Use of anastrozole for breast cancer prevention (IBIS-II): long-term results of a randomised controlled trial

Jack Cuzick, Ivana Sestak, John F Forbes, Mitch Dowsett, Simon Cawthorn, Robert E Mansel, Sibylle Loibl, Bernardo Bonanni, D Gareth Evans, Anthony Howell, on behalf of the IBIS-II investigators*
risk of developing it to receive either anastrozole (1 mg daily) or matching placebo. The first analysis after a median follow-up of 60 months (IQR 36–85) reported a significant reduction in incidence of 53% for all breast cancer (including ductal carcinoma in situ). \(^6\) A 58% reduction in incidence of invasive oestrogen receptor-positive breast cancer and a 70% reduction in incidence of ductal carcinoma in situ was observed for anastrozole. As reported in adjuvant trials, \(^6\) the main adverse events with anastrozole were fractures, joint-related effects, and menopausal symptoms, which are associated with an almost complete elimination of oestrogen in postmenopausal women using aromatase inhibitors.

A long-term term reduction of breast cancer incidence for anastrozole or any aromatase inhibitor has not been established, as it has for tamoxifen. \(^1\) Such a result is likely to substantially improve the benefit-risk ratio, as side-effects are uncommon after treatment cessation. The objective of this study was to determine the long-term efficacy of anastrozole for preventing breast cancer (both invasive and ductal carcinoma in situ) in the post-treatment period.

Methods

Study design and participants

IBIS-II is an international, randomised, double-blind, placebo-controlled trial. Detailed study design and inclusion and exclusion criteria have previously been reported. \(^7\) In brief, high-risk postmenopausal women aged 40–70 years were recruited between Feb 2, 2003, and Jan 31, 2012, in 153 breast cancer treatment centres across 18 countries (appendix p 3). Specific risk criteria for entry were broad and have previously been reported. \(^7\) They were designed to include women aged 45–60 years who had a relative risk of breast cancer that was at least twice as high as that in the general population, those aged 60–70 years who had a risk that was at least 1.5 times higher, and those aged 40–44 years who had a risk that was at least four times higher. The exclusion criteria were being premenopausal, previous breast cancer including ductal carcinoma in situ diagnosed more than 6 months before trial entry, current or previous tamoxifen, raloxifene, or other SERM use for more than 6 months, or participation in IBIS-I, unless off-trial therapy for at least 5 years, intention to continue using oestrogen-based hormone replacement therapy, or previous or planned prophylactic mastectomy.

The trial was approved by the UK North West Multi-Centre Research Ethics Committee and was done in accordance with the Declaration of Helsinki (1996 revision), under the principles of good clinical practice. All participants provided written, informed consent to join the study, provide baseline and follow-up blood samples, and have their past and future health records examined, including access to mammograms and pathology material.

Randomisation and masking

Consenting eligible women were randomly assigned (1:1) to either anastrozole (1 mg per day, oral) or matching placebo daily for 5 years. Randomisation was stratified by country. All participants and medical personnel were blinded to treatment allocation, which was only held by the central study statistician. Unblinding was only permitted if the participant developed breast cancer, when a clinician considered there to be valid medical or
safety reasons, or the participant requested unblinding. Treatment allocation still remains largely blinded for investigators and participating women who have not developed breast or any other cancer (81·3% anastrozole vs 76·7% placebo, p=0·0053). A further analysis was planned to take place around 5 years after the last report, and this analysis is provided 6 years after that report. The decision to analyse the data was made without looking at the results beforehand.

Procedures
After treatment completion, women were followed on a yearly basis to collect data on breast cancer incidence, death, other cancers, and major adverse events (cardiovascular events, fractures). In the UK, these events were also collected through cancer registries and National Health Services (NHS Digital). In non-UK centres, annual questionnaire or annual clinic visits were used to collect these data.

Outcomes
The primary outcome was the development of histologically confirmed breast cancer—either invasive or non-invasive (ductal carcinoma in situ). Secondary outcomes were oestrogen receptor-positive breast cancer, breast cancer mortality, other cancers, cardiovascular disease, fractures, and all-cause mortality. Exploratory analyses reported treatment effects by more detailed breast cancer type, specific baseline patient characteristics (age, body-mass index [BMI], previous use of hormone replacement therapy, and previous lobular carcinoma in situ or atypical hyperplasia), and other major cancers by site.

Statistical analysis
All analyses were done on an intention-to-treat basis, including all randomly assigned patients. Analyses of the efficacy endpoints were based on hazard ratios (HRs) using Cox proportional hazard models, with corresponding 95% CIs, and survival curves were estimated using the Kaplan-Meier method. Only major adverse effects (other cancers, cardiovascular events, fractures, and deaths) were routinely collected after 5 years in all patients. Side-effects and secondary outcomes were compared between treatment groups using odds ratios (ORs) and Fisher exact significance tests. All p values were two-sided. All analyses were done using STATA version 15.1. This trial is registered as an International Standard Randomised Controlled Trial, number ISRCTN31488319.

Role of the unding source
The funder of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication.

Results
All women randomly assigned to treatment (N=3864, 1920 anastrozole and 1944 placebo) have been included in this analysis. 3704 (95·9%) were still at risk of developing breast cancer—either invasive or non-invasive (either breast cancer mortality, other cancers, cardiovascular events, fractures) at the last follow-up (anastrozole 11 339, placebo 11 028). Median follow-up for this analysis was 131 months (IQR 106–156), and 41 295 women-years of follow-up have been accrued (anastrozole 20 803, placebo 20 491), of which 22 367 women-years were accrued after 5 years of follow-up (anastrozole 11 339, placebo 11 028). Median age at study entry was 59·4 years (IQR 55·0–63·4), 1893 women (47·0%) had used hormone replacement therapy before entering the trial, and 2631 (68·1%) had a BMI of more than 25kg/m². Other baseline demographics (age, body-mass index [BMI], previous use of hormone replacement therapy, and previous lobular carcinoma in situ or atypical hyperplasia), and other major cancers by site.

