Extract features directly from raw images (per field of view) and 
predict the cell functions from the extracted features using Machine 
Learning (TML_Reg) model. 

These three approaches have associated prediction accuracy, vari
ability of accuracy with respect to implementation configurations, and 
overarching tradeoffs in terms of design complexity, human effort, and 
usability. The tradeoffs are summarized in Table 1. The modeling factors 
of the tradeoffs include (1) an overall complexity of modeling design, (2) 
number of modeling parameters, (3) global vs local optimization of 
modeling parameters, (4) level of effort required to create ground truth, 
(5) effort required to engineer the suitable features, (6) model trans
parency or interpretability, and (7) model generalizability. Our goal is to 
compare accuracies of the three approaches, quantify their accuracy 
variability across a few configurations, and explore the overarching 
tradeoffs between TML and DL based approaches when predicting TER, 
VEGF, and the number of cells per area, from the bright field microscopy 
images of RPE cell implants. In addition, we investigate the linked ac
curacy relationships between segmentation and the number of training 
samples, segmentation and cell features, and cell features and implant 
labels. The main contributions are:  

� Comparison of tradeoffs between direct and indirect, TML and DL 
based approaches to RPE implant function predictions from micro
scopy images in order to minimize design complexity and human 
effort while maximizing the model accuracy and usability.  
� Methodology for relating accuracies of pixel-, cell feature-, and 

implant label-level results in order to minimize the number of 
modeling steps. 

Section 2 describes use of TML and DL models in biomedical imaging 
domain for cell segmentation, cell counting, drug discovery, nuclei 
detection, and cell function prediction tasks, but there are certain lim
itations in applying these models to a new dataset or a new task. The 
main limitations are limited data for training the models, complexities of 
designing a model, optimizing the model parameters, engineering the 
relevant features, and so on. Though DL models were successful in cell 
segmentation tasks, building such accurate models requires consider
able amount of training data and creating such training data requires 
significant manual effort. On the other hand, unsupervised models do 
not require any training data but are less accurate and less robust to 
noise. Thus, there is a need to understand the tradeoffs between TML 
and DL models in the context of label prediction tasks (i.e., cell function 
prediction of RPE implants) with respect to the seven factors summa
rized in Table 1. This motivates our comparison of TML and DL based 
approaches for predicting the cell functions of RPE cell implants. 

The paper is organized as follows: Section 2 presents related work. 
Section 3 describes the dataset and the TML and DL based approaches 
used for cell segmentation, feature extraction, and label prediction tasks, 
and the metrics used for the experimental analysis. Section 4 shows the 
experimental results and compares the approaches for cell function 
prediction task. Section 5 discusses the experimental results of the 
tradeoffs between TML and DL based approaches. Section 6 concludes 
the work. 

2. Related work 

Manually evaluating the quality of RPE cells is a tedious process 
because thousands of cells need to be detected and analyzed for their 
quality, shape, size, position etc. In the computer vision domain, there 
were traditional methods used for cell detection which incorporate 
thresholding, histogram equalization, median filtering, feature detec
tion and other morphological operations that were applied in combi
nation [20,23,24,41]. Rangel-Fonseca et al. proposed an unsupervised 
algorithm for RPE cell segmentation and quantifying the number of cells 
from segmented images [23]. Zafer et al. showed that a Support Vector 
Machine (SVM) model trained on multiple data types achieves very good 
accuracy in predicting the gene function but the SVM model is suscep
tible to noise [7]. Though machine learning models were widely used in 
the biomedical imaging, no single model is optimal for all types of 
problems [44]. 

Most of the machine learning based approaches used for cell seg
mentation were not generalizable and the performance of these ap
proaches mainly depends on the relevant features extracted for a given 
task [32]. It was also shown that selecting the relevant features 

Table 1 
Modeling factors considered to compare three approaches used for cell function prediction.  

