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Abstract— Arterial Spin Labelling (ASL) is a magnetic 
resonance imaging technique which provides a more direct 
measure of neural activity as compared to blood-oxygenation-
level-dependent (BOLD) contrast. While it has been used for 
years for perfusion quantification, ASL has recently been 
adopted for functional connectivity (FC) analyses. However, the 
impact of the different ASL schemes on connectivity estimates 
remains to be fully investigated. In this work, pulsed and pseudo 
continuous ASL (PASL/pCASL) were compared in terms of 
cerebral blood flow (CBF) and FC measures. In line with 
literature, higher CBF and increased spatial signal-to-noise 
ratio were reported for pCASL, as compared to PASL. In terms 
of FC, pCASL was able to more reliably recover the main 
networks and showed higher correlations between brain areas. 
These preliminary results suggest pCASL to provide reliable 
and stable results, not only for CBF estimation but also for FC 
analyses. 
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I. INTRODUCTION 
Arterial Spin Labelling (ASL) is a magnetic resonance 

imaging (MRI) technique which allows the non-invasive 
quantification of brain perfusion [1]. Three main ASL 
sequences have been developed during the last years which 
exploit different ways to magnetically label blood water as it 
flows to the brain. Pulsed ASL (PASL) uses a short inversion 
pulse to tag a thick slab of blood spins passing through the 
neck [2]. Continuous ASL (CASL) uses an adiabatic inversion 
pulse to label blood flowing through a single plane at the neck 
level [2]. Despite providing increased signal-to-noise ratio 
(SNR), its use has been hampered by a high radio frequency 
duty cycle. Pseudo-continuous ASL (pCASL) was introduced 
as an alternative to CASL which can be implemented on 
standard MRI RF amplifiers. It involves blood labelling by a 
train of discrete RF-pulses which mimic the CASL tagging, 
while being less demanding in terms of duty cycle and energy 
deposition [3]. 

The impact of these labelling schemes in the estimation of 
cerebral blood flow (CBF) has been investigated in several 
recent works [3-5]. In particular, Chen and colleagues [3] 
assessed the reproducibility of PASL, CASL and pCASL with 
2D-readout in a group of healthy controls. They reported 
higher SNR as well as higher reproducible and precise CBF 
measurements for pCASL compared to the other methods. 

Besides CBF estimation, ASL has recently been adopted 
to derive functional connectivity (FC) measures, as an 
alternative technique to the well-known and more established 
blood-oxygenated-level-dependent (BOLD) functional MRI 
(fMRI). This is because the latter is an indirect measure of the 
neural activity, resulting from the overall contribution of CBF, 
blood volume and metabolism, and it is highly hampered by 
vein contamination. Conversely, ASL signals can provide 
more direct FC measures. 

FC is currently estimated using different methods [6], with 
independent component analysis (ICA) and seed-based 
analysis being the most common. ICA is a data-driven method 
which aims at separating the data into spatially and temporally 
independent components (ICs). These components represent 
either functionally relevant networks, namely resting-state 
networks (RSNs), or noise and artefacts. Seed-based analysis 
involves the a priori definition of regions of interest (ROIs). 
Average time series are extracted from those regions and their 
coupling, usually expressed in terms of correlation, represents 
the FC strength between the selected brain areas. Few studies 
have started to investigate FC based on ASL [7-9].  Jann et al. 
[8] and Dai et al. [9] showed that ASL can lead to functional 
networks similarly to BOLD fMRI, using different 
methodologies applied to a motor task and resting-state data, 
respectively. 

As in the case of CBF, it is important to understand how 
FC estimates might change with different ASL sequences. 
However, in this context it is difficult to define an appropriate 
ground truth as to how FC should look like. Nevertheless, 
assessing how FC results change by using different ASL 
techniques, which are characterised by different tagging, 
specific acquisition parameters and temporal resolution, 
remains timely and important. Some works compared the 
perfusion-based connectivity measures obtained from pCASL 
with 2D and 3D readouts [11-12]. In particular, Jann et al. [12] 
compared 3D-GRASE and 2D-echo planar imaging (EPI) 
pCASL in terms of SNR and FC results. They reported 
improved temporal SNR (tSNR) of the 3D readout which 
allowed more reliable perfusion-based FC as compared to 2D 
readout. They also showed that the 2D readout can provide 
perfusion images with high contrast but its lower tSNR might 
hamper reliable FC estimation. 