Statistical analysis
All analyses were done on an intention-to-treat basis, including all randomly assigned patients. Analyses of the efficacy endpoints were based on hazard ratios (HRs) using Cox proportional hazard models, with corresponding 95% CIs, and survival curves were estimated using the Kaplan-Meier method. Only major adverse effects (other cancers, cardiovascular events, fractures, and deaths) were routinely collected after 5 years in all patients. Side-effects and secondary outcomes were compared between treatment groups using odds ratios (ORs) and Fisher exact significance tests. All p values were two-sided. All analyses were done using STATA version 15.1. This trial is registered as an International Standard Randomised Controlled Trial, number ISRCTN31488319.

Role of the unding source
The funder of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication.

Articles

Published online December 12, 2019 https://doi.org/10.1016/S0140-6736(19)32955-1

3
non-proportional hazards was not significant (p=0.073).
After 12 years of follow-up, the estimated risk of
developing breast cancer was 8.8% (IQR 7.6–10.3) in
the placebo group compared with 5.3% (4.3–6.6) in the
anastrozole group (figure 1), and the number needed
to treat for 5 years to prevent one breast cancer was 29.
Overall 203 (81.2%) of the breast cancers were invasive,
and 151 (74.4%) of these were reported as oestrogen
receptor-positive. A 54% reduction in incidence with
anastrozole was observed for oestrogen receptor-positive
cancers (HR 0.46, 95% CI 0.33–0.65, p=0.0001), with
a larger 61% reduction in the first 5 years (0.39, 0.23–0.66,
p=0.0001; figure 2), followed by a 48% reduction (0.52,
0.33–0.83, p=0.0062). A small, non-significant reduction
in incidence was observed for invasive oestrogen receptor-
negative breast cancer in the anastrozole group (0.77,
0.41–1.44, p=0.41; figure 2). A significant reduction
in incidence for anastrozole was also found for ductal
in situ cancer (0.41, 0.22–0.79, p=0.0081), in particular for
lesions known to be oestrogen-positive (0.22, 0.07–0.65).

No clear heterogeneity or trend was observed for
differences in the preventive effect of anastrozole by
other tumour characteristics (appendix p 2). Anastrozole
reduced incidence of invasive HER2-negative cancers by
43% (HR 0.57, 95% CI 0.41–0.78), which was similar to
that for invasive HER2-positive cancers (0.52, 0.23–1.17;
appendix p 2).
Explosoratory analyses of baseline characteristics did not
show any significant heterogeneity by age, BMI, previous
hormone replacement therapy use, or previous lobular
hormone replacement therapy use, or previous lobular
invasive cancers (43 vs 73 cases, 0.59, 0.39–0.87, p=0.0058), and no effect
on other specific cancers was apparent (appendix p 2).
Reductions in incidence did not differ between treatment
groups for women with a BMI of more than 30 kg/m²
or who took hormone replacement therapy before
trial entry.
Overall, a 28% reduction in cancer incidence at non-
breast sites occurred (147 vs 200 cases, OR 0.72, 95% CI
0.57–0.91, p=0.0042; table 2). Secondary analyses
showed that this reduction was driven largely by a
reduction in the incidence of non-melanoma skin cancer
(43 vs 73 cases, 0.59, 0.39–0.87, p=0.0058), and no effect
on other specific cancers was apparent (table 2).
In particular, no reduction in the incidence of endometrial
cancer occurred due to oestrogen deprivation from
anastrozole, although oestrogen is thought to be a major
driver of this cancer.11 Additionally, the early reduction
seen for colorectal cancers1 has not been extended with
longer follow-up.
No effect was seen on any other major adverse event
(table 3). In particular, there was no excess of fractures
overall (380 vs 373, OR 1.04, 95% CI 0.88–1.22). A small
non-significant increase in number of events during the
active treatment period (198 vs 186, 1.09, 0.87–1.35) was
counterbalanced by slight reduction of events after
treatment was completed (182 vs 187, 0.98, 0.79–1.23).
Myocardial infarctions were evenly distributed between

<table>
<thead>
<tr>
<th>Table 2: Cancers other than breast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anastrozole, N=1920, n (%)</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>Skin</td>
</tr>
<tr>
<td>Non-melanoma</td>
</tr>
<tr>
<td>Melanoma</td>
</tr>
<tr>
<td>Gynaecological</td>
</tr>
<tr>
<td>Endometrial</td>
</tr>
<tr>
<td>Ovarian</td>
</tr>
<tr>
<td>Respiratory</td>
</tr>
<tr>
<td>Lung</td>
</tr>
<tr>
<td>Gastrointestinal</td>
</tr>
<tr>
<td>Colorectal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 3: Major adverse events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fractures</td>
</tr>
<tr>
<td>Myocardial infarction</td>
</tr>
<tr>
<td>Deep vein thrombosis</td>
</tr>
<tr>
<td>Pulmonary embolism</td>
</tr>
<tr>
<td>Transient ischaemic attack</td>
</tr>
<tr>
<td>Stroke</td>
</tr>
</tbody>
</table>

*In the absence of pulmonary embolism. 1. In the absence of stroke. Numbers in parentheses refer to events occurring in the post-treatment period (>5-year follow-up).
treatment groups (table 3), and no differences in number of events were observed in the first 5 years (eight vs eight) or in follow-up after treatment (eight vs six). Numbers of deep vein thromboses were slightly increased in the placebo group, with no differences observed in the two periods (table 3). Cases of pulmonary embolism were non-significantly more frequent with anastrozole but no differences were observed during treatment compared with after treatment (table 3). Transient ischaemic attacks and strokes were non-significantly more common with anastrozole compared with placebo (46 vs 36, p=0.24).

