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A B S T R A C T

This paper offers a formal account of emotional inference and stress-related behaviour, using the notion of active
inference. We formulate responses to stressful scenarios in terms of Bayesian belief-updating and subsequent
policy selection; namely, planning as (active) inference. Using a minimal model of how creatures or subjects
account for their sensations (and subsequent action), we deconstruct the sequences of belief updating and be-
haviour that underwrite stress-related responses – and simulate the aberrant responses of the sort seen in post-
traumatic stress disorder (PTSD). Crucially, the model used for belief-updating generates predictions in multiple
(exteroceptive, proprioceptive and interoceptive) modalities, to provide an integrated account of evidence ac-
cumulation and multimodal integration that has consequences for both motor and autonomic responses. The
ensuing phenomenology speaks to many constructs in the ecological and clinical literature on stress, which we
unpack with reference to simulated inference processes and accompanying neuronal responses. A key insight
afforded by this formal approach rests on the trade-off between the epistemic affordance of certain cues (that
resolve uncertainty about states of affairs in the environment) and the consequences of epistemic foraging (that
may be in conflict with the instrumental or pragmatic value of ‘fleeing’ or ‘freezing’). Starting from first prin-
ciples, we show how this trade-off is nuanced by prior (subpersonal) beliefs about the outcomes of behaviour –
beliefs that, when held with unduly high precision, can lead to (Bayes optimal) responses that closely resemble
PTSD.

1. Introduction

Post-traumatic stress disorder (PTSD) is a severe mental health
condition that arises following exposure to a perceived profound threat
of serious injury or death. It is characterised clinically by the persis-
tence of what are otherwise transient disturbances for most of the po-
pulation, including flashbacks, hyperarousal, and avoidance behaviour
[1]. Specific traumas that commonly lead to PTSD vary from trans-
portation and industrial accidents, to street and domestic violence, to
war and terror incidents. It can be a consequence of direct involvement
or as a witness to these events [2].

Advances in neuroscientific and clinical research on PTSD have
produced a complex picture of the condition. This complexity reflects
the different perspectives on PTSD afforded by neurobiology, psy-
chology, and behavioural science and specialisations within these areas
(e.g. neuroendocrinology). The emerging field of computational psy-
chiatry tries to integrate these perspectives in terms of computational

neuroscience [3,4]. Here, we use a computational approach based upon
a generative model; namely, a lesion defecit model of how the symp-
toms and signs of PTSD are generated.

Specifically, this paper presents software simulations that extend
previous theoretical work on a computational psychiatry model of
PTSD [5]. The simulations situate this work in relation to computa-
tional ethology [6] and neuroeconomics [7]. In particular, we use a
Markov decision process (MDP) model and active inference to present
some scenarios – and sequential responses – that this minimal model
can exhibit, on the view that, with the appropriate parameterisation, a
wide variety of natural behaviours can be emulated, including ap-
proach-avoidance conflict [8]. Using MDP modelling, we aim to show
that neuroethological and ecological constructs can emerge from first
principles [9–11].

For background, and to convey the present aims and scope, we in-
troduce these simulations with a brief summary of the initial theoretical
model and its motivation [5]. Our overall aim in this series of papers is
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to ground an emergent bio-behavioural phenotype in first principles, in
order to produce a lesion deficit model of PTSD. By relating elements of
evolutionary biology to the physics of life [9–11], we bring into view a
tautology of adaptation via natural selection. Namely, any stable spe-
cies – i.e., one that successfully adapts to its niche, including by shaping
it – will have a biologically inherited neuronal architecture for re-
sponding to a dynamic environment that ensures species survival and
reproduction.

On this basis, we define a minimal model that captures biology and
behaviour conserved across species (e.g. predator avoidance). We then
show how a lesion to the model produces maladaptive phenotypes. By
maladaptive, we refer to what is known empirically to undermine
health and reproduction, for example, a mode of persistent non-ver-
idical perception that adversely affects heart rate. This can induce ex-
cessive metabolic costs and psychobiological pain and suffering, as
described by hierarchical neurovisceral integration theories [12–14].

To ground the model in first principles, we appeal to active in-
ference (see Box 1). This offers a framework for understanding how

organisms sample their environment to guide successful existential
strategies. In other words, in the following simulations, when a world
containing predators impinges on a creature’s eyes and ears, those
impingements lead to competing series of nerve impulses (e.g. head
rotation vs. locomotion). This competition entails an implicit decision
to be made: do I turn and look, run, or hold still? Or, in Bayesian terms:
given the evidence at hand, what actions give me the best chance to
stay out of harm’s way?

Reframing well-studied phenomena in terms of active inference has
beneficial metatheoretical consequences. In particular, some hetero-
geneous phenomena can be shown to emerge from the same underlying
cause. For instance, we have theoretically motivated the idea that
PTSD-relevant phenomena, including the generalisation of conditioned
fear, fear extinction, and safety learning, all arise from changes in a
sensory evidence accumulation threshold for a stressor inference [5].
When a creature is embedded in its ecological niche, this threshold is
the crossover point from exploration to exploitation – in other words,
from epistemic to pragmatic pursuits. Additionally, some superficially

Box 1
Markov decision process (MDP)

The procedure outlined here provides an intuition into the beliefs a creature (e.g. Jerry) has about how its sensory data are generated by acting
on hidden states in the environment. To represent the Markov decision process used in these simulations, we refer to the factor graph below.
Observed variables are shown as filled circles and unobserved variables as unfilled circles. Factors of the generative model (i.e. conditional
probability distributions and prior probabilities) are shown as squares. These squares are connected to those circles containing variables that
participate in the same factor. In the panel on the right, the definitions are given for each of the factors in blue squares, where Cat refers to the
categorical distribution. The grey region of this graph indicates that the observation at the next time step is not yet available, so cannot yet be
incorporated into the graph.

This structure is used to represent the beliefs Jerry has about how his data are caused. This means that data are never really generated from
this model. Instead, this model is how Jerry draws inferences about the causes of his observed data. Despite this, it is useful to think about how
we might generate data from this model to gain some intuition as to what it means. To do so, we start at the first time-step and sample a state
from the categorical prior over initial states. The parameters of this prior (D) are simply a vector of probabilities for each alternative state.
From this, we can now sample from the likelihood. This is formulated as a matrix (A), whose columns correspond to a state and whose rows are
the alternative outcomes that may be generated. To generate an outcome, we select the column of this matrix corresponding to the state we
sampled and sample an outcome from this column-vector of probabilities. It is this outcome that is available to our synthetic creature, Jerry.
(For specific mappings and values, see main text and Box 2; for more general technical details, see below and [68]).

Taking a discrete time step into the future, we can sample a new state from the column of a transition matrix (B) associated with the state at
the previous time. Crucially, the transition probabilities are conditioned upon the selected action. This means we have a separate B-matrix for
each action. Action selection depends upon the policy, with each policy and time point associated with an action. We calculate the expected
free energy (G) for each policy, which depends upon a vector of prior probabilities for outcomes under these policies (C). Combining these with
a prior bias term (E), assumed constant across policies in this paper, we can construct a prior over policies. This uses a softmax – i.e.,
normalised exponential – function (σ) to convert log probabilities to normalised probability distributions. Sampling from this and selecting the
action that corresponds to this policy, at this time, specifies the B-matrix from which to sample the state for the current time step. We then
sample the outcome for this time from the relevant column of the A-matrix. This process can be repeated for a series of discrete time steps,
generating a new outcome for each time.