Type Factors Definition 

Complexity Complexity of modeling design Exploration of plausible DL or TML model architectures for a given problem 
No. of modeling parameters Number of parameters optimized during the training stage of the model 
Complexity of optimization Number of independently optimized parameters with respect to DL & TML models 

Effort Training data preparation Level of effort required to create ground truth 
Feature engineering Effort required to engineer the suitable features 

Usability Model transparency or interpretability Degree of interpretation of the resulting model coefficients 
Model generalizability Degree of reusability in other domains  
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improved the classification of protein subcellular location images [10]. 
B. Ko et al. showed that a Random Forest (RF) classifier was more ac
curate in classifying white blood cells compared to other machine 
learning models. The RF model is good at classifying white blood cells 
with a small amount of training data using ensemble features [16]. 
Chuanxin Zou proposed a framework for sequence descriptor-based 
protein function prediction using a SVM model which exploits the pro
tein properties to assist with feature selection [45]. In the past, many 
machine learning based algorithms have been used to build computa
tional models for the prediction of protein structure classes such as SVM 
but prediction accuracy of TML methods was strongly affected by the 
sequence similarity of the training and testing datasets. Xiao-Juan Zhu 
et al. developed a SVM model to successfully predict the protein struc
tural class with low similarity by choosing the selective features [43]. It 
was also shown that essential proteins were identified by integrating 
network topology and biological characteristics using Random walk 
based algorithm [21]. 

Finding relevant features is crucial for most TML based models. On 
the other hand, DL based models perform automatic feature engineering 
and have shown to be successful for many tasks in computer vision such 
as image classification, segmentation, and object detection [19,22,25]. 
Recently, there has been an increasing interest in applying DL based 
models to microscopy cell segmentation, detection, and cell counting 
tasks [3,26–28,37,38]. Hai-Cheng Yi has shown that DL models can 
learn high level features and the features extracted from a DL model 
were more accurate than other features for prediction of ncRNA-proteins 
[39]. It has also been shown that DL models were very accurate in 
predicting the locations of cells and their nuclei with 86% confidence 
[1]. Convolutional Neural Network (CNN) models were extensively 
applied to classification and segmentation of cells [18]. Zhiqiang Zhang 
et al. showed how deep learning technology can be used to predict and 
identify the functional units in DNA sequences, including replication 
domain, transcription factor binding site (TFBS), transcription initiation 
point, promoter, enhancer and gene deletion site [42]. 

Cell counting from microscopy images is an important task in many 
medical applications. This task was accomplished by segmenting images 
into contour masks using unsupervised and hybrid approaches [20,23]. 
Weidi Xie et al. proposed to estimate cell density without segmentation 
by a CNN based model applied to microsocpy images. In biomedical 
imaging, DL models outperform all traditional machine learning models 
in drug discovery applications as documented in a compariosn of TML 
and DL models by Alexander et al. [17]. Youyi Song compared DL with 
other TML models for cervical cancer cell segmentation and has shown 
that the DL model outperforms other TML models with 95% accuracy in 
detecting nucleus regions of cervical cancer cells [33]. For segmentation 
of cell nuclei in microscopy images, the DL model outperformed all the 
machine learning models [6]. 

3. Materials and methods 

3.1. Materials 

RPE implants were cultured and grown over a period of 155 days at 
the National Eye Institute (NEI), National Institute of Health (NIH). 
During this period of time, the implants were imaged by a bright field 
microscope. The cell implant functions were measured for TER and 
VEGF at multiple time points. The image acquisition was initiated after 
passing a stability imaging protocol and all images were converted to an 

absorbance pixel measurement(i.e. � log10

�
ðI� BlackÞ

ðWhite� BlackÞ

�

). Absorbance 

images were tiled into 256� 256 images and pre-processed so that an 
image tile can be associated with implant-level TER and VEGF mea
surements. For each tile, ground truth segmentation of cells was ob
tained by manual segmentation. Each image tile was then associated 
with its ground truth cell count from the ground truth segmentation. 
Further details about the experimental design, sample preparation and 

imaging please refer to the article published recently in clinical inves
tigation journal [46]. 

3.1.1. Dataset used for RPE cell segmentation and prediction 
As described earlier, all bright field microscopy images were con

verted to absorbance microscopy images. The number of absorbance 
images used for the segmentation task was 500 absorbance image tiles of 
size 256� 256 acquired from RPE cell implants. These images were used 
to train the DL models for the segmentation task. Each image tile has a 
manually annotated ground-truth mask and corresponding TER, VEGF, 
and cell count value. The trained DL model is applied to segment 500 
test absorbance images. For RPE cell function prediction, 500 test 
absorbance images are used. 