Other less serious side-effects observed in the first 5 years during treatment with anastrozole, including arthralgia, joint stiffness, hot flushes, night sweats, vulvovaginal dryness, hypertension, and dry eyes, were not collected after the 5-year treatment period. However, even within the treatment period they were most common in the first year of treatment, so it is unlikely that there will be material differences in the post-treatment period. All participants have now completed treatment and full 5-year adherence was 74.6% for anastrozole compared with 77.0% for placebo (HR 0.91, 95% CI 0.79–1.01, p=0.081; appendix p 4), indicating that side-effects of anastrozole had little effect on treatment adherence. 139 (3.6%) women died during the study (69 anastrozole vs 70 placebo; table 4), with no difference between the two treatment groups (HR 0.96, 95% CI 0.69–1.34, p=0.82). Overall, no effect of anastrozole was seen for breast cancer-specific mortality (three anastrozole vs two placebo), but numbers are very small. Given the small number of deaths and the relatively young median age at entry (59.4 years), substantially longer follow-up will be needed to determine whether anastrozole affects breast cancer and other cause mortality. Deaths from cancers other than breast did not differ between treatment groups (p=0.39).

Discussion
This updated analysis of the IBIS-II trial provides additional support for the use of anastrozole in breast cancer prevention for high-risk postmenopausal women. The large 61% reduction in breast cancer incidence in the first 5 years has been maintained in subsequent follow-up to 12 years. The significant 36% reduction during post-treatment follow-up was not significantly smaller than during treatment, and still greater than that observed for tamoxifen, which has produced a roughly constant 29% reduction for 20 years.1 The number needed to treat to prevent one breast cancer during the first 12 years of follow-up was 29, which compares favourably with the 58 needed for tamoxifen at that time.1 Very few deaths from breast cancer have occurred to date, but it is too early to expect an effect on this outcome, which is a limitation of this analysis. The reduction with anastrozole was primarily seen in oestrogen receptor-positive cancers, which suggests that the effect on mortality will be smaller than that for incidence. The effects were greatest for oestrogen receptor-positive tumours, but an unexpected and non-significant 27% reduction was also seen for receptor-negative cancers, which will need further follow-up to validate.

The previously observed reduction of other cancers with anastrozole, notably non-melanoma skin cancer, has continued with longer follow up. No other side-effects have been identified with longer follow-up, and the small 11% excess of fractures during the active treatment period has not continued after 5 years of follow-up. A limitation of this analysis is that routine collection of less serious side-effects was not done after the 5-year treatment period.

All women have completed the active follow-up period of the trial and now are followed for long-term outcomes by various methods. In the UK, long-term data are collected through national registries for deaths, cancers, and major predefined adverse events, so we are confident that data are complete. Additionally, we still collect data through annual questionnaires where appropriate. For international centres, annual questionnaires were used to collect information on all primary and secondary outcomes. However, data on lesser side-effects, such as hot flushes and musculoskeletal events, were only collected during the 5-year treatment period.

In conclusion, these updated results show a continuing long-term effect of 5 years of anastrozole treatment in preventing breast cancer in high-risk postmenopausal women. No new major adverse events were identified. Overall, our data substantially strengthen the findings from our initial report after 5 years of follow-up.4 In the UK, the National Institute for Health and Care Excellence has now recommended the use of anastrozole for breast cancer prevention in high-risk postmenopausal women,15 and in the USA, the US Preventive Services Task Force has also supported its use.16 The benefits of anastrozole, in terms of the reduction in risk of breast cancer in high-risk postmenopausal women, extend beyond the 5-year treatment period.

Table 4: Specific causes of death

<table>
<thead>
<tr>
<th>Category</th>
<th>Anastrozole, N=1920, n (%)</th>
<th>Placebo, N=1944, n (%)</th>
<th>Hazard ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>69 (3.6%)</td>
<td>70 (3.6%)</td>
<td>0.96 (0.69–1.34)</td>
</tr>
<tr>
<td>Breast cancer</td>
<td>2 (0.1%)</td>
<td>3 (0.2%)</td>
<td>0.64 (0.11–3.88)</td>
</tr>
<tr>
<td>Other cancer</td>
<td>27 (1.4%)</td>
<td>34 (1.8%)</td>
<td>0.77 (0.47–1.28)</td>
</tr>
<tr>
<td>Cardiovascular</td>
<td>13 (0.7%)</td>
<td>9 (0.5%)</td>
<td>1.41 (0.60–3.31)</td>
</tr>
<tr>
<td>Other or unknown</td>
<td>27 (1.4%)</td>
<td>24 (1.2%)</td>
<td>1.10 (0.63–1.91)</td>
</tr>
</tbody>
</table>

Declaration of interests
JC reports grants from AstraZeneca, during the conduct of the study, and personal fees and royalties through Queen Mary University of London from Myriad Genetics, outside the submitted work. IS reports...
personal fees from Myriad Genetics, Nanostring Technologies, and Pfizer, outside the submitted work. MD reports personal fees personal fees and royalties through the Institute for Cancer Research for development of abiraterone from Radius, AbbVie, GI Technologies Orion, and H3 Biomedicine, personal fees from Myriad Genetics, and Nanostring Technologies, and grants from Pfizer and Radius, all outside the submitted work. SL reports personal fees from AstraZeneca, Celgene, and Puma Samsung, grants and personal fees from Pfizer, Novartis, and Roche, and grants from Cepheid and Arogen, all outside the submitted work. DGE reports personal fees from AstraZeneca. All other authors declare no competing interests.

Data sharing
Data will be available according to IBIS-II’s data sharing plan. Requests for specific analyses or data can be submitted by email to j.cuzick@qmul.ac.uk. Details for data sharing policy and application process can be found on the website of Queen Mary University London.

Acknowledgments
This study was funded by Cancer Research UK (C569/A5032), the National Health and Medical Research Council Australia (GNT300755, GNT569213), the Breast Cancer Research Foundation (EMSR1C3R), Manchester National Institute for Health Research Biomedical Research Centre (ES-BRC-1215–20007), Sanofi Aventis, and AstraZeneca. AstraZeneca provided anastrozole and matching placebo. The study sponsor was Queen Mary University of London.