Importantly, the prior belief about observations only enters this graph through the expected free energy, G, which enters the prior over
policies [68]. Policies index alternative trajectories, or sequences, of actions. In this sense, they are not time dependent, as each policy
determines a sequence of actions for all time-points. Conversely, the actions (u) are time dependent. U is an array that specifies an action for
each time step (rows) and each policy (columns). The selected action therefore depends upon the most likely policy and the action that policy
implies for that time step. Action selection is technically not part of the generative model, as it relies upon the posterior distribution Q,
obtained by inverting the model (i.e., Jerry inferring the causes of his sensations) [68]. This is an important aspect of active inference, as it
underwrites the way in which the system performing inference may change the process generating its observed data.
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similar phenomena can be shown to emerge from distinct causes. For
instance, a false perception may arise from a hallucination, delusion, or
a flashback. Each can be explained as a failure of sensory attenuation.
However, they may each have a distinct pathogenesis, depending upon
the neuromodulatory mechanisms or projections involved (e.g. within
and/or between prefrontal cortex and striatum).

1.1. Aims and scope

Ultimately, our standpoint is that the strength of an active inference
approach to PTSD lies in how it recontextualises and integrates a range
of empirical evidence. It achieves this with a proposal as to why pre-
vious empirical results have obtained across a variety of methodologies
and paradigms. The proposal is itself a formally grounded, computa-
tional model that rests upon inversion of a creature’s internal (gen-
erative) model – generative in the sense that this specifies how con-
sequences are generated from causes. Inversion of this model is the
process of finding (inferring) the causes that best explain the observed
consequences. In this paper, we describe the simplest possible version
of the model that retains its core functionality in experimental simu-
lations. This extends our pre-simulation account of the model that is
anchored in extant theories of PTSD [5].

The present modelling is restricted to one aspect of our theoretical
framework [5], namely, what has been widely referred to as emotional
states in the psychology and neuroscience literature [15–17]. Pre-
viously, we related this state dimension of PTSD impairment to what is
known as underfitting in machine learning, as follows. In brief, sparse
exteroceptive sensory samples confirm a generative model of a threat,
driven by strong priors, that in turn induces a neurovisceral stressor-
response state.

Although beyond the present scope, we also related another aspect,
emotional awareness (EA), to overfitting in machine learning. This re-
lationship ties in with recent neuroscientific work on the interaction
between emotional states and EA [18–21]. Consider that in health, EA
normally follows from interoceptive inference of emotional state. For
example, a visceral perception of an underlying bodily stress state could
lead to the awareness that ‘I feel afraid’. Under some psychopatholo-
gical conditions, including anxiety and panic disorders, this causal
chain may be inverted. The aberrant belief that ‘I feel afraid’ can result
from overfitting various sensations arising from an initially non-stressed
bodily state (which then becomes stressed in response).

While it is unknown how far back one must go in evolutionary
history to identify the emergence of EA, it seems clear that it could not
arise without a sufficiently complex neuronal architecture. For this
reason, we focus the present model exclusively on emotional states.
This serves to highlight the conservation of a fundamental sensorimotor
survival system (the embodied neuronal architecture) that includes
insects alongside mammals. In this respect, the model shares extensive
commonalities with the notion of survival circuits [22], with an added
emphasis on how these relate to a Bayesian account of ecological (or-
ganism-niche) dynamics.

Previous integrations of work on survival circuits with work on
ethology and behavioural ecology [23,24] also share a similar focus
with the present model on threat imminence (distance) and related
defensive strategies [25,26]. Here too, however, our added emphasis on
Bayesian ecological dynamics is relevant. Although we do not include
neuroanatomical regions in the present version (this is planned for fu-
ture work), we treat distance itself as an inferential construct that arises
from neuronal message passing. This permits us to afford special con-
sideration to the ambiguous relationship between auditory intensity,
sound-source distance, and salience, as motivated in our initial theo-
retical treatment [5].

For tractability, we specify the current minimal model without the
richness of human or animal awareness, healthy or impaired. Notably, a
large component of PTSD research centres on more basic animal
models, which similarly exclude the complexity of awareness and

related sociocultural factors. Although such complexities may indeed
play a role in human PTSD, in this paper, we adhere to a minimal,
biologically plausible, simulated adaptive animal model. We then de-
ploy this as a lesion deficit model, to illustrate the emergence of a
maladaptive neuro-bio-behavioral phenotype that captures some ca-
nonical animal and human PTSD symptomatology.

To present the adaptive model, we use a literal cartoon of animal
brain and behaviour. This is intended as an entry point into the neu-
roethological implications of the active inference formal description. It
is not intended to diminish the seriousness of PTSD, which negatively
impacts an estimated tens of millions of people worldwide, according to
recent WHO data [2]. By focussing on translational aspects of an animal
(generative) model, we aim to lay the preliminary groundwork for
developing concrete applications for PTSD diagnosis and treatment in
humans.

In what follows, after demonstrating the basic architecture and
ensuing active inference, we then consider the emergence of adaptive
and maladaptive (pathological) responses to various cues in terms of
constructs related to threat and fear. We then connect these constructs
to the symptomology of PTSD, to provide a formal account of its pa-
thophysiology. Specifically, by formulating a generative model under
active inference, we can trace the implied message passing to its neu-
robiological substrate. Connecting the generative model to computa-
tional neuroanatomy ensures that one can predict empirical responses
as measured using, for example, electrophysiological and neuroimaging
data, for eventual translation into clinical and therapeutic applications
[27].

This paper comprises two parts. In the first, we briefly overview
active inference and the particular model used to deconstruct emotional
inference in stressful situations. This model is presented in some detail,
from first principles, using minimal but plausible assumptions about
embodied inference. We will spend some time demonstrating the
emergent phenomenology – both in terms of belief updating and ac-
companying the responses at both the neuronal and behavioural (motor
and autonomic) levels. The second part of this paper then revisits these
simulations in light of established constructs and phenomena in the
literature on stress-related behaviour, with a special focus on pathology
of the kind associated with PTSD.

2. Methods

We start by describing a generative model of active engagement
with a simple world. Crucially, this model is specified in terms of bio-
logically plausible contingencies and straightforward physical laws,
without any reference to valenced states or emotional constructs. The
agenda here is to demonstrate how what manifests as emotional be-
haviour emerges from inference based upon sensory evidence that, in
itself, has no particular valence or meaning. Another important aspect
of this formulation of ‘emotional inference’ is its multimodal nature;
namely, the perceptual synthesis or inference based on exteroceptive,
proprioceptive and – importantly – interoceptive sensory cues. This
means the model necessarily generates sensory outcomes in multiple
domains, such that model inversion constitutes multisensory integra-
tion in the service of informing emotional behaviour. In active in-
ference, policy selection and adaptive behaviour is treated as an in-
ference problem, much in the spirit of planning as inference [28–31].

Formally, active inference under (partially observed) Markov deci-
sion process models requires a specification of hidden states and their
sensory consequences [32,33]. Once the hidden states and outcomes
have been established, the parameters of the generative model de-
termine the likelihood a particular outcome is generated by a combi-
nation of hidden states. This is usually encoded in an A matrix. The
transitions among hidden states are parameterised in terms of B ma-
trices (for each hidden state). Each hidden state is equipped with
probability transition (B) matrices that are controlled by action, so that
there is a repertoire of actions for each hidden state. Prior preferences –

A. Linson, et al. Behavioural Brain Research 380 (2020) 112421

3



that determine the quality or expected free energy of allowable policies
– are encoded by a C vector over each outcome modality. Finally, be-
liefs about initial states are specified with D in a matrix for each hidden
state. Equipped with this model specification (see Box 1), one can then
use standard variational procedures to simulate active inference in
terms of belief updating and subsequent policy selection (i.e., beha-
viour); for details, see [33].

