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previously attributed to ciliated cells (e.g., CDHR3 and CD59). GS-3 
contains genes with known roles in airway ciliary biology, such as 
IFT88 (required for ciliary formation) (26–28) and DNAH5 (re-
quired for ciliary motility) (29–31). By contrast, gene set GS-7 is 
enriched with cell cycle–associated genes (extended table S3), such 
as CDK1 and CCNB1 (G1-S transition) and TOP2A (S-phase DNA 
replication), as well as the transcription factor HES6. Therefore, 
clusters C-5 and C-11 likely represent functionally distinct sub-
populations of FOXJ1+ ciliated cells.

We found that ciliated cells from current smokers expressed a 
distinct transcriptional signature. Specifically, the current smoker 
subset of cluster C-5 FOXJ1+ cells expressed gene set GS-8, which 
was enriched with genes encoding enzymes implicated in aldehyde 
and ketone metabolism, such as ALDH3A1, AKR1C1, and AKR1B10 
(Fig. 3B). This finding suggested that the gene expression response 
to toxic aldehydes and ketones present in tobacco smoke (8, 9) might 
be restricted to ciliated epithelial cells. To confirm that this set of 
enzymes localized to ciliated cells, we immunostained bronchial 
tissue procured from an independent cohort of never and current 
smokers [University Medical Center Groningen (UMCG) cohort, 
table S2] for the aldo-keto reductase AKR1B10, as well as cilia-specific 
acetylated -tubulin (Ac--Tub) and the luminal cytokeratin KRT8, 
which is expressed by all nonbasal cells (Fig. 3C). We found that 
AKR1B10 was robustly expressed in the airways of current smokers, 
and numbers of AKR1B10+ ciliated cells were significantly higher 
than those observed in never smokers (P = 7.4 × 10−7; Fig. 3, C and D). 
AKR1B10 was detected throughout the cytoplasm of smoker ciliated 
cells, as well as at the base of the cilia (Fig. 3C). AKR1B10+ ciliated cells 

were uncommon in never smokers, and overall low magnitude of 
AKR1B10 expression was observed in these cells (Fig. 3C). We 
detected rare instances of nonciliated AKR1B10+ KRT8+ cells 
(fig. S14A), but AKR1B10+ KRT8− cells were not observed. We also 
confirmed that AKR1B10 was not expressed by current smoker 
MUC5AC+ goblet cells (fig. S14B). Overall, these results demonstrate 
that ciliated cells express a specific set of detoxification genes in 
response to smoke exposure.

Club cell depletion and goblet cell expansion  
in the airways of smokers
Our data revealed that the largest cluster of SCGB1A1+ cells, C-1, 
was enriched with never smoker cells (Fig. 2D), indicating that this 
subpopulation of club cells was depleted from the airways of smokers. 
C-1 cells distinctly expressed high levels of gene set GS-19, which 
contains MUC5B, in addition to SCGB3A1 and transcription fac-
tors TCF7, FOS, and JUN (Fig. 4A). However, SCGB1A1 (included 
in gene set GS-17) was also highly expressed by cluster C-8, which 
was not affected by smoking status (Fig. 2D). Therefore, these re-
sults indicate that smoking is associated with a decrease in MUC5B+ 
SCGB1A1+ (C-1) club cell content. Furthermore, gene set GS-13, 
which contains immunologically relevant genes BPIFB1 (32) and 
PIGR (33) (Fig. 4A), was expressed by SCGB1A1+ cells (C-1 and C-8) 
as well as MUC5AC+ cluster C-3, indicating that there may be func-
tional overlap among club and goblet cells.

The MUC5AC+ goblet cell cluster C-3 was significantly enriched 
with current smoker cells (Fig. 2D), which is consistent with previous 
studies showing that smoking is associated with increased bronchial 
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Fig. 2. Characterization of bronchial cluster transcriptomic profile, cell type, and smoking status. (A) Global transcriptomic profiles of 13 bronchial cell clusters were 
defined by expression of unique combinations of 19 gene sets and visualized by heatmap (z-normalized TPM values). (B) A MetaGene was generated for each gene set 
(GS-1 to GS-19), and mean cluster-specific expression was designated: high (pink), medium (white), low (light gray), or not expressed (dark gray). (C) Mean expression of 
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cells and the ratio of never and current smoker cells were calculated, and per-cluster statistical enrichment (FDR q < 0.05, indicated in blue) of NS or CS cells was assessed.
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goblet cell abundance (12–14). Cluster C-3 expressed gene set GS-1, 
which contains the goblet cell marker gene MUC5AC as well as several 
genes with known roles in goblet cell biology, such as SPDEF (34), 
AGR2 (35), and TFF3 (36) (Fig. 4A). Genes associated with the 
unfolded protein response are present in GS-1 (e.g., KDLER3 and 
DNAJC10) (extended table S3). We also identified several unique 
goblet cell surface markers (e.g., CLDN10, TSPAN8, and TSPAN13), 
as well as a transcription factor (NKX3-1) whose role in the goblet 
cell transcriptional program is unknown (Fig. 4A). Therefore, these 
data indicate that smoking is associated with increased numbers of 
MUC5AC+ goblet cells.