However, to the best of our knowledge, the possible 
differences in both CBF and FC metrics derived from PASL 
and pCASL sequences with the same 2D-EPI readout have not 



a. https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BASIL 
b. https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal   

been previously investigated. Therefore, in this study we 
aimed to provide a comparison of these two ASL techniques 
in terms of not only CBF maps, but also FC measures. 

II. METHODS 

A. Population and Image Acquisition 
This study was approved by the local Ethics Committee 

(REC: 15/LO/1051). Five healthy subjects (3 males, 37 ± 2 y, 
all right-handed) provided written informed consent and were 
enrolled. Imaging was carried out on a 3T Siemens PET/MR 
scanner equipped with a 16-channel head and neck coil.  

Each subject was scanned with both PASL and pCASL 
sequences during a unique session on the PET/MR scanner 
while awake and in resting-state (eyes-closed). For PASL, the 
Siemens’ PICORE (proximal inversion with a control for off-
resonance effects) sequence with Q2TIPS (QUIPSS II with 
Thin-slice TI1 Periodic Saturation) and 2D-EPI readout was 
used [voxel size: 3.6 x 3.6 x 5 mm3; gap: 1 mm; 19 partitions; 
TI1/TIs/TI2: 800/1200/1800 ms; TR/TE: 2860/17 ms]. 200 
Control/Label volumes, plus a calibration scan (M0) with 
long TR were acquired (total scanning time: 9’39”). The 
pCASL sequence was provided by Dr JJ Wang from UCLA 
[13]. This version was installed and optimised in our Center 
in order to make it as much similar as possible to the PASL 
one. In particular, the same spatial resolution as for the PASL 
was kept, while the other parameters were changed as 
follows: bolus duration/PLD: 1800/1800 ms; TR/TE: 
4590/17 ms. The number of Control/Label volumes was 
reduced to 124 in order to keep the same total scanning time.  

A 3D T1-weighted (T1w) MPRAGE anatomical scan was 
finally included for segmentation and registration purposes 
[voxel size: 1.1 x 1.1 x 1.1 mm3; 208 sagittal partitions, 
TR/TE: 2000/2.92 ms]. 

B. ASL Pre-processing 
Analysis of ASL data was carried out using FSL 5.0.9 

(FMRIB, Oxford, UK). PASL and pCASL data were 
analysed separately. The pre-processing steps to obtain clean 
ASL data included: 1) motion correction (MCFLIRT) using 
M0 as reference; 2) regression of the 6 motion parameters (3 
translation + 3 rotations) estimated during step 1. These pre-
processing steps are commonly adopted for ASL [12]. 

C. CBF Estimation 
Having obtained clean ASL datasets for each subject, we 

computed CBF maps at the single subject level. Control—
Label difference images (DM) were calculated pair-wise and 
visually/qualitatively evaluated: those with marked artefacts 
(e.g. severe ringing around the brain due to residual motion), 
were discarded from further analysis. 

To compare the two acquisition protocols, spatial SNR 
was computed on the DM images, calculating representative 
values over grey matter (GM [sSNR-GM]) and white matter 
(WM [sSNR-WM]) [11]. The sSNR was calculated as the 
ratio of the mean DM in each tissue and the standard deviation 
(STD) of the noise (sampled in a square ROI in the 
background area around the brain). To do this, each subject’s 
structural image was segmented to obtain tissue probability 
maps for GM and WM, which were then thresholded at 0.9 
and binarized. These masks were back-projected in ASL 
space by inverting the linear registration from M0 (ASL 
reference) to the corresponding T1w image (Boundary-Based 
Registration, ASL-to-T1). 

CBF maps were computed for each subject using BASIL 
FSL toolboxa. Default relaxation values were used (tissue T1: 
1.3 s, arterial T1: 1.65 s). Equilibrium blood magnetisation 
was estimated voxel-wise by using the M0 image [2]. In order 
to register the CBF maps to standard space, the 
transformation of the T1w image to the 2-mm MNI standard 
space was estimated using an initial linear step (FLIRT, 12 
degrees of freedom), followed by a non-linear step (FNIRT) 
[T1-to-MNI]. The ASL-to-T1 and T1-to-MNI 
transformations were combined and finally applied to the 
individual CBF images. 

Group CBF maps were derived separately for PASL and 
pCASL. Additionally, we computed the coefficient of 
variation (CV) defined as the ratio of the group STD and 
mean, for each sequence. To provide representative CBF 
values for PASL and pCASL, we calculated the mean CBF 
across GM and WM masks for each subject in native space. 
The Wilcoxon signed rank test was applied to statistically 
compare the CBF values from the two sequences (p < 0.05). 
Additionally, we computed the ratio of mean CBF in GM 
over WM as a measure of contrast ratio for each sequence 
[4,11]. 