3.1.2. Performance metrics used for analysis 
The three selected prediction approaches generate image segmen

tation, features extracted per cell or per field of view, and predicted 
regression values (TER, VEGF or cell count). These generated numerical 
results were evaluated using multiple metrics that are described below. 

Pixel level metric: We evaluated segmentation results of DL models 
at contour and region levels using the DICE similarity score [36]. DICE is 
defined as: 

DICEðG;PÞ¼
1
n

XN

i¼1

2� Gi \ Pi

Gi [ Pi
(1)  

where ‘G’ is a ground truth mask and ‘P’ is a predicted mask. The contour 
level DICE similarity score is calculated only by considering the fore
ground pixels (border pixels) and ‘G’ is considered as ground truth 
border pixel and ‘P’ is considered as predicted pixels corresponding to 
ground truth border pixel values. Coming to the region level DICE 
similarity score, it is calculated by considering the labels for each cell 
region where ‘G’ is considered as ground truth mask labels and ‘P’ is 
considered as predicted mask labels. 

Feature level metric:Chi square (χ2) distance is used to compute 
the feature histogram differences between the features extracted from 
absorbance images using ground truth masks and features extracted 
from absorbance images using predicted masks from the deep learning 
model. It is defined as: 

χ2 distance¼
1
N
XN

i¼1

ðGi � PiÞ
2

ðGi þ PiÞ
(2) 

Label level metric: Root mean square error (RMSE) and R2 statistics 
are used to evaluate TER, VEGF, and cell count prediction accuracy 

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N
XN

i¼1
ðGi � PiÞ

2

v
u
u
t (3)  

where ‘G’ is considered as actual or ground truth TER and ‘P’ is 
considered as predicted TER. 

R2¼ 1 �
PN

i¼1ðGi � PiÞ
2

PN
i¼1ðGi � MeanðPÞÞ2

(4)  

where ‘G’ is considered as actual or ground truth cell function mea
surement (TER, VEGF, cell count) and ‘P’ is considered as predicted 
measurement of RPE implant. 

3.2. Methods 

Fig. 1 illustrates the three approaches used for solving the cell 
function prediction task. As shown in figure, each approach consists of 
specific models that are optimized against the ground truth using 
selected metrics. The optimization space that includes models, param
eters, ground truth data, and optimization techniques is very large and 
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therefore one must choose a feasible sub-space for model optimization. 
In this paper, we selected one DL model for segmentation (denoted as 
DL-Seg), one DL model for cell functional prediction (denoted as DL-Reg 
where Reg stands for regression), and five TML models for cell function 
prediction. In addition, we selected 37 features in the feature engi
neering step that include intensity, texture, and shape based descriptors. 
Finally, as discussed in Section 3.1.2. we chose three different metrics to 
evaluate the models at pixel-, feature-, and label-levels.The following 
sections describe all three approaches, the number of steps in each 
approach, implementations and configurations used for predicting the 
three RPE cell labels (TER, VEGF, and cell count). 

3.2.1. Approach 1: Indirect label prediction with segmentation and feature 
extraction 

This approach consists of three steps: deep learning model for RPE 
cell segmentation task (DL_Seg), feature engineering and extraction of 
cell features from the segmented RPE absorbance images generated from 
DL_Seg model, and cell function prediction from cell features using a 
TML-based model. This pipeline is denoted as “DL_Seg þ Extrac
t_Features þ TML_Reg”. Table 2 shows the implementation steps and 
configurations for cell function prediction. Table 2 also includes 

libraries used for feature extraction and TML model analysis. As one can 
observe from the table, cell function prediction performance should 
depend on segmentation performance, types of extracted features, and a 
particular TML model used for prediction. The model design complexity 
of this approach is very high because we need to select a DL model for 
segmentation and a TML model for cell function prediction. The level of 
optimization required is very high because models need to be optimized 
at three different steps; segmentation, feature extraction, and cell 
function level comprising of global parameters involved in the DL model 
used for segmentation and local parameters that need to be optimized in 
the TML model. This approach is transparent by providing three accu
racy probes, a DICE score for segmentation, χ2 difference for features, 
and RMSE for cell function prediction. Although this approach is 
transparent, it requires a lot of manual effort to create ground truth data 
for segmentation and to engineer the relevant features for TML predic
tion analysis. 