To confirm smoking-associated shifts in club and goblet cell 
numbers, we immunostained bronchial tissue procured from an in-
dependent cohort of never and current smokers (UMCG cohort, 
table S2) for markers of club (MUC5B) and goblet (MUC5AC) cells 
(Fig. 4B). Imaging data revealed cell subpopulations that exclusively 
express MUC5B or MUC5AC, as well as those that coexpress both 
MUC5B and MUC5AC (Fig. 4B). The airways of never smokers 

contained similar numbers of MUC5B+, MUC5B+, MUC5AC+, and 
MUC5AC+ cells (Fig. 4, B and F). The bronchial epithelium of 
current smokers, however, took on two distinct phenotypes: tissue 
regions described as “morphologically normal” (MN), which were 
similar to never smokers, and regions characterized by high MUC5AC+ 
cell density, referred to as goblet cell hyperplasia (GCH) (Fig. 4B 
and fig. S15). In the MN smoker tissue, we observed a significant 
decrease in MUC5B+ cells (P = 0.02) (Fig. 4C) and a significant 
increase in MUC5AC+ cells (P = 1.5 × 10−6) (Fig. 4E), relative to 
never smokers, but no change in MUC5B+ MUC5AC+ content was 
observed (Fig. 4D). Differences between smoker GCH and never 
smoker epithelium, however, were more pronounced. Near-complete 
loss of MUC5B+ cells was observed in smoker GCH (P = 1.8 × 10−5; 
Fig. 4C), along with a significant loss of MUC5B+ MUC5AC+ cells 
(P = 0.02; Fig. 4D), relative to never smokers. GCH-associated alter-
ations were accompanied by a 13-fold increase in MUC5AC+ cells 
(P = 7.4 × 10−7; Fig. 4, E and F). Additional immunostaining for 
KRT5 expression in the same bronchial tissue revealed that basal cell 
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Fig. 3. A smoking-induced detoxification program was observed in ciliated cells. (A) Expression of gene sets GS-2, GS-3, and GS-7 in clusters C-5 and C-11 was visual-
ized by heatmap (z-normalized TPM values). (B) Cluster C-5 was split into never and current smoker subsets, and expression of GS-8 genes was visualized by heatmap. 
(C) Bronchial tissue procured from an independent cohort of never and current smokers (UMCG cohort, table S2) was immunostained for AKR1B10, Ac--Tub, and KRT8. 
Representative images of never smoker (left) and current smoker (right) tissue were displayed. Arrows specify examples of AKR1B10+ ciliated cells (Ac--Tub+). (D) An 
increase in tissue length (m)–normalized numbers of AKR1B10+ Ac--Tub+ cells was observed in current smokers relative to never smokers [P = 7.4 × 10−7, Wilcoxon 
rank-sum (WRS) test].
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content was not affected by smoking status and did not vary between 
MN and GCH regions (fig. S16). Overall, these findings indicate 
that smoking is associated with a loss of club cells, increased num-
bers of goblet cells, and substantial GCH airway remodeling.

The bronchial airways of smokers contain a previously 
unidentified subpopulation of PG epithelial cells
We sought to establish the identity of cluster C-9, which was strongly 
enriched with current smoker cells and did not express established 
cell type marker genes (e.g., KRT5, FOXJ1, SCGB1A1, and MUC5AC) 
(Fig. 2C). C-9 cells expressed high levels of gene set GS-12, which 
contains the luminal cytokeratin KRT8 (Fig. 5A). Additional cyto-
keratin genes were also present in GS-12, such as KRT13 and 
KRT19, as well as antioxidant genes, such as TXN and GPX1 (Fig. 5A). 
Cluster C-9 also expressed gene set GS-16, which was detected at 
low levels in MUC5AC+ cells (C-3) and contained the xenobiotic 
metabolism gene CYP1B1 (Fig. 5A). Furthermore, high expression 

of gene set GS-15 was detected in both C-9 and MUC5AC+ cells 
(C-3) (Fig. 5, A to C), suggesting that this cluster may have a functional 
relationship with goblet cells. GS-15 contains several genes previously 
reported to be persistently up-regulated after smoking cessation 
(e.g., CEACAM5, CEACAM6, and UPK1B) (18), one of which has 
been explicitly linked to lung squamous cell carcinoma (SCC) and 
premalignancy (CEACAM5) (37).