References
Supplementary appendix

This appendix formed part of the original submission and has been peer reviewed. We post it as supplied by the authors.

Supplementary Table 1: Number of breast cancer events and hazard ratios according to treatment allocation and follow-up period.

<table>
<thead>
<tr>
<th></th>
<th>Anastrozole (N=1920)</th>
<th>Placebo (N=1944)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years), median (IQR)</td>
<td>59.5 (55.0-63.5)</td>
<td>59.4 (55.1-66.3)</td>
</tr>
<tr>
<td>Age at menarche (years), median (IQR)</td>
<td>13.0 (12.2-14.0)</td>
<td>13.0 (12.2-14.0)</td>
</tr>
<tr>
<td>Age at first child birth (years), median (IQR)</td>
<td>24 (21-27)</td>
<td>24 (21-27)</td>
</tr>
<tr>
<td>Age at menopause (years), median (IQR)</td>
<td>50 (45-52)</td>
<td>49 (45-52)</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>27.4 (24.2-31.1)</td>
<td>27.3 (24.4-31.2)</td>
</tr>
<tr>
<td>Previous HRT use</td>
<td>893 (47.0%)</td>
<td>910 (47.2%)</td>
</tr>
<tr>
<td>Hysterectomy</td>
<td>631 (33.2%)</td>
<td>656 (34.0%)</td>
</tr>
<tr>
<td>Family history (non-exclusive)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two or more relatives with breast/ovarian cancer</td>
<td>956 (49.8%)</td>
<td>938 (48.3%)</td>
</tr>
<tr>
<td>One relative with breast cancer at age ≤ 50</td>
<td>675 (35.3%)</td>
<td>653 (33.7%)</td>
</tr>
<tr>
<td>One relative with bilateral breast cancer</td>
<td>166 (8.6%)</td>
<td>141 (7.3%)</td>
</tr>
<tr>
<td>LCIS/Atypical hyperplasia</td>
<td>154 (8.0%)</td>
<td>190 (9.8%)</td>
</tr>
<tr>
<td>DCIS (treated with mastectomy)</td>
<td>160 (8.3%)</td>
<td>166 (8.5%)</td>
</tr>
</tbody>
</table>

IQR=Interquartile Range, kg=kilogram, m=meter, LCIS=lobular carcinoma in situ, DCIS=ductal carcinoma in situ
Supplementary Table 2: Number of invasive breast cancer events and hazard ratios according to treatment allocation and subgroups.

<table>
<thead>
<tr>
<th>Nodal status</th>
<th>Number of events (anastrozole vs. placebo)</th>
<th>HR (95% CI)</th>
<th>P-heterogeneity/P-trend (1df)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative</td>
<td>35 vs. 88</td>
<td>0.39 (0.27-0.58)</td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>26 vs. 32</td>
<td>0.80 (0.48-1.34)</td>
<td>0.083</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tumour grade</th>
<th>Number of events (anastrozole vs. placebo)</th>
<th>HR (95% CI)</th>
<th>P-heterogeneity/P-trend (1df)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>14 vs. 17</td>
<td>0.81 (0.40-1.65)</td>
<td></td>
</tr>
<tr>
<td>Intermediate</td>
<td>33 vs. 72</td>
<td>0.45 (0.30-0.68)</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>21 vs. 39</td>
<td>0.53 (0.31-0.91)</td>
<td>0.18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tumour size</th>
<th>Number of events (anastrozole vs. placebo)</th>
<th>HR (95% CI)</th>
<th>P-heterogeneity/P-trend (1df)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤10mm</td>
<td>17 vs. 41</td>
<td>0.41 (0.23-0.72)</td>
<td></td>
</tr>
<tr>
<td>10-20mm</td>
<td>26 vs. 48</td>
<td>0.53 (0.33-0.86)</td>
<td></td>
</tr>
<tr>
<td>>20mm</td>
<td>28 vs. 43</td>
<td>0.64 (0.40-1.03)</td>
<td>0.31</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HER2 status</th>
<th>Number of events (anastrozole vs. placebo)</th>
<th>HR (95% CI)</th>
<th>P-heterogeneity/P-trend (1df)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative</td>
<td>58 vs. 101</td>
<td>0.57 (0.41-0.78)</td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>9 vs. 17</td>
<td>0.52 (0.23-1.17)</td>
<td>0.86</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age</th>
<th>Number of events (anastrozole vs. placebo)</th>
<th>HR (95% CI)</th>
<th>P-heterogeneity/P-trend (1df)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤55 years</td>
<td>17 vs. 32</td>
<td>0.51 (0.28-0.91)</td>
<td></td>
</tr>
<tr>
<td>55-60 years</td>
<td>13 vs. 44</td>
<td>0.32 (0.17-0.59)</td>
<td></td>
</tr>
<tr>
<td>>60 years</td>
<td>41 vs. 56</td>
<td>0.70 (0.47-1.05)</td>
<td>0.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BMI</th>
<th>Number of events (anastrozole vs. placebo)</th>
<th>HR (95% CI)</th>
<th>P-heterogeneity/P-trend (1df)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤25 kg/m²</td>
<td>17 vs. 28</td>
<td>0.59 (0.32-1.07)</td>
<td></td>
</tr>
<tr>
<td>25-30 kg/m²</td>
<td>27 vs. 45</td>
<td>0.61 (0.38-0.98)</td>
<td></td>
</tr>
<tr>
<td>>30 kg/m²</td>
<td>27 vs. 57</td>
<td>0.46 (0.29-0.73)</td>
<td>0.66</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HRT</th>
<th>Number of events (anastrozole vs. placebo)</th>
<th>HR (95% CI)</th>
<th>P-heterogeneity/P-trend (1df)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Never</td>
<td>36 vs. 74</td>
<td>0.48 (0.32-0.71)</td>
<td></td>
</tr>
<tr>
<td>Prior</td>
<td>35 vs. 58</td>
<td>0.60 (0.39-0.91)</td>
<td>0.46</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Benign breast disease</th>
<th>Number of events (anastrozole vs. placebo)</th>
<th>HR (95% CI)</th>
<th>P-heterogeneity/P-trend (1df)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCIS or AH</td>
<td>8 vs. 23</td>
<td>0.34 (0.15-0.77)</td>
<td></td>
</tr>
<tr>
<td>No LCIS or AH</td>
<td>63 vs. 109</td>
<td>0.57 (0.42-0.78)</td>
<td>0.21</td>
</tr>
</tbody>
</table>