D. FC Measures – Group ICA 
After spatially normalizing the clean ASL volumes using 

the combined transformation previously estimated, a group 
ICA was run (multisession temporal concatenation, 
MELODIC FSL). The number of ICs was fixed to 40 [14]. 
The most common RSNs described in the literature, including 
default mode network (DMN), motor, visual (occipital, 
medial and lateral), auditory, frontal-parietal (left and right) 
and cerebellum networks, were visually identified and 
compared to the BOLD template [15]. Of note, this template 
was considered as reference in this study, despite being based 
on the BOLD fMRI data, as no ASL derived templates are 
currently available in the literature. The cross-correlation (r-
value) was computed between each IC map and the 
corresponding BOLD template (FSL tool fslcc). Our 
hypothesis was that the more the group ICA maps correlated 
with the corresponding templates the better the true signal 
was identified [15]. 

E. FC Measures – ROI-to-ROI Analysis 
In order to estimate the ROI-to-ROI connectivity and 

derive FC matrices at the single-subject level, the functional 
Schaefer atlas with 17 RSNs and 100 ROIs was usedb. 
Starting from the clean ASL data in standard space, the 
average time series were extracted from each ROI and the full 
correlation computed between all pairs of regions, leading to 
two FC matrices, one per sequence. The overall mean and 
STD matrices were then computed across subjects, separately 
for PASL and pCASL. The former was reported as a 
summary of the FC estimated from each ASL sequence. The 
latter was calculated as we expect the variability across our 
homogenous group of healthy subjects to decrease when the 
connectivity is estimated with more stable methods [16]. 

III. RESULTS 

A. CBF Maps 
Fig. 1 reports the mean CBF and CV maps calculated 

across the five subjects, for both PASL and pCASL. Higher 
values of perfusion are reported for pCASL, while PASL 
shows reduced values across the whole brain.



 

Lower CV values were found for pCASL as compared with 
PASL, especially across the GM. 

 
Fig. 1. Group cerebral blood flow (CBF) and coefficient of variation (CV) 
maps calculated across subjects for PASL and pCASL. 

Table I reports the summary measures for sequence 
comparison. PCASL showed statistically higher values in 
both tissue types (p = 0.0312, one-tailed) compared to PASL. 
The latter appeared to underestimate perfusion in GM, also in 
comparison to literature values. Of note, for PASL data, on 
average 49% of DM was eliminated per subject, due to severe 
artefacts that were corrupting the DM maps. Increased sSNR 
was found in both GM and WM for pCASL when compared 
to PASL. 

TABLE I.  MEAN ± STD CBF (ML/100G/MIN), GM-WM CONTRAST 
RATIO AND SSNR 

 PASL pCASL 
Mean CBF GM  28.8 ± 3.8 51.9 ± 7.0 
Mean CBF WM  17.9 ± 2.9 31.6 ± 5.4 

GM-WM Contrast Ratio 1.6 ± 0.2 1.7 ± 0.2 
sSNR GM 22.4 ± 10.7 28.8 ± 9.2 
sSNR WM 8.3 ± 3.5 13.8 ± 3.6 

 

B. FC Measures – Group ICA 
Table II reports the r-value between each IC map and the 

corresponding BOLD template. In literature, a correlation of 
r >= 0.25 is generally considered as a valuable cut-off value 
for classifying a good component from BOLD fMRI. 
Therefore, our results pointed towards a general strong 
correlation between maps from ASL and BOLD fMRI. 
Overall, pCASL showed increased correlation with the 
template and seemed to outperform in high-level cognitive 
networks such as DMN (0.32 PASL vs 0.68 pCASL) and 
frontal parietal networks, which were not recovered by the 
PASL sequence. On the other hand, sensory networks such as 
motor, auditory and visual were equally represented by both 
sequences.  

TABLE II.  CROSS-CORRELATION (R-VALUE) BETWEEN THE GROUP 
ICA MAPS AND CORRESPONDING BOLD FMRI TEMPLATE. NA: NOT 

AVAILABLE 

 PASL pCASL 
DMN 0.32 0.68 
Motor 0.56 0.56 
Medial Visual 0.67 0.77 
Lateral Visual 0.34 0.48 
Occipital Visual 0.44 0.26 
Auditory 0.34 0.34 
Frontal Parietal L NA 0.49 
Frontal Parietal R NA 0.35 
Cerebellum 0.41 0.42 

 

 

Fig. 2 reports the group DMN and medial visual maps, as 
indicative examples of the perfusion-based networks derived 
by the two different ASL protocols. It can be visually 
appreciated that pCASL recovered the DMN more 
accurately, especially the PCC region, and had generally 
higher connectivity values across the network. 