To validate the presence of cluster C-9 cells in the airways of 
current smokers, we immunostained bronchial tissue procured 
from a second independent cohort of never and current smokers 
[University College London (UCL) cohort, table S3] for KRT8, 
MUC5AC (goblet cells), and Ac--Tub (ciliated cells). KRT8+ 
MUC5AC− Ac--Tub− cells that were morphologically distinct 
from goblet and ciliated cells were detected in significantly higher 
numbers in GCH regions of current smokers relative to never 
smokers (fig. S17). To confirm that there was functional overlap 
between goblet cells and this subpopulation of KRT8+ MUC5AC− 
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Fig. 4. Smoking is associated with increased numbers of goblet cells and decreased numbers of club cells in the bronchial epithelium. (A) Expression of gene sets 
GS-19, GS-17, GS-13, and GS-1 in clusters C-1, C-8, and C-3 was visualized by heatmap (z-normalized TPM values). Bronchial tissue procured from an independent cohort 
of never and current smokers (UMCG cohort, table S2) was immunostained for MUC5B and MUC5AC. (B) Representative images of never smoker tissue, MN current smoker 
tissue, and current smoker GCH were displayed. Arrows specify examples of MUC5B+, MUC5B+ MUC5AC+, and MUC5AC+ cells. Changes in tissue length (m)–normalized 
numbers of (C) MUC5B+ cells (MN decrease, P = 0.02; GCH decrease, P = 1.8 × 10−5), (D) MUC5B+ MUC5AC+ cells (GCH decrease, P = 0.02), and (E) MUC5AC+ cells (MN increase, 
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Ac--Tub− cells, we immuno stained bronchial tissue (UCL cohort, 
table S3) for CEACAM5, in addition to KRT8 and MUC5AC. In-
creased numbers of CEACAM5+ KRT8+ MUC5AC− cells were detected 
in GCH regions of current smokers relative to never smokers (P = 0.004) 
(Fig. 5, D and E), although variable content among donors was 
observed. Within current smoker GCH tissue regions, CEACAM5+ 
KRT8+ MUC5AC− cells were typically found in close proximity to 
goblet cells (CEACAM5+ KRT8+ MUC5AC+) and were therefore named 
peri-goblet (PG) cells (UCL cohort, Fig. 5D; UMCG cohort, fig. S18). 
CEACAM5 expression in goblet cells was phenotypically punctate and 
colocalized with MUC5AC in both never and current smokers (Fig. 5D 
and fig. S18). In PG cells, however, CEACAM5 localized to the plasma 
membrane and cytoplasm (Fig. 5D and fig. S18). Overall, these data 
indicate that PG cells are a previously unidentified, bronchial epithe-
lial subpopulation associated with smoking- induced GCH.

DISCUSSION
Previous transcriptomic studies have shown that smoking is associated 
with a robust bronchial gene expression signature (17, 18). Interro-
gation of bronchial tissue at single-cell resolution revealed that 

elements of this signature were derived from different cell sub-
populations. Overall, we found smoking-associated phenotypes that 
included a metabolic response that localized to ciliated cells, a cell 
type shift that involved club cell loss and goblet cell expansion, and 
a previously uncharacterized subpopulation of PG epithelial cells 
present within regions of GCH (fig. S19).