Step 1: Segmentation 

To segment RPE cell absorbance images into foreground (cells) and 
background pixels, we used a convolutional neural network (CNN) as a 
type of DL model with an encoder/decoder architecture. The encoder 
maps a given input image into a compact feature representation before 
the decoder maps the encoded feature representations to full input 
resolution feature maps for pixel-wise segmentation [4,26]. The model 
used in this paper is based on a U-Net CNN model architecture [26] and 
it is slightly modified in order to boost the model accuracy with transfer 
learning [40]. The encoder part of the U-Net architecture model is 
modified so that the coefficients of a model (called VGG16 or Oxford
Net) pretrained on the large ImageNet dataset [13] can be loaded into 
the encoder part of U-Net. After the U-Net model is initialized with the 
VGG16 coefficients, the entire U-Net model is refined and trained on 
RPE cell images. Table 1 in the supplementary section provides the 
details of the modified U-Net model architecture applied to the seg
mentation task. 

The modified U-Net model is trained on RPE cell image tiles of size 
256� 256 and then accuracy is evaluated on 500 test images using two 
DICE similarity metrics (contour and region DICE). 

Fig. 1. Data flow design of three approaches to cell function prediction. GT stands for ground truth, TML-Traditional Machine Learning.  

Table 2 
Approach 1 implementation steps and configuration details. Abbreviations: 
WIPP- Web Image Processing Pipeline; RF-Random Forest regressor; SVR- 
Support Vector Regressor; LR-Linear Regressor; SLP-Single Layer Perceptron; 
MLP-Multi Layer Perceptron; RMSE-Root Mean Square Error.  

Approach 1 

Step 1: Segmentation 
a) Implementation: Keras neural network library [11] 
b) Configuration: Encoder & Decoder DL model [26] 
i) Transfer learning 
Step 2: Feature Engineering 
a) Implementation: WIPP library [5] 
b) Configuration: Intensity, Texture, Shape 
i) Extracted per segment 
ii) Selected manually 
Step 3: Cell Function Prediction 
a) Implementation: Weka library [14] 
b) Configuration: Regression based models 
i) RF, SVR, LR, SLP, & MLP  
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Step 2: Feature Engineering 

Once RPE absorbance images were segmented into contour masks, 
we applied a connected component analysis to obtain the cell regions. 
Given the cell regions the feature engineering step consists of selecting/ 
constructing features, extracting features per region, and computing a 
histogram of features over all image tiles. The list of features used for the 
analysis are shown in Table 3. We extracted 37 features that are 
described as intensity, texture, and shape based features using the Web 
Image Processing Pipeline (WIPP) [5]. The WIPP system integrates 
multiple widely used feature extraction libraries and we used the ones 
implemented in Matlab. Finally, the histogram of all features was 
evaluated by using the χ2 feature histogram difference metric. 

Step 3: Cell Function Prediction 

As TER and VEGF measurements are continuous variables, we used 
regression models to predict the RPE cell function. The cell count is also 
considered as continuous measurements in order to reuse the same 
regression models for all three cell function labels. For all models, cell 
features are the independent variables and TER, VEGF and cell count are 
the dependent variables. We evaluated five TML models in our analyses 
as listed in Table 2. TML models are evaluated using the Weka machine 
learning library [14]. 

All TML models are trained on features extracted from 500 RPE cell 
images with a 66% training and 34% validation split to predict TER, 
VEGF and cell count image labels. Prediction accuracy is measured using 
the Root Mean Squared Error (RMSE) and R2 statistics as described in 
Section 3.1.2. 

3.3. Approach 2: Direct label prediction 

This approach consists of a single step, such as RPE cell function 
prediction from images. The implementation of this step uses the deep 
learning regression model denoted as “DL_Reg”. Table 4 lists the 
configuration details. The DL model architecture is similar to VGG16 
with extra added fully connected layers and a number of filters used in 
convolutional layers.1 The DL model was trained and evaluated the same 
way as in Step 3 of the Approach 1 (i.e., 500 absorbance images, split 
66% training and 34% validation, RMSE and R2 metrics). 