A key aspect of this belief updating is that agents entertain (pos-
terior) beliefs about states of the world (including the body) and their
action upon the world; namely, the policies that determine state transi-
tions. Recognising or inferring states of the world proceeds using
standard Bayesian observer assumptions. Technically, this involves
minimising a variational free energy (upper) bound on surprise (a.k.a.
self-information). This is mathematically equivalent to maximising a
(lower) bound on model evidence (a.k.a. self-evidencing) [34,35]. This
optimisation can be formulated in a biologically plausible way by as-
sociating neuronal dynamics with a gradient flow on variational free
energy [32]. The special aspect of active inference pertains to policy
selection based upon inferences about which policy is being pursued
(from which the next action is selected). Crucially, these inferences are
based upon prior beliefs that policies minimise expected free energy.
Minimising expected free energy can be conceptualised as selecting
policies that minimise uncertainty, while leading to preferred (i.e.,
expected) outcomes. In other words, expected free energy combines
epistemic and pragmatic imperatives in a way that dissolves the ex-
ploration-exploitation dilemma [36].

The particular generative model used in this paper – to demonstrate
the emergence of healthy and pathological responses to safe and unsafe
circumstances – aims to be as simple as possible, while being suffi-
ciently comprehensive to account for the phenomena of interest;
namely, (neuro)ethological constructs related to threat and fear, and
the symptomology and pathophysiology of PTSD [5]. To (literally)
cartoon the structure of this generative model, we will use a ‘Tom and
Jerry’ analogy, bearing in mind that exactly the same probabilistic
structure can be applied to any situation involving defensive responses
to existential integrity, ranging from the pathology of predation
through to psychosocial interactions.

The metaphor we have in mind considers a mouse (Jerry), who must
decide how to behave to avoid a cat (Tom). To set up Jerry’s generative
model of his environment, we start by outlining the sensory modalities

that this model must account for. Jerry’s outcome modalities cover all
sensory domains relevant for his inference about states of the world and
policies (Fig. 1). His exteroceptive modalities are auditory and visual.
The auditory modality has three levels (silence, soft sounds and loud
sounds), and the visual modality has five levels (an empty horizon, a dot
on a horizon, a cat shape, a dog shape, and a blur). In addition, he has a
proprioceptive modality with a sensation that signals (self) movement or
not, and a baroreceptive modality that reports bodily pulsations that are
either palpable or not, corresponding to high or moderate-to-low beats
per minute (BPM). The latter two modalities are jointly specified in four
combinations. The implicit hypotheses Jerry may appeal to (sub-
personally) to explain these sensory data are separated out into three
sorts (factors) of hidden state. The first is the other creatures in his vi-
cinity, which takes five possible values: the absence of other creatures,
and either Tom or a dog, Spike, who is near or far away, respectively.
The second factor is whether Jerry himself is moving, which he may or
may not be, and the third is his own heart rate, which may or may not be
accelerated.

With these factors and modalities in place, we can now consider the
likelihood mapping (A) that describes how Jerry (implicitly) believes
these hidden state factors give rise to their associated outcomes, and the
action-dependent transitions among hidden states that underwrite be-
liefs about self and environmental trajectories. The likelihood of audi-
tory outcomes depends upon the other creatures in Jerry’s vicinity. The
closer either Tom or Spike are, the louder the sounds Jerry can expect to
hear. On rare occasions, a soft or loud sound may occur in the distance,
even when no agents are present (e.g., a tree falling). For the visual
outcome, proximal cats or dogs give rise to clear visual cat or dog forms,
respectively. If they are further away, both give rise to an indistinct
form on the horizon, and if they are absent, the horizon is empty. In
addition, the visual outcome depends upon whether or not Jerry is
moving and his heart rate. If he is moving with a high heart rate, all
Jerry sees is a blur, regardless of who is in his vicinity. If he is moving
without a high heart rate and there are distal creatures present, it is
equiprobable that he will see a dot on the horizon or an empty horizon.
Proprioceptive and baroreceptive data report, respectively, whether or
not Jerry is moving, and whether or not his heart rate is rapid.

Next, we specify the dynamic structure or contingencies of the
generative model: Jerry may engage in four different sorts of action,
grouped into policies (sequences of actions), which have implications

Fig. 1. The generative model. This schematic shows the form of
the generative model we assume is how Jerry makes sense of his
environment. The hidden states represent the hypotheses he may
appeal to in order to explain the sensory outcomes he experiences.
The arrows indicate conditional probabilities, such that an arrow
from one pictogram to another indicates the dependence of the
second on the first. Please see the main text and Box 2 for details
of this model. Brief summary – environmental states (‘local agents’
icons): no agents, distal cat, distal dog, proximal cat, proximal
dog; musculoskeletal-motor system states (see icon labels):
moving, still; cardiac states (top to bottom): moderate-to-low,
high; auditory outcomes (top to bottom: silence, soft sounds, loud
sounds; visual outcomes (see icons): empty horizon, dot on hor-
izon, cat shape, dog shape, blur; proprioceptive outcomes (see
icons): moving or not; baroreceptive outcomes (see icons): palp-
able (high BPM) or not (moderate-to-low BPM).
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for all three hidden state factors. The actions that comprise these po-
licies include: roaming/scanning; orienting; fight-or-flight; and
freezing. There are seven policies (Fig. 2), three of which involve fight-
or-flight actions, three of which involve freeze actions, and one which
involves neither fight-or-flight nor freeze. All policies begin with
roaming/scanning followed by orienting. Policies 1 and 4 continue with
an unrelenting fight-or-flight or freeze, respectively. For each of these,
there is a corresponding policy that turns into orienting (2 and 5), and
one that reverts to roaming/scanning (3 and 6). The final policy (7)
corresponds to an alternating roaming/scanning and orienting policy
(see Fig. 2).

These actions contextualise the transition probabilities associated
with each hidden state factor. The first transition (B) matrix allows the
creatures in Jerry’s vicinity to change their location according to the
arrows shown in Fig. 1 (see also Box 2). For example, a nearby cat can
transition probabilistically to a distant cat, but cannot change into a
nearby dog. This transition depends on whether Jerry engages in his
sympathetic fight-or-flight response, which places Jerry farther from
Tom, or his parasympathetic freeze response, which places Tom farther
from Jerry. These policy dependent contingencies manifest as Tom
moving away. Jerry can similarly get away from Spike. However, when
Spike wanders into the vicinity, Tom stays away. The other two policies
lead to a greater probability that Tom approaches, attracted by Jerry’s
movement or heart rate. With respect to Jerry’s intrinsic hidden states,
when engaging either the roaming/scanning or fight-or-flight actions, he
transitions into moving, and otherwise, if orienting or freezing, he
transitions to still. When engaged in fight-or-flight or orienting, his heart
rate becomes rapid, which is counteracted by the remaining two op-
tions.