We identified a gene set (GS-8) specifically expressed by smoker 
ciliated cells (C-5) that contains genes encoding families of 
enzymes, such as aldehyde dehydrogenases (e.g., ALDH3A1 and 
ALDH1A3) and aldo-keto reductases (e.g., AKR1B10 and AKR1C1), 
capable of breaking down tobacco smoke–derived chemical com-
pounds, such as toxic aldehydes (e.g., formaldehyde and acrolein) 
and ketones (e.g., acetone and methyl vinyl ketone) (8, 9). This 
finding suggests that ciliated cells exhibit a cell type–specific coping 
mechanism that may convey resistance to certain forms of smoking- 
induced toxicity. Links between this mechanism and previously 
reported smoking phenotypes, such as reduced ciliary length (15), 
however, are unclear. This finding might also highlight a protective 
function with tissue-wide significance, in which the bronchial 
epithelium’s capacity for detoxification may be compromised if 
ciliated cells are lost because of injury or disease.
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Fig. 5. A previously unidentified subpopulation of PG cells was observed in the airways of smokers. (A) Expression of gene sets GS-12, GS-16, GS-15, and MUC5AC 
in clusters C-3 and C-9 was visualized by heatmap (z-normalized TPM values). (B) t-SNE was used to visualize cluster C-3 and C-9 cells as well as (C) CEACAM5 expression 
(z-normalized TPM values) across all cells. (D) Bronchial tissue procured from an independent cohort of never and current smokers (UCL cohort, table S3) was immuno-
stained for CEACAM5, KRT8, and MUC5AC. Representative images of never smoker tissue and current smoker GCH were displayed. Arrows specify examples of CEACAM5+ 
KRT8+ MUC5AC− PG cells. (E) A significant increase in tissue length (m)–normalized numbers of CEACAM5+ KRT8+ MUC5AC− cells in current smoker GCH tissue, relative 
to never smokers, was observed (P = 0.004, WRS test).
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Several studies have reported that smoking is associated with in-
creased mucous production and GCH in the bronchus (12–14, 38–40). 
Loss of club cells (SCGB1A1+) has been reported in smoker bronchioles 
(11, 12), but this is the first instance in which a similar observation 
has been made in the mainstem bronchus. We confirmed that GCH 
is a regional phenomenon interspersed among MN tissue areas. The 
determinants of GCH prevalence are unclear, but it has been shown 
that cytokines [e.g., interleukin-13 (IL-13) and (IL-4)] (41–43) and 
viral infection (e.g., Rhino virus and polyinosinic:polycytidylic acid) 
(44, 45) can increase MUC5AC expression and goblet cell abun-
dance. The specific catalyst for GCH in response to smoke exposure 
is unknown, but reports of its co-occurrence with airway inflammation 
suggest that immunological interplay may be a factor (14). Further-
more, there is evidence that both basal and club cells are capable of 
goblet cell differentiation (32, 46). However, the origins of newly 
formed goblet cells in the airways of smokers have not been explicitly 
described. Functional implications for goblet cell expansion and 
club cell loss are unclear, but a similar phenotype has been described 
in the airways of asthmatics, in which diminished mucosal fluidity, 
the formation of mucosal plugs, and impaired mucociliary clearance 
were observed (47, 48). Murine models have also shown that MUC5B 
loss is associated with impaired mucociliary clearance, airflow ob-
struction, and respiratory infection (49).

Smoking-induced GCH was associated with the presence of a 
previously uncharacterized subpopulation of CEACAM5+ KRT8+ 
MUC5AC− PG epithelial cells. The origins of PG cells are unclear, 
but a KRT8+ undifferentiated epithelial subpopulation derived 
from basal cells, referred to as “suprabasal,” has been described in 
murine models (46, 50). Suprabasal cells act as intermediate pre-
cursors to ciliated and secretory cells during basal cell differentiation 
under normal conditions (46) and, after injury, as a repair mechanism 
(50). However, the suprabasal phenomenon has not been characterized 
in the human bronchus, and little is known regarding human inter-
mediate epithelial subpopulations. Furthermore, the involvement 
of a KRT8+ intermediate state in club cell transdifferentiation (4, 34) 
has not been explored. Goblet cell differentiation required for the 
onset and maintenance of smoking-associated GCH might involve 
a pro-goblet precursor subpopulation, but the explicit role of PG 
cells in this context requires further investigation.

It has been reported that CEACAM5 expression is persistently 
up-regulated in the airways of former smokers, whereas genes spe-
cifically expressed by goblet cells, such as MUC5AC, SPDEF, and 
AGR2, return to normal, never smoker levels post-smoking cessation 
(18). These findings suggest that goblet cell expansion in the airways 
of smokers is reversible, whereas the emergence of CEACAM5+ 
PG cells might have long-term implications. The functional con-
sequences of the presence of PG cells are unclear, but irreversible 
alterations to bronchial epithelial composition might underlie chronic 
disease states. Although PG cells were identified in this study in the 
absence of established disease phenotypes, CEACAM5+ KRT5+ cells 
have been detected in bronchial premalignant lesions and lung SCC 
(37). CEACAM5 has also been detected in numerous additional cancer 
types (51, 52), and several genes that are coexpressed with CEACAM5 
(i.e., detected in GS-15) have been implicated in carcinogenesis, 
such as UPK1B (53), MSLN (54, 55), and PSCA (56, 57). Therefore, 
investigation of mechanisms linking the presence and variable 
abundance of GCH-associated CEACAM5+ PG cells and premalignant 
lesion-associated CEACAM5+ KRT5+ cells might provide insight into 
smoking-induced conditions that promote lung carcinogenesis.