3.4. Approach 3: Indirect label prediction with feature extraction 

This approach consists of two steps, feature engineering and cell 
function prediction. First, features are extracted from RPE absorbance 
images and then the TML model is built to predict cell function from 
extracted features. This entire pipeline is denoted as “Extract_Features þ
TML_Reg”. Table 5 shows the implementation steps. This approach does 
not depend on segmentation since features are extracted per field of 
view (FOV) because the prediction labels are collected at the FOV level. 
Since shape based features do not make sense in this case, only intensity 
and texture based features are extracted for cell function prediction. 

4. Experimental results 

The following sections discuss experimental evaluations of the three 
approaches and compare prediction accuracies. 

4.1. Experimental setup 

DL models used for RPE cell segmentation and cell function predic
tion are trained using NVIDIA Tesla P100 PCI-E 16 GB graphics pro
cessing units (GPUs) with CUDA 10.0 version. Deep learning models 
were implemented using Keras 2.0 tensorflow as backend. The DL seg
mentation model uses the Adam optimizer to minimize the binary cross- 
entropy loss. The model is trained for 8 gradient update steps corre
sponding to “300” epochs. Similarly, the DL regression model uses the 
Adadelta optimizer to minimize mean squared logarithmic error loss. 
The regression model is trained for 8 gradient update steps corre
sponding to “5000” epochs. 

4.2. Accuracy comparison of three approaches 

Table 6 shows the data ranges for TER, VEGF, and cell count mea
surements of RPE cell implants. Table 7 summarizes the accuracy 

Table 3 
List of features extracted for RPE cell function prediction.  

Feature Name Feature Type Feature Name Feature Type 

Eccentricity Spatial Mean Intensity Intensity 
Extent Spatial Min Intensity Intensity 
Major Axis Length Spatial Max Intensity Intensity 
Minor Axis Length Spatial Standard Deviation Intensity 
Centroid Spatial Median Intensity Intensity 
Weighted Centroid Spatial Mode Intensity Intensity 
Area Spatial Skewness Intensity 
Perimeter Spatial Kurtosis Intensity 
Equivalent Diameter Spatial First Central Moment Intensity 
Orientation Spatial Contrast Texture 
Solidity Spatial Correlation Texture 
Bounding Box Spatial Energy Texture 
Euler Number Spatial Homogeneity Texture 
Filled Area Spatial Entropy Texture 
Convex Area Spatial Feret Diameter Spatial 
No. of Neighbors Spatial Border and Background Spatial   

Neighbor   

Table 4 
Approach 2 implementation steps and configuration details.  

Approach 2 

Step 1: Cell Function Prediction 
a) Implementation: Keras neural network library [11] 
b) Configuration: VGG16 CNN model [31]  

Table 5 
Approach 3 implementation steps and configuration details.  

Approach 3 
Step 1: Feature Engineering 
a) Implementation: WIPP library [5] 
b) Configuration: Intensity, Texture 
i) Extracted per field of view (FOV) 
ii) Selected manually 
Step 2: Cell Function Prediction 
a) Implementation: WEKA library [14] 
b) Configuration: Regression based models 
i) RF, SVR, LR, SLP, & MLP  

Table 6 
Range of values for TER, VEGF, and cell count measurements of RPE cell im
plants. FOV- per field of view. VEGF ratio- Measuring the VEGF secretion on 
basal side relative to apical side of the RPE cell monolayer (Basal side/Apical 
side).  

Type of measurement Min.value Max.value 

TER(Ω:cm2)  127 1071 

VEGF ratio (Ba/Ap) 2.67 11.20 
Cell count (per FOV) 33 298  1 See Table 2 in the supplementary section. 
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comparison of cell function predictions using the three approaches. 
Figs. 1–3 in the supplementary section show predicted versus measured 
labels. Table 7 shows the mean errors of three approaches for cell 
function predictions and Fig. 2 gives the details about the percentage of 
errors relative to ground truth. 

Based on Table 7 and the R2 values, Approach 2 is the only approach 
that achieves R2 values larger than 0.75 which could be considered as an 
indicator of a strong correlation between predicted values by the model 
and the ground truth values. Based on this criterion, model predictions 
using Approaches 1 and 3 do not show as strong correlations as 
Approach 2. We hypothesize that the weaker correlations are due to 
hand-crafted features in Approaches 1 and 3 since the features might not 
have been the most relevant for TER, VEGF, and cell count predictions. 