HR=Hazard Ratio, CI=Confidence Intervals, df=degrees of freedom, BMI=Body Mass Index, LCIS=Lobular Carcinaoma in Situ, AH=Atypical Hyperplasia, HRT=Hormonal Replacement Therapy
Supplementary Figure 1: CONSORT diagram

3864 randomised

Intention To Treat:
1920 assigned to raloxifene
6 ineligible
(Premenopausal N=3
More than 2 spinal fractures N=2
DCIS/ER-negative N=1)

1914 received raloxifene
1866 at risk at five years

Intention To Treat:
1944 assigned to placebo
7 ineligible
(Premenopausal N=3
Breast cancer N=2
DCIS/ER-negative N=1
Adopted N=1)

1937 received placebo
1838 at risk at five years
Supplementary Figure 2: Five-year adherence (%) according to treatment allocation.

<table>
<thead>
<tr>
<th>HR (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.89 (0.79-1.01)</td>
<td>0.08</td>
</tr>
</tbody>
</table>

77.0% (75.1-78.8)
74.6% (72.6-76.5)
Appendix

Independent Trial Steering Committee:

Richard Sainsbury – Chairman (IOW NHS Trust; London, United Kingdom)
Judy Garber (Dana Farber Cancer Institute, Boston, United States)
Nick Zdenkowski (University of Newcastle, Newcastle, Australia)
Rhian Gabe (Centre for Cancer Prevention, Queen Mary University, London, United Kingdom)

Principal Investigators and Local Coordinators:

Vesna Bjelic-Radisic, Dept. of Obstet. and Gynecology, Graz, Austria
Michael Fridrik, General Hospital Linz, Linz, Austria
Manuela Gili, Austria National Coordinating Centre, Austria
Richard Greil, Third Medical Dept., Salzburg, Austria
Verena Güschl, Austria National Coordinating Centre, Austria
Dietmar Heck, Ordensklinikum Linz Barmherzige Schwestern, KH BHS Linz - Department Chirurgische Abteilung, Austria
Wilfried Horvath, Dept. of Surgery, Gussing, Austria
Raimund Jakesz, Department of Surgery, Vienna University Medical School, Vienna, Austria
Petra Luft, Salzburg Cancer Research Institute (SCRI) Center for Clinical Cancer and Immunology Trials (CCCIT), Salzburg, Austria
Angela Ramoni, Dept. of Obst. and Gyn, Innsbruck, Austria
Arno Reichenauer, Dept. of Surgery, Sankt Veit, Austria
Christian Singer, Medical University of Vienna, Department Allgemeine Gynäkologie, Medical University of Vienna, Austria
Katharina Steiner, Austrian Breast and Colorectal Cancer Study Group, Austria National Coordinating Centre, Austria
Michael Stierer, Univ. Prof. Dr. Michael Stierer, Austria National Coordinating Centre, Austria
Josef Thaler, Hospital Klinikum Kreuzschwestern Wles, Oberösterreich, Austria
Thomas Thurwacher, Austria National Coordinating Centre, Austria
Ursula Wieder, Brustzentrum Hanusch-KH, Department Chirurgie/Gynäkologie, Brustzentrum Hanusch-KH, Austria
Ehtesham Abdi, The Tweed Hospital, New South Wales, Australia
Sandra Allen, Nambour, Queensland, Australia
Test Anzmco, Newcastle, Australia
Anne Arruzza, Liverpool, New South Wales, Australia
Heath Badger, Dept of Surgical Oncology, ANZBCTG, Newcastle, Australia
Caroline Baker, Mercy Private Hospital / Victorian Breast & Oncology Care, Victoria, Australia
Geoffrey Beadle, Royal Brisbane Hospital, Queensland, Australia
Ian Bennett, Princess Alexandra Hospital, Queensland, Australia
Angela Benson, Victorian Breast & Oncology Care / Mercy Private Hospital, Victoria, Australia
Robert Blum, Bendigo Health, Victoria, Australia
Adam Boyce, Lismore Base Hospital, New South Wales, Australia
Fran Boyle, Mater North Sydney, North Sydney, Australia
Karen Briscoe, Coffs Harbour Health Campus, New South Wales, Australia
Kelsey Bumford, Peter MacCallum Cancer Centre, Victoria, Australia
Sonia Byrne, Lismore Base, New South Wales, Australia
Jenny Campbell, Royal Brisbane, Queensland, Australia
Hugh Carmalt, Bendigo Health, New South Wales, Australia
Margaret Chamen, Tamworth Rural Referral Hospital, New South Wales, Australia
Anupam Chaudhuri, Riverina Cancer Care Centre - DCIS, New South Wales, Australia
Sharon Clark, The Tweed Hospital, New South Wales, Australia
David Clark, The Breast Centre, New South Wales, Australia
Amy Clark, Bendigo Health, Victoria, Australia
Vicki Clowes, Goulburn Valley, Victoria, Australia
John Collins, Royal Melbourne Hospital, Melbourne, Australia
Annette Cubitt, Royal Brisbane, Queensland, Australia
Giuliana D'Aulerio, Sir Charles Gairdner, Western Australia, Australia
Rachel Dear, St Vincents Sydney, New South Wales, Australia
Stephen Della-Fiorentina, Southern Highlands, New South Wales, Australia
Stephen Della-Fiorentina, Southern Highlands, New South Wales, Australia
Jennifer Donovan, Royal North Shore Hospital, New South Wales, Australia
Michael Donvan, Nambour General Hospital, Queensland, Australia
Karlin Dunne, The Tweed, New South Wales, Australia
Jane Eade, Griverina cancer care centre, New South Wales, Australia
Emma Eagles, Southern Highlands Cancer Centre, New South Wales, Australia
Melissa Fox, Macarthur, New South Wales, Australia
Nicole Francis, Breast Cancer Trials, Newcastle, Australia
Sonya Gibbons, Lismore Base, New South Wales, Australia
Peter Grantley Gill, Royal Adelaide Hospital, South Australia, Australia
Rebecca Griffiths, Tamworth Rural Referral Hospital, New South Wales, Australia
Donna Haberl, Victoria, Australia
Stewart Hart, Monash Medical Centre, Victoria, Australia
Terri Hartweger, Monash University, Eastern Clinical School, Victoria, Australia
Danielle Harward, Southern Highlands, New South Wales, Australia
Claire Haworth, St Charles Gairdner, Western Australia, Australia
Jasmine Hee, St Vincents, Melbourne, Victoria, Australia
Jane Hill, Riverina Cancer Care Centre, New South Wales, Australia
Rosemary Hurley, ANZNB, New South Wales, Australia
Jeralyn Jacquet, Southern Highlands, New South Wales, Australia
Jennifer Jagoe, Southern Highlands, New South Wales, Australia
Catherine Johnso12, Austin Health, Victoria, Australia
Lynne Jolly, St Vincent’s Sydney, New South Wales, Australia
David Joseph, Sir Charles Gardiner Hospital, Western Australia, Australia
George Kannourakis, Victoria, Australia
Sophie Katsabanis, Peter MacCallum, Victoria, Australia
Lauren Keller, Melbourne, Australia
Charlene Kobas, Princess Alexandra, Queensland, Australia
Carolyn Kwong, Royal North Shore, New South Wales, Australia
Mari Lashbrook, Riverina, New South Wales, Australia
Michael Law, Maroondah, Victoria, Australia
Ingrid Laycock, Breast Cancer Trials, Newcastle, Australia
Lisa Leopardi, Royal Adelaide, South Australia, Australia
Marian Lieschke, Royal Melbourne, Melbourne, Australia
Jennifer Liu, Victoria, Australia
Yali Liu, Austin Health, Victoria, Australia
Mona Martyn-Smith, Mater, North Sydney, Australia
Gavin Marx, San Clinical Trials, New South Wales, Australia
Richard Masters, Box Hill Hospital, Victoria, Australia
Andrea Mckenzie, Royal Brisbane, Queensland, Australia
Narelle Mcphee, Bendigo Health, Victoria, Australia
Lauren Mitchell, Victoria, Australia
Carole Mott, Goulburn Valley, Victoria, Australia
Eugene Moyland, Liverpool, New South Wales, Australia