These data demonstrate that human bronchial epithelial exposure 
to tobacco smoke drives ciliated cell–specific toxin metabolism and 
leads to both club cell depletion and goblet cell expansion. A novel 
subpopulation of PG cells was also detected in the bronchial airways 
of smokers in association with GCH. These results will enable us to 
more precisely define the landscape of smoking-induced epithelial 
abnormalities. Future work will use experimental systems to define 
the consequences of specific, smoke-derived chemical compounds 
and investigate the recapitulation and reversal of cell and molecular 
phenotypes observed in this study. Furthermore, these findings may 
be leveraged to improve diagnostics and develop preventative strategies 
for smoking-associated lung diseases.

MATERIALS AND METHODS
Bronchial tissue collection for scRNA-Seq
At Boston University Medical Center, healthy volunteer never smokers 
(n = 6) and current smokers (n = 6) underwent a bronchoscopy 
to obtain brushings from the right mainstem bronchus, as described 
previously (17, 18). Eligible volunteers included subjects who (i) 
were between the ages of 19 and 55; (ii) did not use inhaled or intra-
nasal medications; (iii) did not have a history of chronic obstructive 
pulmonary disease, asthma, pulmonary fibrosis, sarcoid, or head and 
neck/lung cancer; (iv) did not use marijuana; (v) did not have a 
respiratory infection within the past 6 weeks; and (vi) did not use 
other tobacco products (i.e., pipe, cigar, and chewing). Spirometry 
was performed to assess lung function (e.g., FEV1/FVC). Exhaled 
carbon monoxide (Smokerlyzer Carbon Monoxide Monitor, model 
EC-50; Bedfont Scientific Ltd.) and urine cotinine (NicAlert; Confirm 
BioSciences) levels were measured to confirm smoking status. The 
Institutional Review Board approved the study, and all subjects pro-
vided written informed consent.

Single-cell isolation by FACS
Bronchial brushings were treated with 0.25% trypsin/EDTA for 
20 min and stained for sorting using a BD FACSAria II. Gating 
based on forward scatter height (FSC-H) versus forward scatter area 
(FSC-A) was applied to sort only singlet events (fig. S1A). Dead cells 
(LIVE/DEAD Fixable Aqua Dead Cell Stain, Thermo Fisher; L34957) 
and red blood cells expressing GYPA/B (fig. S1B) on their surface 
[allophycocyanin (APC) anti-CD235ab; BioLegend, 306607] were 
stained and excluded. ALCAM+ epithelial cells [phycoerythrin (PE) 
anti-CD166; BioLegend, 343903] and CD45+ WBCs (APC-Cy7 
anti-CD45; BD, 561863) were stained (fig. S1C) and sorted into 
96-well polymerase chain reaction (PCR) plates containing lysis 
buffer [0.2% Triton X-100, 2.5% RNaseOUT (Thermo Fisher; 10777019)] 
compatible with downstream RNA library preparation. In each 
96-well PCR plate for each subject, we sorted 84 ALCAM+ cells 
and 11 CD45+ cells and maintained one empty well as a negative 
control. The plates were frozen on dry ice and stored at −80°C until 
preparation for sequencing.

Single-cell RNA sequencing
Massively parallel scRNA-Seq of human bronchial airway cells was 
performed using a modified version of the CEL-Seq RNA library 
preparation protocol (20). For each of the 12 recruited donors, one 
frozen 96-well PCR plate containing sorted cells was thawed on ice, 
and RNA was directly reverse-transcribed (Thermo Fisher, AM1751) 
from whole-cell lysate using primers composed of an anchored 
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poly(dT), the 5′ Illumina adaptor sequence, a six-nucleotide well- 
specific barcode, a five-nucleotide unique molecular identifier (UMI), 
and a T7 RNA polymerase promoter. All primer sequences were 
listed in extended table S1. Samples were additionally supplemented 
with ERCC RNA Spike-In Mix (1:1,000,000 dilution; Thermo Fisher, 
4456740) for quality control. Complementary DNA generated from 
each of the 96 wells per plate was pooled, subjected to second-strand 
synthesis (Thermo Fisher, AM1751), and amplified by in vitro tran-
scription (Thermo Fisher, AM1751). Amplified RNA was chemically 
fragmented (New England BioLabs, E6150) and ligated to an Illumina 
RNA 3′ adapter (Illumina, RS-200-0012). Samples were again reverse- 
transcribed using a 3′ adaptor-specific primer and amplified using 
indexed Illumina RNA PCR primers (Illumina, RS-200-0012). In 
total, 1152 samples (1008 epithelial cells, 132 WBCs, and 12 negative 
controls) were sequenced on an Illumina HiSeq 2500 in rapid mode, 
generating paired-end reads (15 nucleotides for read 1, 7 nucleotides 
for index, and 52 nucleotides for read 2).