Table 8 shows RMSE values from applying holdout and 5-fold cross 
validation to 500 images in the test dataset. As we can observe from 
Table 8 the results are very similar to each other and indicate robustness 
of the models to data sub-population. 

Fig. 3 illustrates the residuals plots for TER, VEGF, and cell count 
predictions of the three approaches. As we can see from Fig. 3, box plots 

overlap around the medians which are close to zero. The min and max 
ranges for Approaches 1 and 3 are slightly larger than the range for 
Approach 2. Approach 2 is symmetric around its median value for three 
predictions whereas Approaches 1 and 3 are skewed upwards or 
downwards indicating that these two approaches are overestimating or 
underestimating the cell function predictions. The spread of Approach 2 
is much smaller (VEGF and Cell count) as compared to the other two 
approaches. Overall Approach 2, direct cell function prediction, is 
slightly more accurate as compared to the other two approaches. 
Figs. 4–6 in the supplementary section show residual error plots of the 
three label predictions. The error distribution is random indicating that 
the regression models are unbiased. Fig. 6 in the supplementary section 
shows the t-test comparison results for three approaches with 5% level of 
significance and 95% confidence. From the analysis, we can conclude 
that the three approaches are statistically similar in predicting cell 
function of RPE cell implants. Though these three approaches achieve 
similar accuracy, they have different trade-offs as summarized in Section 
4.4. 

4.3. Accuracy variability 

We evaluated segmentation performance of the DL model with and 
without transfer learning, and cell function prediction using five TML 
models. Table 9 compares the results with and without transfer learning. 
The DL model with transfer learning improved the segmentation per
formance by 14% and 22% in terms of contour and region DICE scores 

Table 7 
Comparison of three approaches used for cell function prediction. For Approaches 1 and 3, best machine learning model results are reported (Random forest regressor 
model performance is reported).  

Approach Error (mean) Root Mean Squared Error R2 statistics  

(RMSE) 

TER VEGF Cell count TER VEGF Cell count TER VEGF Cell count 

Approach 1 0.17 � 0.006 � 2.34 37.85 1.29 27.01 0.5253 0.794 0.6964 
Approach 2 � 0.59 � 0.15 5.55 24.49 1.17 25.64 0.837 0.8442 0.7915 
Approach 3 � 0.265 0.097 1.00 38.48 0.90 27.31 0.5186 0.9095 0.6687  

Fig. 2. Mean Absolute Percentage Errors (MAPE) of three approaches for TER, 
VEGF, and Cell count predictions. 

Fig. 3. Box plots showing the distribution of errors while executing each approach to cell function predictions.  

Table 8 
Performance comparison of three approaches to cell function predictions eval
uated using holdout and 5-fold cross validation methods. The TML based steps 
used Random Forest regressor model.  

Approach Root Mean Squared Error (RMSE) 

Holdout validation 5-fold validation 

TER VEGF Cell count TER VEGF Cell count 

Approach 1 37.85 1.29 27.01 40.63 1.20 25.97 
Approach 2 24.49 1.17 25.64 27.87 1.14 23.11 
Approach 3 38.48 0.90 27.31 38.20 0.97 26.37  
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respectively while reducing the cell count error by 12%. Thus, good 
segmentation leads to small error in cell count since cell count mainly 
depends on segmentation accuracy. Fig. 4a, b, 4c, and 4d illustrate a 
sample RPE absorbance image, ground truth segmentation and seg
mentation mask generated from DL models with and without transfer 
learning. 

For the Approaches 1 and 3, Tables 10 and 11 compare the accuracy 
results of five different TML models for the cell function prediction task. 
The RF model outperformed the other TML models. 

4.4. Tradeoffs of three approaches 

Although accuracy comparisons of the three approaches yielded 
statistically similar performances, each of the approaches carries 
tradeoffs in terms of design complexity, human effort, and model us
ability as defined in Table 1. The model design complexity of Approach 2 
is much simpler and it does not depend on segmentation and hand- 
crafted features. The main advantage of this method is that the model 
is optimized globally for cell function prediction as compared to 
Approach 1. This approach overcomes the manual effort required to 
create the ground truth and engineer the features for the prediction 

Fig. 4. Visual comparison of segmentation results.  