Michelle Nottage, Royal Brisbane, Queensland, Australia
Felicity Osmond, Victoria, Australia
Nick Pavlakis, Armidale Hospital, New South Wales, Australia
Kelly-Anne Phillips, Peter Mac Callum Cancer Centre, Victoria, Australia
Annabel Pickett, Coffs Harbour, New South Wales, Australia
Samara Price, Macarthur Cancer Therapy Centre, New South Wales, Australia
Wendy Pritchard, Royal Brisbane, Queensland, Australia
Nadia Ranieri, St Vincent's Melbourne, Victoria, Australia
Kathryn Rebellato, New South Wales, Australia
Jessica Reid, Royal Adelaide Hospital, South Australia
Hollie Ritchie, Calvary Mater Newcastle, New South Wales, Australia
Natasha Roberts, Royal Brisbane, Queensland, Australia
Kaye Robinson, Victorian Breast & Oncology Care/Mercy Private Hospital, Victoria, Australia
Rachael Rowse, The Tweed Hospital, New South Wales, Australia
Amanda Rundle, Bendigo Health, Victoria, Australia
Lindner (Coop Carstensen), Krankenhaus Elim, Germany
Frederik Marmé, Universitätsklinikum Heidelberg, NCT, Germany
B. Ataseven, Germany
Gunter Von Minckwitz, GBG Forschungs GMBH, German National Coordinating Centre, Germany
Splitt, Facharzt f. Frauenheilkunde u. Geburtshilfe, Germany
Meinzer, St. Vincenz Krankenhaus GmbH, Gynaekologische Ambulanz, Germany
Volkmar Müller, Germany
Thomas Noesselt, Kreiskrankenhaus Hameln, Frauenklinik/Onkol. Ambulanz, Germany
Paepe, Klinikum rechts der Isar der Techn. Univ. München, Germany
Pourfard/Uleer, Gemeinschaftspraxis Hildesheim, Frauenheilkunde und Geburtshilfe, Germany
Bauer, Brustzentrum Suedbaden, Germany
Distler, Technische Universität Dresden, Germany
Sommer, I. Universitäts-Frauenklinik, Germany
Thomssen, Klinikum der Med. Fakultät, Germany
Tulusan, Klinikum Bayreuth, Germany
Ulmer, Staatl. Klinikum Karlsruhe, Germany
Andreas Rempen, Schwäbisch Hall, Germany
Rezai, Brustzentrum Lui senkrankenhaus Duesseldorf, Germany
Rita Schmutzler, Universitätsklinikum Kiel, Frauenklinik, Germany
Henning Ritter, Pius-Hospital Oldenburg, Frauenklinik, Germany
Dirk Strumberg, Germany
Tesch, Onkologie Bethanien/Marien-Krankenhaus, Germany
A Schneider, Germany
Claudia Schumacher, St. Elisabeth Krankenhaus, Brustzentrum Koeln-Hohenlind, Germany
Schwenzer, Klinikum Dortmund, Frauenklinik, Germany
Anne Schwiebus, Germany
Stephan Seitz, Germany
Thomas Steck, Klinikum Passau, Frauenklinik, Germany
W Weist, Katholisches Klinikum Mainz/St. Vinzenz, Germany
Toralf Reimer, Germany
Volker Hanf, Klinikum Fuerth, Frauenklinik, Germany
Erich Weiss, Klinikum Sindelfingen-Boeblingen GmbH, Brustzentrum der Frauenklinik, Germany
Zahm, Brustzentrum Ostthueringen am SRH Waldklinikum Gera, Germany
Louise Bjørn, AALBORG SYGEHUS, Denmark
Charlotte Lapin, Herlev University Hospital, Denmark
Jens Peter Garne, Aalborg Hospital, Breast Surgery Department, Denmark
Tiina Palva, Pirkanmaa Cancer Society, Tampere, Finland
Marjo Virkki, Tampere/Finland, Tampere, Finland
Leslie Ardilouze, Institut Bergonié, Bordeaux, France
Jean Pierre Bergerat, Département Hémato-Oncologie, France
Olivier Bernard, Agen, France
Dominique Berton-Rigaud, ICO René Gauducheau, Nantes, France
Virginie Birr, Hôpital Emile Muller, France
Nazli Blanche, CENTRE PAUL STRAUSS, France
Nathalie Bonichon - Lamicchane, CT Bordeaux, France
Delphine Brunie, France
Ahmed Benyoucef, Centre Henri Becquerel, Rouen, France
Jean Pierre Bergerat, Département Hémato-Oncologie, France
Olivier Bernard, Agen, France
Ahmed Benyoucef, Centre Henri Becquerel, Rouen, France
Jean Pierre Bergerat, Département Hémato-Oncologie, France
Olivier Bernard, Agen, France
Dominique Berton-Rigaud, ICO René Gauducheau, Nantes, France
Virginie Birr, Hôpital Emile Muller, France
Gabrielle Blanche, CENTRE PAUL STRAUSS, France
Nathalie Bonichon - Lamicchane, CT Bordeaux, France
Delphine Brunie, France
Abdesslam Chajara, Brest, France
Céleste David, Institut Sainte Catherine, France
Francesco Del Piano, France
Sengul Deveci, France
Nadine Dohollou, France
Amitabha Chakrabarti, Dorchester, United Kingdom
Sankaran Chandrasekharan, Essex Rivers Healthcare Trust, Essex County Hospital, Colchester, United Kingdom
Jill Chittock, Gloucestershire Research Team, Focus Research Centre, Cheltenham General Hospital, Cheltenham, United Kingdom
Angela Chrisopoulou, The Nightingale Centre, Manchester, United Kingdom
Shirley Cocks, Clinical Research Team Davenport House, Bolton, United Kingdom
Karen Combe, Edinburgh Breast Unit, Edinburgh, United Kingdom
Hilary Congdon, Oncology Clinical Trials Unit, Plymouth, United Kingdom
Adam Critchley, Newcastle-Upon-Tyne, United Kingdom
Andrea Croucher, Frimley, United Kingdom
Helen Cumming, Stefani Unit, Ninewells Hospital, Dundee, United Kingdom
Ramsey Cutress, Cancer Research UK Centre, Southampton, United Kingdom
Mariella D'Alessandro, Clinical Genetics Centre, Aberdeen, United Kingdom
Raouf Daoud, Frimley Park Hospital NHS Trust, Frimley, United Kingdom
Eileen Dillon, Belfast, United Kingdom
Tracey Dobson, Oncology Research - Queen Alexandra Hospital, Portsmouth, United Kingdom
Susan Downer, Royal Devon and Exeter Hospital, Exeter, United Kingdom
Philip Drew, Royal Cornwall Hospital, Truro, United Kingdom
Sidharth Dubey, Derriford Hospital, Plymouth, United Kingdom
Jackie Elliott, Queens Hospital Burton, Burton-on-Trent, United Kingdom
Gareth Evans, Regional Genetic Service, St Mary's Hospital, Manchester Prev, United Kingdom
Abigail Evans, Poole, United Kingdom
Kay Facey, Clinical Trials Unit, Plymouth Oncology Centre, Plymouth, United Kingdom
Douglas Ferguson, Room H266, Royal Devon and Exeter Hospital, Exeter, United Kingdom
Mary Fitzpatrick-Greening, Oncology & Haematology Clinical Trials (OHCT), Guys London, United Kingdom