Data preprocessing
Illumina’s bcl2fastq2 software (v2.19.1) was used to demultiplex the 
sequencing output to 12 plate-level FASTQ files (1 per 96-well plate). 
A python-based pipeline (https://github.com/yanailab/CEL-Seq-pipeline) 
was used to (i) demultiplex each plate-level FASTQ file to 96 cell- 
level FASTQ files, trim 52 nucleotide reads to 35 nucleotides, and 
append UMI information from read 1 (R1) to the header of read 2 (R2); 
(ii) perform genomic alignment of R2 with Bowtie2 (v2.2.2) using 
a concatenated hg19/External RNA Controls Consortium (ERCC) 
reference assembly; and (iii) convert aligned reads to gene- level counts 
using a modified version of the HTSeq (v0.5.4p1) python library that 
identifies reads aligning to the same location with identical UMIs and 
reduces them to a single count. One UMI-corrected count was then re-
ferred to as a “transcript.” The pipeline was configured with the fol-
lowing settings: alignment quality (min_bc_quality) = 10, barcode 
length (bc_length) = 6, UMI length (umi_length) = 5, cut_length = 35.

Data quality control
The quality of each cell was assessed by examining the total number 
of reads, total reads aligned to hg19, total reads aligning to genes 
(pre-UMI correction), total transcript counts, and total genes with 
at least one detected transcript. Cells were excluded from down-
stream analyses if the total number of transcripts was not twofold 
greater than the total background-level transcripts detected in the 
empty well negative control on each plate (fig. S3). Cells were also 
excluded from downstream analyses if there was a weak Pearson 
correlation (r < 0.7) between detected ERCC RNA Spike-In transcript 
counts (log10) and ERCC input concentration (log10) (amol/ml) 
(fig. S3). All non–protein-coding genes and genes with less than two 
transcript counts in five cells were removed from the dataset. The 
remaining 7680 genes measured across 796 cells were used for sub-
sequent analyses.

LDA implementation and model optimization
LDA from the topicmodels R package (v0.2-6) was used to generate 
probabilistic representations of cell clusters and gene sets present in 
the dataset, referred to as Cell-States and Gene-States. The input for 
the Cell-State model required a counts data matrix where cells were 
columns and genes were rows, whereas for the Gene-State model, 
the same matrix was transposed (i.e., genes were columns and cells 
were rows). Models were fit using the variational expectation–

maximization (VEM) algorithm with the following parameters: nstart = 5, 
seed = 12345, estimate.alpha = TRUE, estimate.beta = TRUE. The 
given parameter k determined the number of Cell-States and Gene-
States to be estimated by the model. The optimal value of k was 
determined by fivefold cross-validation and evaluation of model 
perplexity. For the Gene-State model, cells were randomly partitioned 
into “training” (80%) and “test” (20%) sets, whereas for the Cell-
State model, genes were randomly partitioned into training (80%) 
and test (20%) sets. Models were then fit to the training set, and 
perplexity was estimated to evaluate model fit for the held-out test set. 
Fifty iterations of this process were performed for k = 2 to 50, mean 
perplexity was calculated at each k, and the minimum mean perplexity 
was selected as the optimal value of k (i.e., k.opt), which was k = 13 
for the Cell-State model and k = 19 for the Gene-State model (fig. S6).

Gene set and cell cluster assignments
Negative binomial generalized linear models were built using the 
MASS R package (v7.3-45) for each Gene-State (n = 19) and each 
Cell-State (n = 13), in which States were treated as inferred, inde-
pendent variables and genes or cells, respectively, were treated as 
dependent variables. A cell was assigned to a Cell-State if a significant 
association (FDR q < 0.05) was observed with positive directionality 
(regression coefficient > 1). Similarly, a gene was assigned to a 
Gene-State if a significant, positive association was observed (FDR 
q < 1 × 10−5, regression coefficient > 1). If multiple State associations 
were observed for a given gene or cell, assignment was determined 
on the basis of the strongest State association (i.e., minimum FDR 
q). Additional metrics for gene set and cluster assignment include 
State Specificity and State Similarity. LDA (see the previous section) 
also assigned a probability to each gene (or cell) for each Gene-State 
(or Cell-State), and State Specificity was calculated by dividing that 
probability by the sum of probabilities across all Gene-States (or 
Cell-States). A minimum State Specificity of 0.1 was required for gene 
or cell assignment. State Similarity was calculated by assessing the 
cosine (q) similarity between each Gene-State and relative expression 
of each gene (gene counts divided by total counts for each cell). A 
minimum State Similarity of 0.4 was required for gene assignment. 
All downstream analyses used the 785 cells that fit the criteria for 
Cell-State assignment and 676 genes that fit the criteria for Gene-State 
assignment. Statistical modeling results, State Specificity, and State 
Similarity values for all genes, regardless of assignment status, were 
included in extended table S2.