 
Fig. 2. Group DMN and medial visual maps for PASL and pCASL. The 
same slices in MNI space are reported with a threshold of z > 3. 

C. FC Measures – ROI-to-ROI Analysis 
Fig. 3 reports the FC matrices derived for each subject and 

sequence along with the corresponding overall mean and 
STD matrices. The spatial correlation between individual 
PASL and pCASL matrices was 0.64 ± 0.07 (mean ± STD 
across subjects). Globally, pCASL revealed higher FC 
values, compared to PASL, as visible in all subjects. 
Considering the overall mean and STD matrices, the mean 
(mean STD) values were 0.51 (0.130) and 0.58 (0.126) for 
PASL and pCASL, respectively. 

IV. DISCUSSION 
This preliminary study investigates the main differences 

between PASL and pCASL datasets in a group of healthy 
subjects, in terms of both CBF maps and perfusion-based FC. 
ASL is a relatively new functional imaging modality which 
has been shown to provide a more direct measure of neural 
activity as compared to BOLD [3]. Reproducible CBF 
measures have been reported in literature from ASL data, 
with results comparable to positron emission tomography [2]. 
Besides its use for perfusion quantification, ASL has been 
shown to provide good localisation results and reliable 
connectivity estimates in both task and resting-state data, 
given its more direct and quantifiable signal [8].  However, 
over the past year several ASL sequences, characterised by 
different tagging and read-out methods, have been developed. 
It is therefore essential to assess if and how FC patterns 
change when using different ASL acquisition schemes. 

In terms of CBF, our results are in line with previous 
studies comparing PASL and pCASL [3]. We reported a 
statistically significant difference between the CBF estimated 
with the two sequences (p < 0.05).  In particular, we found 
higher values (in the range of those reported in literature for 
both GM and WM) for pCASL as compared to PASL, which 
tends to underestimate the CBF in GM. However, the GM-to-
WM contrast ratios are similar to those reported in Dolui et 
al. [4], thereby confirming that both sequences are able to 
estimate CBF with comparable contrast. 

In terms of FC and RSN, we found that pCASL was able 
to recover the main networks with higher consistency with 
respect to BOLD, than PASL. Indeed, we reported increased 
cross-correlation with the template for most of the networks, 
especially those involved in high-level cognitive functions. In 
particular, some networks (frontal-parietal left and right) 
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were only recovered by the pCASL. Regarding FC and ROI-
to-ROI analysis, connectivity matrices showed increased 
mean connectivity when pCASL was used and decreased 
within-group STD. This finding is important as it hints to the 
fact that FC measures from pCASL might be more stable 
across subjects, as expected in a healthy population. In 
addition, it can be noted that the FC patterns are consistent 
when PASL and pCASL are compared for a given subject. 
However, single-subject pCASL connectivity matrices 
generally show increased values when compared to PASL, 
which was also confirmed by the slightly increased mean 
connectivity across subjects. 

 As a general limitation, we want to emphasise the lack of 
an absolute ground truth of FC strength and patterns. This 
extends to the whole FC literature [16], as gold standard FC 
matrices are currently lacking and also simulating reasonable 
scenarios might be challenging, especially in the case of ASL. 
This makes it difficult to objectively compare different 
acquisition strategies. However, investigating how FC 
patterns are modulated by the ASL acquisition type is timely 
and important, as it can provide insights on how FC derived 
from ASL changes in relation to different data resolution and 
tagging properties of a given sequence. In addition to this, we 
acknowledge the preliminary stage of this work where only a 
limited sample size was analysed. Despite the limited sample 
size, we were able to demonstrate changes in both CBF and 
FC patterns with different ASL sequences. pCASL achieved 
more reliable results in terms of both CBF and FC 
estimations, while PASL tended to underestimate perfusion 
and fails to recover some of the most common networks. In 
summary, this preliminary work shows promising results in 
terms of perfusion-based connectivity which can help 
underpinning the functional organisation of brain networks, 
using a more direct measure of neural activity. 
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Fig. 3. Individual connectivity matrices plus the corresponding overall mean and STD matrices across subjects for each sequence. 