Jo Fletcher, Lincolnshire Clinical Research Facility, Lincoln Pilgrim, United Kingdom
Olesya Francis, Lincolnshire Clinical Research Facility, Research & Innovation, Lincoln, United Kingdom
Sarah Funnell, Cancer Trials Office, Worthing, United Kingdom
Fiona Geddes, Breast Unit - Western General Hospital, Crewe South Road, Edinburgh, United Kingdom
Sian Gibson, Oncology Research Department, Chelmsford, United Kingdom
Kayleigh Gilbert, Whittington, United Kingdom
Jeanette Gilbert, Worthing, United Kingdom
Jemma Gilmore, Oncology Research Team, Welwyn Garden, United Kingdom
Lynn Glass, Cancer Clinical Trials, Wishaw, United Kingdom
Sarah Goodwin, Sussex Cancer Research Team, East Sussex, United Kingdom
Anne Griffiths, Truro, United Kingdom
Lwazi Grinly, Clinical Trials Unit, Plymouth Oncology Centre, Plymouth, United Kingdom
Nabina Gurung, Oncology Research, Office Research & Innovation Department, Poole, United Kingdom
Eleanor Gutteridge, NCCTT Group 1, Nottingham, United Kingdom
Hisham Hamed, Academic Oncology Unit, Bermondsey Block, Guys London, United Kingdom
Claudia Harding-Mckean, Ursula Keyes Breast Unit, Countess of Chester Hospital, Chester, United Kingdom
Annamaria Harmathova, Clinical Research Coordinator I Research & Development, Northwick Park, United Kingdom
Susan Hartup, Breast Care Research Nurses, St James's University Hospital, Leeds, United Kingdom
Sarah Hathaway-Lees, Queens Hospital Burton, Burton-on-Trent, United Kingdom
Amy Henson, Breast Care Research Nurses, St James's University Hospital, Leeds, United Kingdom
Verity Henson, Clinical Trials Unit, Bristol RI, United Kingdom
Naomi Hill, Belfast, United Kingdom
Annette Hilldrith, United Lincolnshire Hospitals NHS Trust - Greetwell Road, Lincoln, United Kingdom
Zoe Hilton, Breast services, Cardiff, United Kingdom
Katy Hoare, Lincolnshire Clinical Research Facility Research and Innovation, Lincoln, United Kingdom
Karen Hogben, Dorchester, United Kingdom
Chris Holcombe, Breast Unit, Linda McCartney Centre, Royal Liverpool University Hospital, Liverpool, United Kingdom
Kieran Horgan, St James's University Hospital, Leeds, United Kingdom
Helen Hothersall, Ward 12 Research Office, Airedale NHS Foundation Trust, Keighley, United Kingdom
Tony Howell, Manchester, United Kingdom
Naiba Ihsan, Cottingham, United Kingdom
Hayley Inman, Bradford Institute of Health Research, Bradford, United Kingdom
Philip Walker, Bolton, United Kingdom
Sarah White, SWLCRN, London, United Kingdom
Caroline Wilson, Sheffield, United Kingdom
Virginia Wolstenholme, Department of Clinical Oncology, London, United Kingdom
Jeremy Wood, QE2 Breast Unit, Welwyn Garden, United Kingdom
Charles Zammit, Nigel Porter Unit, Royal Sussex County Hospital, Brighton, United Kingdom
Zszuzsanna Kahan, Department of Oncotherapy, University of Szeged, Szeged, Hungary
Brigitta Éberling, University of Szeged, Department of Oncotherapy, Szeged, Hungary
Ashley Bazin, Dept. Of Medical Oncology, Tallaght, Ireland
Margaret Burke, Oncology/Haematology Clinical Trials, Sligo, Ireland
Tara Byrne, Cancer Trials Ireland, Dublin, Ireland
Mary Doyle, UC Dublin, Ireland
Denis Evoy, ICORG, the Irish Clinical Oncology Research Group, UC Dublin, Ireland
Sharon Gardiner, Limerick, Ireland
Rajnish Gupta, ICORG, the Irish Clinical Oncology Research Group, Limerick, Ireland
Aisling Hegarty, Department of Surgery, Beaumont Hospital Beaumont, Beaumont Dublin, Ireland
Arnold Hill, ICORG, the Irish Clinical Oncology Research Group, Dublin, Ireland
Marian Jennings, Oncology Clinical Trials Office, University Hospital Galway, Galway, Ireland
John Kennedy, ICORG, the Irish Clinical Oncology Research Group, Dublin, Ireland
Michael Kerin, ICORG, the Irish Clinical Oncology Research Group, Galway, Ireland
Ingrid Kiernan, Oncology Department, Dublin, Ireland
Michael J. Martin, ICORG, the Irish Clinical Oncology Research Group, Sligo, Ireland
Elaine McCarthy, Limerick, Ireland
Deirdre O'Hanlon, ICORG, the Irish Clinical Oncology Research Group, Cork, Ireland
Debra O'Hare, Cork, Ireland
Kathleen Scott, Dublin, Ireland
Janice Walshe, ICORG, the Irish Clinical Oncology Research Group, Tallaght, Ireland
Gian Antonio Da Prada, Medical Oncology Division, Italy
Fabrizio Artoli, Ospedale B. Ramazzini, V. Guido Molinari, Italy
Antonio Bernardo, Istituti clinici scientifici Maugeri, Italy
Andrea Bianchetti, Italy
Bernardo Bonanni, Division of Chemoprevention, Italy
Fulvio Borella, Italy
Elisabetta Cretella, Italy
Giuseppe De Nittis, Italy
Massimo Federico, Azienda Ospedaliera Universitaria die Modena, Modena, Italy
Nicola Flego, Florence DCIS, Italy
Daniele Generali, Cremona ITALY, Italy
Lorenzo Gianni, Divisione Oncologia Ed Onco-Ematologa, Italy
Claudio Graiff, Azienda Sanitaria di Bolzano, Italy
Aliana Guerrieri Gonzaga, Division of Chemoprevention, Italy National Coordinating Centre, Italy
Annalisia Lanza, Italy
Maria Michiara, Azienda Ospedaliero-Universitaria di Parma, Italy
Mara Negri, Servizio Data Management, Italy National Coordinating Centre, Italy
Lorenzo Orzalesi, University of Florence, Florence, Italy
Elisa Picardo, Italy
Graziella Pinotti, Italy
Riccardo Ponzzone, Italy
Mauro Porpiglia, Aso O.I.R.M. Sant'anna, Italy
Elena Rapacchi, Italy
Giorgia Razzini, Italy
Jenny Roselli, Florence, Italy
Britt Rudnas, Italy
Claudia Sangalli, Servizio Data Management, Italy National Coordinating Centre, Italy
Edda Simoncini, Italy
Carlo Tondini, Ospedali Riuniti Di Bergamo, Italy
Ilaria Vallini, Italy
Clara Varricchio, Italy National Coordinating Centre, Italy
Barbara Venturini, Italy
Marilena Visini, Azienda Ospedaliera Ospedale di Lecco, Italy
IBIS-II coordinating centre:
Jessica Adams
Jane Hickman
Victoria Davis
Nadia Haidar