Data visualization by heatmap and t-SNE
Before heatmap visualization, transcript counts were transformed 
to z-normalized transcripts per million (TPM). Genes (top to bottom) 
and cells (left to right) were ordered according to the strength of 
statistical association (FDR q) with respective assigned Gene-States 
and Cell-States. The tsne R package v0.1-3 was used for dimensionality 
reduction by t-distributed stochastic neighbor embedding (t-SNE). 
Modified parameters include k = 2 and seed = 1234. Input for t-SNE 
was z-normalized TPM values across genes with at least three transcript 
counts in three cells (n = 4914 genes). Gene expression overlay onto t-SNE 
visualization was also performed using z-normalized TPM values.

Functional annotation
The enrichR R package (v0.0.0.9000) was used as an interface for 
the web-based functional annotation tool, Enrichr, to identify Gene 
Ontology (GO) terms from the GO Biological Process 2015 library 
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significantly associated with each gene set (58, 59). Functional an-
notation results were listed in extended table S3.

Microarray data processing
Raw CEL files obtained from the Gene Expression Omnibus (GEO) 
for series GSE7895 were normalized to produce gene-level expression 
values using the implementation of the Robust Multiarray Average 
(RMA) in the affy R package (v1.36.1) and an Entrez Gene-specific 
probeset mapping (17.0.0) from the Molecular and Behavioral 
Neuroscience Institute (Brainarray) at the University of Michigan 
(http://brainarray.mbni.med.umich.edu/).

Comparative analysis of scRNA-Seq and microarray data
Bronchial brushings were reconstructed in silico from the single- 
cell data by taking the sum of all transcript counts for each gene 
across all cells procured from each donor. Negative binomial gener-
alized linear models were built using the MASS R package (v7.3-45), 
modeling transcript counts as a function of smoking status (FDR 
q < 0.05: n = 593 genes). In parallel, using never and current smoker 
bulk bronchial brushing microarray data (GEO series GSE7895), 
linear models were built using the stats R package (R v3.2.0), modeling 
gene-level expression values as a function of smoking status (FDR 
q < 0.05: n = 689 genes). The correlation between test statistics generated 
from both models was then measured to compare differential ex-
pression results (fig. S4A). Using the overlap among smoking-associated 
genes identified in both models (n = 155 genes), correlations (Spearman) 
among in silico bronchial brushings and bulk bronchial brushings 
were examined (fig. S4B).

Gene set expression analysis in microarray data
Using published microarray data generated from bulk bronchial 
brushings procured from never and current smokers (GEO series 
GSE7895), RMA-transformed values for each gene were z-normalized. 
MetaGene values were then generated by computing the mean z score 
across all genes in each gene set (GS-1 to GS-19) for each sample. 
Linear models were built using the stats R package (R v3.2.0), model-
ing MetaGene expression as a function of donor smoking status and 
age. For metagenes that were associated with smoking status (FDR 
q < 0.05), but not age, if the mean current smoker value was greater 
than or less than the mean never smoker value, the gene set was con-
sidered to be up- or down-regulated in current smokers, respectively.

Cell type assessment for cell clusters
TPM values for cell type marker genes (KRT5, FOXJ1, SCGB1A1, 
MUC5AC, and CD45) were z-normalized across all cells. Cluster- 
specific mean expression was designated high (pink) if expression 
exceeded 1 SD above the mean value across all cells, medium (white) 
if expression exceeded one-half of an SD above the mean value across 
all cells, and low (light gray) if expression exceeded the mean value 
across all cells. If cluster-specific mean expression was designated 
high, medium, or low for KRT5, FOXJ1, SCGB1A1, MUC5AC, or 
CD45 (PTPRC), that cluster was assigned the cell type of basal, ciliated, 
club, goblet, or WBC, respectively. Cluster-specific mean expression 
below the mean value across all cells indicated that a given cluster 
did not express a given marker gene (dark gray).