Fig. 5. Segmentation accuracy comparisons of five DL models used for RPE cell segmentation task with and without transfer learning. DL_Seg model: Deep learning 
model used for RPE cell segmentation; TL: with transfer learning by adapting the VGG16 pretrained model weights. 
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analysis. When analyzing Approach 3, though it does not depend on 
segmentation, its performance depends on optimization of feature en
gineering and on a choice of a TML model. This approach is less 
expensive in terms of model design, level of effort required to create the 
ground truth, the number of parameters involved, and the complexity 
involved in implementation. Table 13 summarizes the time comparison 
for inference on test images for the three approaches. Approach 2 is 
much faster than the other two approaches (of the order of milliseconds 
versus minutes). 

We summarized the tradeoffs of all three approaches in Table 12 

based on the seven factors defined in Table 1. If we order the three 
approaches based on the distance from the “ideal” attribute in Table 12, 
then the ranking from the smallest to the largest distance is: Approach 2, 
Approach 3, and Approach 1. Thus, from Tables 7 and 12, we concluded 
that Approach 2 has the potential to be the most accurate and effective 
approach in terms of the tradeoff factors. 

Although based on ranking Approach 2 is the best approach for cell 
function prediction task, it has limitations in terms of model interpret
ability (transparency to a user) and computational requirements on 
exhaustive parameter optimization. Another limitation is the number of 
parameters involved in training the model. For example, the regression 
DL model has more parameters than the segmentation DL model because 
it contains fully connected layers and therefore it needs more images for 
training. One could reduce the number of parameters by optimizing a DL 
model over all architectures for a given regression task. However, this 
optimization is computationally expensive and is out of scope of this 
paper. In the future, we will plan to optimize DL models in each 
approach and select the most accurate DL model for segmentation and 
cell function prediction tasks. 

4.5. Relationships between pixel-, feature-, and label-level accuracies 

To understand the relationships between linked modeling accuracies 
of the steps in Approach 1, we designed a methodology as follows:  

� Build multiple DL segmentation models for a varying number of 
training images.  
� Apply DL segmentation models to segment 500 test images to obtain 

multiple sets of segmentation masks.  
� Extract features from each set of segmentation masks.  
� Predict cell functions from each set of features.  
� Evaluate the accuracy of DL segmentation masks, feature histograms, 

and predicted labels using multiple metrics. 

In our study, we chose five DL segmentation models trained on 50, 
100, 200, 300, and 400 training samples. These five models were tested 
on 500 test images. Fig. 5a, b, and 5d show the segmentation perfor
mances reported in terms of contour DICE, region DICE, and cell count 
error. As we increase the number of training examples, the segmentation 
accuracy increases and cell count error decreases. Fig. 5c shows how 
feature histogram difference changes with respect to segmentation ac
curacy. As expected, χ2 feature histogram difference and cell count error 
decrease as region DICE increases. 

Fig. 6 shows TER, VEGF, and cell count prediction errors with respect 
to χ2 feature histogram difference. If the segmentation step is important 

Fig. 6. TER, VEGF, and cell count prediction errors (ranges of TER<127,1071>, VEGF<2.67,11.20>, cell count<33,298>) with respect to χ2 feature histogram 
difference. The number next to each plotted data point refers to the number of training images. 

Table 9 
Segmentation accuracy comparison with and without transfer learning. DL_Seg 
model: Deep learning model used for RPE cell segmentation; TL: with transfer 
learning by adapting the VGG16 pretrained model weights.  

Model DICE score Cell count error 

Contour Region 

DL_Seg model 0.5209 0.4913 0.1290 
DL_Seg model þ TL 0.6638 0.7237 0.0171  

Table 10 
Performance comparison of TML regression models for cell function prediction 
using Approach 1.  

Model Root Mean Squared Error (RMSE) 

Holdout validation 5-fold validation 

TER VEGF Cell count TER VEGF Cell count 

LR 43.55 1.34 37.01 41.40 1.45 34.07 
SVR 40.69 1.39 38.75 40.90 1.46 33.68 
RF 37.85 1.29 27.01 40.63 1.20 25.97 
SLP 58.94 2.00 39.44 53.41 1.85 40.96 
MLP 48.85 1.32 33.00 48.71 1.20 30.74  

Table 11 
Performance comparison of TML regression models for cell function prediction 
using Approach 3.  