Having specified the way in which data are generated from

changing states, we can now specify Jerry’s prior preferences (C). He
slightly disprefers seeing a blur, moderately disprefers seeing a dot on
the horizon, and strongly disprefers seeing the outline of his feline
predator (Tom). But, he is happy to see an empty horizon or the outline
of a dog (Spike), which means Tom won’t be there. In the auditory
domain, Jerry prefers not to hear any sound, slightly disprefers soft
sounds, and strongly disprefers loud sounds. In the jointly specified
proprioceptive and baroreceptive domains, he prefers to be relaxed and
moving (the result of roaming/scanning), is neutral about being excited
and still (due to orienting), but disprefers the remaining combinations
(the result of fight-or-flight or freezing). Note in using loaded terms like
prefer and disprefer, we simply mean that the generative model in-
cludes prior probabilities about the kinds of outcomes the agent expects
to encounter a priori.

All that remains is to set up prior beliefs about the initial states (D),
which provides two alternative simulation scenarios (see Results). In
the first, Jerry assumes he is in a safe location (‘cat poor’), represented
by flat priors. In the second, he is in an unsafe location (‘cat rich’),
represented by a strong prior belief that Tom is approaching from a
distance. We will see below the key differences in how these scenarios
affect Jerry’s neurobiology and behaviour.

2.1. Biological grounding

Certain aspects of this generative model are motivated by known
physiology. For example, policies (action sequences) are defined such
that orienting always occurs before and after engaging in ‘defensive’
actions; namely, fight-or-flight and freezing. Orienting entails holding
still, which increases visual acuity (e.g., after a head rotation to make a
sound source visible). It also entails cardioacceleration (along with

Fig. 2. Policies. This schematic illustrates the
alternative plans (or sequences of actions) that
Jerry may choose to pursue. The five actions of
Policy 1 are cartooned in the upper plot, which
shows the following sequence: Jerry begins by
(1) roaming/scanning his environment, con-
tinues on to (2) orienting, and finally, he en-
gages in (3–5) a series of fight-or-flight ac-
tions. This sequence can be compared with the
other six policies, indicated in the lower plot.
To interpret this schematic, note the labels on
the left that specify each action (which have
been grouped into action types in the far left
column). Each line is an alternative policy,
with circles indicating the action at each time-
step. The schematic acts as a key to interpret
the labelling of the 7 alternative policies
available to Jerry. This policy numbering will
be adopted consistently in subsequent figures.
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vasodilation in skeletal muscle) to increase motor readiness (i.e. the
probability of inferring a motoric policy). Physiologically, this corre-
sponds to noradrenergic arousal and vagal and/or sympathetic activa-
tion [38–40], which has been found to be enhanced in PTSD [41].

The implications of these contingencies can be summarised as fol-
lows. When Jerry is roaming/scanning, his proprio- and baroreceptive
outcomes are as he prefers (i.e., expects a priori). And yet, this also
means he is too relaxed to adequately respond to an event of interest.
Moreover, it is possible Tom is on the horizon, in or out of focal range.
Thus, he must intermittently orient to prepare for motor action and
subsequent epistemic foraging (which may include turning toward a
distal sound source, to bring it into his visual field). Similarly, if he is
moving rapidly in fight-or-flight, a blurry outcome ensues, as a proxy
for degraded visual acuity – a fundamental consequence of biophysics
from insects to mammals [42]. Holding still is a countermeasure, so that
Jerry can assess whether or not it is safe to lower his defences (i.e.
reliably resampling the scene to accumulate evidence for his posterior
beliefs).

The proprioceptive outcomes were selected as a reasonably eco-
nomical way to infer self-movement pertaining to forelimb use [43]
and/or head rotation [44], active in roaming/scanning, and fight-or-
flight, and inactive in the remaining two policies (as orienting is defined
here by a contingent completed head turn, in contrast to stationary
scanning). These outcomes originate from a particular head-trunk in-
terface site found across species, homologous to the trapezius/scapula
attachment in humans. This locus of proprioception is used here for
neuroethological generalisation (see Discussion), given its extensive
evolutionary history from 400 million year old fish up to present-day
mammals [45].

In short, this minimal generative model is equipped with everything
we need to account for, in terms of adaptive behaviour that has con-
sequences in the exteroceptive, proprioceptive, and interoceptive do-
mains. In the following, we show how the inversion of this model –
using standard Bayesian message passing schemes – gives rise to sen-
sible behaviours under the prior preferences and beliefs outlined above.
We then repeat the simulations using aberrant priors to illustrate the
emergence of maladaptive behaviour – in a way that reproduces the
symptomology of PTSD, and in turn points to its possible pathophy-
siology (see [5]). As noted above, once the generative model is

specified, the requisite (planning as) active inference can be simulated
using standard variational (marginal) message passing, whose neuro-
biological plausibility has been established to a certain degree in sev-
eral settings (see [32] for an introduction to the neuronal process the-
ories assume in what follows).

3. Results

To build an intuition as to how active inference works under this
sort of model, we start by describing some simple scenarios. While there
are many scenarios and response sequences that this simple model can
exhibit, we focus on two main narratives that best illustrate the relevant
inference and behaviour. We first introduce the two scenarios, and
continue by describing four variants that characterise our analysis.

In Scenario 1 (Fig. 3a), imagine Jerry is roaming/scanning, which
he infers via proprioceptive movement cues and impalpable baror-
eceptive pulsation. For the initial exteroceptive outcomes, he sees an
empty horizon, but hears a soft sound. Given his beliefs about what’s
‘out there’, he considers there to be a small chance that no agents are
present, and a good chance that either Tom or Spike are approaching.
The concurrent auditory and visual outcomes lead him to orient, al-
lowing for some uncertainty resolution about the hidden state via the
subsequently foraged visual outcome. If he then sees an empty horizon
or dog shape, he infers he can safely resume roaming/scanning. How-
ever, if he sees a cat shape, it becomes immediately clear that a de-
fensive policy is mandated.

Scenario 2 (Fig. 3b) also begins with Jerry roaming/scanning, and
initially encountering a dot on the horizon. The dot can only be Tom or
Spike, either approaching or retreating. Jerry will engage his defences if
he infers Tom is approaching, in order to keep Tom at a safe distance –
as he strongly disprefers seeing Tom up close. But, he also disprefers
being on the defence, which he infers via proprio- and baroreceptive
cues. Alternatively, he could wait and see if Spike will appear upon
closer examination, but this risks that it will turn out to be Tom after all.
In other words, there is an irreducible ambiguity about whether the
visible dot on the horizon is Tom or Spike, so Jerry must evaluate
whether to await approach, orienting for more precise state estimation
– i.e. exploration (epistemic foraging) – or to instead commit to de-
fensive action, by affording greater precision to his prior preferences –

Box 2
Intact and lesioned generative model

In relation to the intact generative model described in Fig. 1 and below, the lesion amounts to a strengthening of the prior (dis)preference for ‘I
see Tom’ – implemented by changing the log probability of the value in bold from C(vision) = [2 -1 1 -6.25 -.5] to C(vision) = [2 -1 1 -10 -.5]
(where the elements are, respectively, horizon, dot, dog, cat, blur). These values were selected to generate differential behaviour over trials.
We then adjusted the values to produce plausible behavioural dynamics. Remaining preferences (for both models) include C(audition) = [1 -1
-2], i.e. no, soft, or loud sound, and C(proprio-/baroreception) = [1 -1 -10], i.e. without pressure: moving, still, and with pressure: moving, still. The
safe and unsafe conditions in the experiments (see Results) entail setting the otherwise flat contextual prior (safety) to a 100 % probability that
a predator (Tom) lurks in the distance (D(env) = [0 0 0 1 0]). The B matrices reflect fully controllable state transitions (see Fig. 1), with the
exception of the environmental state transitions, which have the following probabilities relative to Jerry attracting or evading Tom:

Simulations were performed in Matlab using a standard routine, spm_MDP_VB_X. m, included with the SPM software (http://www.fil.ion.
ucl.ac.uk/spm/).
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i.e. exploitation (pragmatic foraging).
We now describe four variants for each of these scenarios. Jerry may

believe that he is in a safe environment (‘cat poor’) or an unsafe one
(‘cat rich’). This is reflected, respectively, by flat priors or by a strong
prior that Tom is approaching. Another variation relates to the strength
of the negative prior preference (i.e., aversion) for Tom. (See Box 2 for
details.) The hypothesis we test here is whether maladaptive behaviour,
such as that of animal and human PTSD, can be modelled by an ex-
aggerated prior preference. To test this, we equipped Jerry with a ne-
gative prior preference for Tom that leads to emergent adaptive beha-
viour; we then strengthen this negative prior preference to simulate an
‘impaired’ Jerry, and demonstrate anticipated emergent maladaptive
behaviour. Hence, the four variants for each of the two above scenarios
are: (I) unimpaired / safe; (II) unimpaired / unsafe; (III) impaired /
safe; and (IV) impaired / unsafe. A subset of the simulation results for
two example trials for Scenario 1, Variant I are presented in Fig. 4.

To connect this to the graphics in Fig. 4, note that the first hidden
state in Fig. 4a (indicated by the cyan dot) shows no creatures in the
vicinity. The outcomes generated by this state of affairs are an empty
horizon and a soft sound (also indicated by cyan dots). At the second
time-step, the cat is in the distance, and the same outcomes are gen-
erated. On Jerry’s next action – orienting toward the sound – he sees a
cat shape and hears a loud sound, as Tom has by now entered a prox-
imal range, which Jerry (correctly) infers. This inference induces a
fight-or-flight policy selection, and rapid belief updating for policies as
well as states averaged under policies. As can be seen in the LFP plot,
this vigorous belief-update leads to a high amplitude LFP. The selected
policy results in an increase in the distance between Tom and Jerry –
hence the transition from a near cat to a distant cat from the third to
fourth time-steps.

The sequence in Fig. 4b shows that the dog enters distal range at the
second time-step, causing a soft sound, but Jerry sees only an empty
horizon. After Jerry orients toward the sound, he sees a distant dot on
the horizon. However, at a distance, Jerry is unable to disambiguate
between the hypotheses that the dot is caused by a cat or a dog. He has
gone from wondering whether there is a cat, a dog, or nothing of in-
terest (time-steps 1 and 2), to wondering whether there is a cat or dog
(3 and 4). Only at the fifth time-step, when the dot recedes into the
background, does Jerry attain precise beliefs about both the absence of
a nearby creature, and about his ‘better safe than sorry’ freeze policy (as
he has ruled out returning to a relaxed policy; see Fig. 2). This causes
the high amplitude LFP plotted above (Fig. 4b). Please see the

discussion for a more in-depth analysis of this scenario.
The distributions of policy selections for each variant over 32 trials

per three conditions of Scenario 1 (4 × 32 × 3) and two conditions for
Scenario 2 (4 × 32 × 2) are depicted in Fig. 5. Note that either in-
creasing aversion for the cat (impaired conditions), or specifying a prior
belief that the cat is more probable (unsafe conditions), favour more
frequent selection of more defensive policy choices, despite no change
in the (hidden) states generating data. In future work modelling neu-
ronal connectivity, it may become possible to distinguish two distinct
neural correlates of these emergent PTSD phenotypes. Such a distinc-
tion could point to different clinical diagnostics and therapeutic inter-
ventions.

Having illustrated the characteristic behavioural responses that
emerge under active inference, we now discuss how these behaviours
are underwritten by emotional inference – and to what extent they can
be considered a formal account of PTSD.

4. Discussion

The normally intuitive relationship between ‘stress’ and ‘stressor’
differs from conventional understanding in the model on offer here.
Under the generative model, causes are inferred from consequences, so
an ordinarily unstressful sensory outcome (e.g. a dot on the horizon or a
soft sound), under some circumstances, can lead to the same inference
as an overtly stressful cue (a cat face); namely, clear evidence that a
stressor is present. Given that actions affect hidden states, what is
shown to be relevant above is that stressor mitigation policies may obtain
even in the absence of stressful outcomes that would typically lead to a
stressor inference. If a stressor is a destructive force (state) with a high
probability of challenging existential integrity (state transition to injury
or death), for reasons of natural selection, there must be a precise prior
aversion to its outcomes. Crucially, on this story, any outcome can in-
duce a stressor mitigation policy selection, even in the absence of an
actual stressor (i.e., false inference). From this perspective, the model
offers a straightforward way to link a variety of animal and human
models of PTSD, including predator, trauma, stress, and psychological
and biological mechanism models [46].

4.1. Single trial phenomenology and neurobiology/electrophysiology

We can narrate the sequences depicted in Fig. 4 in terms of Jerry’s
phenomenology. Beginning with Fig. 4a, by stipulation, the scenario

Fig. 3. Scenario 1 (a), Scenario 2 (b). Lower
boxes illustrate outcomes from agent POV.
Upper circles and icons illustrate agent’s be-
liefs. Specifically, the lower box in (a) portrays
the visual outcome of an empty horizon, and
the auditory outcome of a soft sound. The
upper portion of (a) provides some intuition as
to the sort of alternative hypotheses that could
be used to explain this sound. It could have
been generated by a cat, a dog, or could be
something else (e.g. an apple dropping from a
tree). The last of these hypotheses corresponds
to the belief that there is a small probability of
hearing a sound, even in the absence of any
creatures. The lower box in (b) shows the vi-
sual outcome of a dot on the horizon, in con-
nection with the agent evaluating counter-
factual beliefs (upper portion) that the visible
dot could be caused by a distal cat or distal
dog. (These scenarios recur in Figs. 4 and 5).
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begins while Jerry is roaming/scanning, and he is compelled to con-
tinue this first action until the second time-step. In the initial state, no
other creatures are in the vicinity, such that Jerry sees only an empty
horizon, but hears a soft sound. In the midst of roaming/scanning, he
infers that the sound may be nothing interesting (e.g. a tree falling), or
may be Tom approaching, so he seriously entertains continuing to
roam/scan in a carefree manner. Meanwhile, his movement is in fact
attracting Tom. By the second time-step, Jerry has become certain Tom
is in the distance, even though he has not yet spotted his feline foe. This
leads Jerry to a second action, orienting, which prepares a defensive
response by raising his heart rate (not depicted) and also locates Tom in
his visual field. By the third time-step, Jerry is both certain that Tom is
too close, and certain that fight-or-flight is the most apt policy
(actions 3–5).

In the lower portion of Fig. 4a, we see a large LFP spike (after 500
ms.), with sufficient certainty in state estimation and defensive policy
selection, and smaller spikes during subsequent state ambiguity. The
relatively precise (posterior) beliefs about states and policies

correspond to movement vigour. This would plausibly correlate with
the selected defensive fight-or-flight response.

The sequence in Fig. 4b has an identical set up, but reveals a dif-
ferent narrative and phenomenology. Under the same conditions,
seeing an empty horizon and hearing a soft sound (with no creatures
actually in the vicinity), Jerry considers the possibility that the sound
may be nothing salient, or may be Tom or Spike distally approaching.
Under the same constraints as above (roaming/scanning for action 1),
at the second time-step, Jerry is still wondering whether the sound is
nothing, Tom, or Spike. (In fact, Spike has wandered into the distal
scene, out of view.) Jerry then orients toward the dot on the horizon
(action 2), increasing his heart rate (not depicted), but this does not
attract the approach of Spike, who has no interest in Jerry. In this case,
Spike stays put, which keeps Tom away, but as Jerry cannot see who is
in the distance, he remains concerned that it might be Tom. Thus, for
action 3, Jerry holds still but has not yet fully committed to a freeze
policy; he continues to entertain the possibility that it might be Spike in
the distance after all, in which case he could resume carefree roaming/

Fig. 4. Simulated trials (columns a, b) for Scenario 1 (see
Fig. 3a), Variant I (unimpaired/safe), illustrating the process
of state estimation and policy selection. These plots show the
trajectories of Jerry’s beliefs over the course of six time steps
(x-axes) with five interleaved actions; where the action se-
quence comprises a policy. The grayscale spectrum in bars
and upper box depict probabilities, from lightest (lowest
probability) to darkest (highest probability). Cyan dots in-
dicate the true state of the world (either states or outcomes.
The shading in the outcome plots indicate prior probabilities
(i.e. preferences), while those in the hidden state and policy
plots indicate posterior beliefs. The graphics and text to the
left of the plots show alternative states of the world and po-
licies. Interpreting the posterior beliefs as neuronal firing
rates, we can use their rates of change to generate synthetic
local field potentials. Note that the increase in LFP amplitude
coincides with the point at which Jerry becomes confident
about the policy he is pursuing.
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Fig. 5. (a). This figure reports the effect of perturbing prior beliefs on the sorts of actions selected. This is shown for a range of alternative initial hidden states. This
action selection distribution is constructed from 32 trials of four simulated variants (I-IV) for Scenario 1 (Initial outcomes: empty horizon visible, soft sound audible –
see Fig. 3a). Initial hidden state: (a) No creatures in the vicinity; (b) Distal cat; (c) Distal dog. Each bar depicts all policies in fixed ascending order (left to right),
colour-coded (see key below bars), to aid comparison across bars of the relative increase or decrease in policy selection frequency. The variants serve to reveal the key
influences on policy selection. I and II (unimpaired) are defined by a moderate prior preference; III and IV (impaired) are defined by an over-strong prior preference; I
and III (safe) are defined by flat priors; and II and IV (unsafe) are defined by strong priors for a distal cat. (b). Policy selection distribution over 32 trials of four
simulated variants (I-IV) for Scenario 2 (Initial outcome: dot on horizon visible – see Fig. 3b). Initial hidden state: (d) Distal cat; (e) Distal dog. (For further details,
please see Fig. 5a caption and main text.).
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scanning. After holding still, whoever was in the distance (it happened
to be Spike) has retreated rather than approached. Jerry is now sure no
one is there, and he is correct. However, he decides roaming/scanning
is not apt. He instead commits to a freeze policy (action 4–5), believing
that this will ensure that Tom will not approach (better safe than sorry).

To track the above dynamics in the lower boxes of Fig. 4b, we can
observe a small LFP spike (after 500 ms.), with moderate certainty
about a distal agent. We also observe a large spike (after 1 s) at the
elimination of remaining counterfactual policy selections that would
permit Jerry’s return to his preferred relaxed outcomes. This is con-
sistent with studies of observed behaviour in non-human mammals,
where a startle response proper – e.g., an abrupt, significant heart rate
increase to a sudden, intense sound, with an accompanying behavioral
shift to aroused and attentive, and reduced locomotor activity – is
thought to be a precursor to either subsequent relaxation, fight-or-
flight, or a full-fledged parasympathetic freeze response [47,48]. Based
on the present simulation, this division into sub-sequences could be
regarded as a separation between two freeze types. The first type is an ‘a
priori freeze’, continuous with orienting, during which further state
estimation and/or policy evaluation is performed. This is followed by
the second type, a defensive response proper, in this case, an ‘a pos-
teriori freeze’. This analysis suggests an interesting consequence,
namely, that a behaviourally continuous freeze state may be able to be
empirically sub-divided into two phases with different underlying
neurobiological and electrophysiological correlates.

4.2. Toward an alternative aetiology of psychological trauma:
reconceptualising fear and associative memory

With the present model, inferring a stress-related state, based on any
outcome, entails inferring a policy that is expected to result in a tran-
sition to a stressor-free state. From first principles, we get three options
that ‘fall out’ of the imperative to maintain my existential integrity by
increasing the distance between me and the (inferred) danger: flight =
get farther from danger; fight = get further from danger; freeze = get
danger farther from me. Note, however, that distance is treated here as
inferential construct based on relevant outcome dimensions. For in-
stance, an increasing retinotopic surface area stimulation may reach a
threshold which (from the agent’s perspective) is likely to transition
into the sensation of being bitten. This points to a decreasing window of
opportunity for realising a successful defensive action. (This scenario
illustrates inherent problems with formulations of both the ‘inverse
problem’ and ecological ‘direct perception’ [9].)

Fear, although sometimes regarded as a basic emotion, can there-
fore instead be regarded as a post-hoc (observer) construct (i.e. apart
from a self-awareness construct). The neurovisceral outcomes identified
with fear emerge from the broader set of multimodal sensory outcomes
that drive defensive action (in the service of self-maintenance), adap-
tively or maladaptively. Under active inference, low-level threat ap-
praisal cannot be separated from threat response selection, as described
in more detail below. This is apparent in the parallels between evolu-
tionarily ancient neuronal survival architectures (e.g. in insects, for
which a ‘fear emotion’ is less commonly referred to as such), and the
more advanced higher-order human neuropsychology of trauma.

From this perspective, traumatic experience can be equated with a
situation which blends contextually derived neurovisceral survival
states (e.g. preparing for fight-or-flight) with the popular Jamesian
expression of a ‘blooming, buzzing confusion’, which he describes as
simultaneous intero- and exteroceptive assailment. This amounts to an
ecologically situated, embodied state that evinces high uncertainty in
the sense of high complexity and low accuracy: many sensory outcomes
are present and state estimation is confounded. During the trauma – on
this story – a precise negative preference is set for an arbitrary outcome,
whether or not it is in fact caused by the inflicting force, such as an
intensely loud sound. This reframes ‘semantic’ associative memory as
hypothetical inference – in other words, potentially false inference.

For instance, instead of a loud sound being merely associated with
an infliction of trauma, it becomes evidence for this, even when trauma
will not in fact be inflicted. To revisit a common example, on the pre-
sent account, it can be argued that it is not the car backfiring ‘cue’ that
reminds the combat veteran of a gunshot by traumatic memory asso-
ciation, as it is characterised even in the otherwise comprehensive
psychobiological literature [49]. Rather, the sound of the car backfiring
is never inferred as being caused by a car in the first place. Instead, it is
falsely inferred as caused by a gunshot, due to a learned hidden state-
sensory outcome contingency. This learned relationship could have just
as easily been formed with a quiet click rather than a loud bang, or any
lifespan learning that assigns (potentially aberrant) high precision to
prior preference.