Model Root Mean Squared Error (RMSE) 

Holdout validation 5-fold validation 

TER VEGF Cell count TER VEGF Cell count 

LR 46.66 1.18 40.81 48.02 1.29 38.65 
SVR 43.98 1.27 36.52 48.92 1.29 35.26 
RF 38.48 0.90 27.31 38.20 0.97 26.37 
SLP 44.95 1.60 37.51 53.64 1.49 36.60 
MLP 34.55 0.5707 34.55 38.50 0.72 33.54  
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for cell function prediction, then the prediction error should decrease as 
χ2 feature histogram difference decreases. As it can be seen in Fig. 6, 
there is no correlation between feature histogram difference and TER 
and VEGF prediction accuracy but there is correlation with cell count. 
We hypothesize that TER and VEGF measurements are not sensitive to 
the microscopic image segmentation accuracy since they are tissue-level 
macroscopic measurements. 

5. Discussions 

From an experimental data view, our analysis is limited to a partic
ular dataset which is made publicly available (600 GB). Additional ex
periments are needed to make correlations between good TER/VEGF 
levels and cell population distributions in a lerger variety of tissues. 

From a parameter optimization view, this study covers a small 
portion of the search space formed by all possible implementations and 
configurations that can be constructed using the three common TML and 
DL based approaches. We showed that the three approaches can be 
statistically equivalent in terms of their prediction accuracy but are 
significantly different in terms of their design complexity, human effort, 
and model reusability. As the majority of the tradeoff factors was hard to 
quantify, the choice of an approach remains to be highly dependent on 
specific tasks and available resources. For example, the level of effort 
required for training data preparation might outweigh any other 
tradeoff factors. As summarized in Table 12, it is up to the user to select 
one of these approaches based on the application specific requirements. 

All acquired data and the ground truth values are available to readers 
for browsing and downloading from here.2 The DL model for segmen
tation has been integrated into a software package WIPP which is 
available for downloading from here.3 The feature extraction tools are 
also available in WIPP. 

6. Conclusions and future work 

We presented cell function prediction results using three approaches 
leveraging TML and DL based modeling approaches. While the three 
prediction approaches have statistically similar accuracy performance, 
the direct TER/VEGF/cell count prediction method from images using a 
DL model was slightly more accurate than the other two indirect ap
proaches using DL and TML models with intermediate segmentation 
and/or feature engineering steps. 

Since each prediction approach had a large number of configuration 
parameters, we included in this study several illustrative results of 
configuration optimization. First, the image segmentation step was 
configured with and without transfer learning. The segmentation model 
with transfer learning improved segmentation accuracy by 25% as 
compared to the model without transfer learning while leveraging a 
pretrained model which was built on the ImageNet dataset. Next, the 
feature-based label prediction step was configured with five TML-based 
regression models. We reported the RF model to be the most accurate 
although less accurate than the direct DL-based approach. 

We also compared TML and DL based approaches based on seven 
factors related to design complexity, human effort, and model reus
ability. Approach 2, direct label prediction, is ranked the highest with 
the drawbacks related to the lack of model transparency and a very large 
number of parameters to be optimized. 

In addition, we illustrated a methodology for relating accuracies of 
intermediate pixel- and feature-level results to the ultimate label-level 
results. By using multiple-level evaluation metrics, we gained insights 
about (a) the sensitivity of each method to cell function prediction, (b) 
the relationships between accuracies achieved by each module within a 
method, and (c) the dependencies between prediction accuracy and 
segmentation accuracy. Based on such analyses, we showed that there is 
a relationship between the cell segmentation accuracy and the feature 
histogram dissimilarity (and the cell count error) but there is not a clear 
relationship between segmentation accuracy and cell function predic
tion accuracy. 

Accuracy performance of Approaches 1 and 3 mainly depends on the 
feature engineering stage. Optimization over multiple feature selection 
methods may improve the cell function prediction performance. Future 
work may incorporate such additional optimizations as well as visuali
zations of DL models to provide useful insights about cell function pre
diction and cell segmentation tasks. 
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