While we have not explicitly simulated the learning of these re-
lationships, we implicitly assume that they have been learned in the
lesioned models. A further hypothesis implied by our approach is that
the learning during a traumatic experience resembles ‘one shot’ over-
learning. At present, the simulations contrast the intact and lesioned
models (for details, see Box 2). In later work, we expect an extended
model will simulate how therapeutic interventions could repair the
lesion, making the counterfactual space accessible again. Such repair
would imply a form of learning that is closely related if not equivalent
to the conventional understanding of fear extinction [50], with a dif-
ferent conceptual emphasis.

On an evolutionarily timescale, a ‘learned’ inheritance can manifest
as a conserved prior aversion; e.g. for intense sound (which could be
‘unlearned’ during the individual lifespan). In terms of natural selec-
tion, a ‘better safe than sorry’ adaptation increases survival odds, and is
relevant not only to subsequent reproduction but also to niche con-
struction [51], which would conserve the adaptation (e.g., learning to
avoid untraversed paths by inferring they are hostile territory, without
confirmation). To take a related example, an unexpected intense sound
would normally be attributed with high uncertainty to its specific
source. However, an adaptation that treats loud sounds as grounds for
inferring (simply) a stressor – i.e. a biologically destructive force –
renders a precise inference, precipitating a vigorous avoidance re-
sponse, ranging from startle to flight. Notably, this can have a mala-
daptive downside as well, from natural population ecology up through
human social psychopathology, especially in PTSD [52].

This inferential process is evident in more basic neural archi-
tectures, such as flying insects, for which darkening fluctuations in the
visual system (i.e. sensory outcomes) are sufficient to initiate escape
behaviour [53]. An even more closely related example occurs in
crickets that respond to (predatory) bat ultrasound, for which a me-
sothoracic interneuron (homologous to the human scapula-trapezius
innervation site) initiates an avoidance behaviour – a burst of motor
activity – when a spike-rate threshold is met; this is normally caused by
a sufficiently intense acoustic perturbation [54]. As the authors point
out, it is thus one in the same if the neuron is defined as a ‘bat-detector’
or a ‘command neuron’. In our simulations, based on minimising ex-
pected free energy, both are recast as tightly coupled sensory estimation
and motor policy selection to jointly secure existential continuity. Put
simply, there are predicted future sensory outcomes that mandate de-
fensive actions, whose consequences are the preferred future sensory
outcomes. When uncertainty is sufficiently resolved for action, we see a
(simulated) high LFP spike (Fig. 4), offering a clear empirical prediction
of measurable neurobiology. That is, a high intensity sensory outcome
is cast as strong evidence that facilitates low uncertainty (precise) state
estimation, and consequently precise policy selection.

It is not intrinsically important whether the stimulus intensity is
high or low, but rather, what matters is that it correlates with a precise
state estimation that precipitates avoidance. This puts a different spin
on why olfaction is such an effective modality with respect to detecting
predators. Their scent (outcome) is unambiguous, so by strongly dis-
preferring it, there will always be a relatively sure bet that the predator
(state) can be avoided. That is, natural selection conserves the precise
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negative preference for particular olfactory outcomes, although other
trade-offs come into play with purely chemosensory assessment [55].
This can be contrasted with vision, which has greater ambiguity – you
might mistakenly stay put and become lunch for a camouflaged or
distant, fast-approaching predator – and auditory intensity, which has
even greater ambiguity, given harmless loud events and dangerous
quiet ones in the same frequency range.

In this light, from an information-theoretic perspective, in contrast
to conventional animal communication and signalling theories, active
inference allows for the emergence of a neuroethological and ecological
story from first principles: it is a property of the generative model that
multimodal integration lowers uncertainty or entropy. Empirical stu-
dies confirm that combining auditory and visual cues increases the
robustness, precision, and discrimination of perceptual evidence re-
levant to decision-making [56–58]. This is accounted for in the present
simulations when combined auditory and visual cues resolve un-
certainty about the presence of agents in the vicinity. Hence, natural
selection favours multimodal integration, and conserves a ‘better safe
than sorry’ fallback under greater uncertainty, such as when only au-
dition or vision is available.

In short, depending on the neuronal architecture and character of
the initial sensory evidence, agents bypass the question ‘what is it?’ and
get straight to the point: ‘is there sufficient evidence that my integrity is
in jeopardy?’. When the answer is ‘yes’, this implies evidence in favour
of a pragmatic course of action – realising the preferred outcome by
decreasing the sound intensity via fleeing – which will be a vigorous
action in virtue of its relative certainty [59]; i.e., a policy selection that
minimises expected free energy by assigning high precision to prior
preferences (Fig. 4a). In this light, the adaptive/maladaptive and
healthy/pathological distinctions relate simply to the sufficiency
threshold of evidence that my integrity is in jeopardy. For some in-
dividuals, particular traumatic experiences would appear to semi-per-
manently lower this threshold such that it is easily met with imprecise
evidence, as illustrated by our lesion deficit model (see Results and Box
2).

If this threshold for possible danger is high enough, the intense
auditory outcome might be initially met with a vigorous head turn, to
perform quick epistemic foraging for uncertainty-resolving outcomes,
for example, by foveating the source location [60]. The decision to
select epistemic over pragmatic foraging – amounting to exploration
outweighing exploitation – is based on an evaluation of counterfactual
integrity-preserving actions. Namely, turning toward the source rather
than fleeing immediately would conserve metabolic resources that
would be wasted on an unnecessary diversion to skeletal muscles.1 In-
deed, such unnecessary diversion takes place in maladaptive (un-
merited) hyperarousal, discussed below.

4.3. Distributions of policy selections over 4 variants, 5 conditions, 32 trials
per condition: emergent hyperarousal and hypervigilance

Both the epistemic (orienting) and pragmatic (defensive) responses
described above are consistent with the startle reflex, which can be
contextualised within an ancient evolutionary sensorimotor archi-
tecture comprised of orienting and defensive vagal and/or sympathetic
response mediation of the autonomic nervous system, especially the
heart [61]. The exaggerated startle reflex and corresponding hyperar-
ousal found in PTSD patients [62] is modelled here as unduly high
precision on a prior preference that therefore more frequently evokes
the pragmatic response. This emergent hyperarousal is reflected in
Fig. 5 as a decrease in light blue bands in all scenarios and conditions,

and in Scenario 1 (Fig. 5a) under presumed safe conditions (I and III) as
a substantial decrease in green bands – and a corresponding substantial
increase in light orange and light yellow bands. The impaired responses
under presumed safety especially closely mimics PTSD-related hyper-
arousal, as the defensive policies obtain in situations for which the
unimpaired agents frequently find no grounds for raising (or main-
taining raised) defences.

A further nuance captured by this model relates to startled freezing
behaviour. Consider that for an epistemically beneficial head turn (i.e.,
orienting), a possible consequence is the encounter of an aversive
outcome and corresponding proximal threat inference, that in turn
precipitates a pragmatic response [63]. In this case, vagal and/or
parasympathetic lowering of the heart rate has a high probability of
being invoked (‘freezing’). This action realises the pragmatic aim of
maintaining a corresponding low probability of being detected by the
threat [64], i.e. reducing the chance of a strongly dispreferred proximal
threat outcome. However, freezing also conflicts with the aim (pre-
ference) of avoiding vulnerable self-defensive state outcomes. When the
latter aim wins out, heuristically, the stage is set for further epistemic
foraging [65], which approximates the constructs of being courageous
and curious over fearful and withdrawn.

The ability to transition out of a vulnerable self-defensive state
therefore requires having low enough precision on the prior aversion,
which can be interpreted as cognitive flexibility, associated with post-
traumatic recovery [[66] (see also [67]). An impaired agent – char-
acterised here with excessively high precision on the prior aversion –
may therefore become stuck in what closely mimics a hypervigilance
behaviour (Fig. 5b), a common PTSD symptom. Note that in presumed
safety (I and III), and in the absence of actual danger (e), the contrast
between the unimpaired (I) and impaired agent (III) is such that the
former is able to resume roaming/scanning after a momentary freeze
(light blue band) more frequently than the latter, who instead goes from
freezing to aroused orienting (light yellow band). In presumed unsafe
conditions (II and IV), in both actual danger (d) and its absence (e), the
impaired agent (IV) also shows a substantial increase (approximately 4-
fold) in ‘hard’ freezing (light orange band) compared to the unimpaired
agent (II).

5. Summary and conclusions

We have presented a generative model of adaptive/healthy and
maladaptive/pathological behaviour, grounded in an underlying evo-
lutionary psychobiology. This computational approach offers a novel
characterisation of PTSD based on first principles, rather than on con-
ventional constructs such as ‘fear’ and ‘associative memory’, while re-
maining consistent with empirical findings linked to these constructs.
The primary feature of the model is its use of overly precise prior
preferences/aversions to model aberrant psychophysiological re-
sponses, where these precise priors are conserved by natural selection.

By treating the stressor (hidden state) inference as more funda-
mental than outcomes providing evidence for stress, we have proposed
the following schema, that unifies standard active inference, neu-
roethological constructs, and a PTSD phenotype. Namely, in specific
contexts, exploration (epistemic foraging) is invoked for resolving un-
certainty about the presence of a stressor. A high negative preference
(set by evolution or learning) for a stressor-dependent outcome rapidly
leads to exploitation (pragmatic foraging) before further state estima-
tion. A ‘fearful’ or ‘aversive’ stimulus is thereby recast as an aversive
outcome related to a stressor inference, with high precision assigned to
the aversion.

Two common PTSD associated phenomena, the ‘generalisation of
conditioned fear’ (a.k.a., an inability for disambiguation or dis-
crimination of a fearful stimulus) and ‘fear extinction’ (a.k.a., safety
learning) are also recast as two sides of the same coin – a dynamic
balancing act between exploration and exploitation. Specifically, if
excessively high precision is assigned to prior preference, this will limit

1 Of course, if the embodied brain is there as a product of conserving meta-
bolic reserves and the attending evolutionary imperatives, it need not know
this; it must merely inherit precise (subpersonal) priors that amount to ‘I am not
the sort of creature that moves unnecessarily’.
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the exploratory resolution of uncertainty regarding the inferred hidden
state for a potentially stressor-dependent cue. Conversely, when this
precision on preference is lowered sufficiently, the exploitative drive
gives way to exploratory imperatives. In other words, when minimal
evidence is deemed sufficient for inferring a stressor is present, a re-
action resembling fear is induced (exploitation). When minimal evi-
dence is appropriately regarded as insufficient for a stressor inference,
depending on the agent’s focus, a reaction resembling curiosity is in-
duced (exploration), or one of indifference to a stressor hypothesis.

On this understanding, policies leading to a stressor-absent state are
invoked for reducing uncertainty relative to precise prior preferences.
These stressor-mitigation policies induce continuous arousal, and may
invoke policies associated with movement vigour (e.g. fight-or-flight).
Thus, startle is modelled as an aroused, vigorous response to a sensory
outcome (e.g. sound), which may or may not transition into a defensive
response, depending on a number of conditions. The conditions pertain
to the fact that further exploration increases risk – that is, it raises the
expected free energy of allowable policies because it lowers the prob-
ability of escaping the state that generates aversive outcomes. This
points to a counterfactual policy evaluation delay, characterised here as
an ‘a priori’ freeze, which differs from a defensive freeze, despite their
behavioural identity. Moreover, this characterisation of startle permits
us to model exaggerated startle, a common PTSD symptom, as arising
from excessively precise prior preferences.

Finally, the model provides an explanation for why we should ex-
pect to find hyperarousal and hypervigilance in PTSD patients, as is the
case. The former relates here to excessive (salience-related) motor
policy readiness – that is, when motoric policies are the most probable –
due to such policies having the lowest expected free energy (lowest
risk) for an active transition to a stressor-free state. This can emerge
independently, or in conjunction with hypervigilance. The latter is
framed as a sub-variety of excessive epistemic foraging, in which the
predominant operative hypothesis (for which further evidence is
sought) relates to the pragmatic avoidance of highly dispreferred out-
comes.

In conclusion, active inference accounts for a wide range of evi-
dence that, in some cases, has been disclosed within narrow disciplinary
silos. The confinement of research to inherited constructs can at times
suggest an impasse has been reached. However intuitive these pre-
dominant constructs may have become, rather than accept them a
priori, we can reproduce construct-related phenomena as emergent from
first principles. If, on this basis, synthetic PTSD can be shown to have
adequate neuro-bio-behavioural grounding – a project that will con-
tinue with future work – it should be possible to use this computational
approach to build a bridge between basic research in psychobiology and
translational clinical diagnostic and therapeutic insights to improve
health and wellbeing.
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Glossary

In Bayesian statistics and machine learning, several common terms have
technical meanings. This glossary defines the way in which we use key terms
in the current article

Free energy: an information theoretic measure that bounds (is greater than) the surprise on
sampling some data, given a generative model.

Expected free energy: under active inference, expected free energy is the variational free
energy expected under (posterior predictive) beliefs about outcomes. This scores the
evidence for plausible policies based on outcomes that have yet to be observed.

Entropy: the average surprise of outcomes sampled from a probability distribution or
density. A density with low entropy means, on average, the outcome is relatively
predictable. High entropy denotes unpredictability and uncertainty.

Surprise, surprisal, or self-information: the negative log-probability of an outcome. An
improbable outcome is, therefore, surprising. Negative surprise is the same as log
evidence; namely, the logarithm of Bayesian model evidence.

Bayesian surprise: a measure of salience based on the divergence between the posterior
and prior probability densities. It measures the information gain obtained by up-
dating the priors to posteriors.

Generative model: a probabilistic model that generates consequences (i.e., data) from their
causes (i.e., model parameters). A generative model is also known as a forward model
and is usually specified in terms of the likelihood of getting some data given their
causes (parameters of a model) and priors on the parameters.

Prior: the probability distribution or density over the causes of data that encode beliefs
about those causes prior to observing the data.

Empirical prior: priors that are induced by hierarchical models; they provide constraints on
the recognition density in the usual way but depend on the data.

Posterior density: the probability distribution over causes or model parameters, given some
data; i.e., a probabilistic mapping from observed consequences to causes. In Bayesian
inference, the prior is updated—on the basis of observations—to become a posterior,
according to Bayes rule.

Model evidence: in Bayesian statistics, the model evidence is the probability that observed
data were generated by a particular generative model. The negative logarithm of
model evidence is surprise or self-information in information theory.

Policy: a trajectory or sequence of actions that is determined for all time-points in a series.
Under the Markov decision process (MDP) scheme used here, a selected action de-
pends upon the most likely policy.

Hidden state: a latent state of the self or world that is inferred; (subpersonal) beliefs about
hidden states can be revised to match observed evidence, or new evidence can be
gathered to make observations consistent with beliefs about hidden states.

Outcomes: under active inference, outcomes refer to sensory evidence, typically defined
for a given sensory modality.
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