Smoking status assessment for cell clusters
To assess smoking status–specific cell enrichment for each cluster, 
logistic regression was performed using the stats R package (R v3.2.0), 

modeling each cluster assignment as a function of donor smoking 
status and the number of cells contributed by each donor. For clusters 
that were associated with smoking status (FDR q < 0.05), but not the 
number of cells contributed by each donor, the directionality of the 
regression coefficient was leveraged to assign never or current 
smoker status.

Gene set expression analysis in cell clusters
Transcript counts were transformed to z-normalized TPM. MetaGene 
values were then generated by computing the mean z score across 
all genes in each gene set (GS-1 to GS-19) for each cell. Cluster-specific 
MetaGene expression was designated high (pink) if mean expression 
exceeded 1 SD above the mean value across all cells, medium (white) 
if mean expression exceeded one-half of an SD above the mean value 
across all cells, and low (light gray) if mean expression exceeded the 
mean value across all cells. Cluster-specific mean expression below 
the mean value across all cells indicated that a given cluster did not 
express a given gene set (dark gray).

Bronchial tissue collection for immunostaining
Bronchial tissue was collected from patients undergoing lung resec-
tion. All specimens were procured at least 5 cm from bronchial sites 
affected by disease diagnoses, and analyses indicated that tissue was 
histologically normal. The UMCG cohort (table S2) included speci-
mens analyzed in collaboration with the UMCG collected from four 
never smokers and four current smokers. Specimens were obtained 
from the tissue bank in the UMCG Department of Pathology. The 
study protocol was consistent with the Research Code of the UMCG 
and Dutch national ethical and professional guidelines (“Code of 
conduct; Dutch federation of biomedical scientific societies”; www.
federa.org). The UCL cohort (table S3) included specimens analyzed 
in collaboration with the UCL collected from five never smokers 
and five current smokers. Ethical approval was sought and obtained 
from the UCL Hospital Research Ethics Committee (REC reference 
06/Q0505/12). This study was carried out in accordance with the 
Declaration of Helsinki (2000) of the World Medical Association.

Immunofluorescence
Formalin-fixed paraffin-embedded lung sections were cut at 4 mm, 
tissue was probed with primary antibodies (listed below) and sec-
ondary antibodies with fluorescent conjugates (Invitrogen Alexa 
Fluor 488, 594, 647), and nuclear staining was performed with 
4′,6-diamidino-2-phenylindole (DAPI) (Thermo Fisher, R37606). 
Immunostaining was performed using the following primary anti-
bodies: mouse anti–Ac--Tub (Sigma, T6793), rabbit anti–Ac--Tub 
(Enzo Life Sciences, BML SA4592), rabbit anti-AKR1B10 (Sigma, 
HPA020280), rabbit anti-CEACAM5 (Abcam, ab131070), chicken 
anti-KRT5 (BioLegend, 905-901), rat anti-KRT8 (Developmental 
Studies Hybridoma Bank, University of Iowa; TROMA-I), mouse 
anti-MUC5AC (Abcam, ab3649), and rabbit anti-MUC5B (Sigma, 
HPA008246). Imaging of staining panels analyzed in collaboration 
with investigators at the UMCG (table S2) (e.g., AKR1B10/Ac--
Tub/KRT8: Fig. 3C; AKR1B10/MUC5AC/KRT8: fig. S13; MUC5B/
MUC5AC: Fig. 4B; MUC5B/MUC5AC/KRT5: fig. S14; CEACAM5/
KRT8/MUC5AC: fig. S18) was performed using a Carl Zeiss LSM 
710 NLO confocal microscope at ×63 objective magnification at the 
Boston University School of Medicine Multiphoton Microscope Core 
Facility. Imaging of staining panels analyzed in collaboration with 
investigators at the UCL (table S3) (e.g., CEACAM5/KRT8/MUC5AC: 
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Fig. 5D; KRT8/MUC5AC/Ac--Tub: fig. S15) was performed using a 
Leica TCS Tandem confocal microscope at ×63 objective magnification.

Imaging analysis
All imaging data were analyzed using ImageJ Fiji software. For each 
image, cells were counted relative to the measured length of the ep-
ithelium in micrometers (cells per micrometer). Mean cell counts per 
micrometer (cells per millimeter) were then calculated for never 
smokers (treated as the control), and individual values for each image 
from never and current smokers were calculated relative to the never 
smoker mean (i.e., relative cells per millimeter). We analyzed three 
images for each donor and assessed smoking-associated changes 
using the Wilcoxon rank-sum test. For panels in which MUC5AC 
was stained, current smoker tissue was assigned the phenotypic status 
of either MN or GCH based on qualitative assessment of goblet cell 
density and stratification. For each current smoker, three images of 
each status were analyzed.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/12/eaaw3413/DC1
Table S1. Bronchial brushings were procured from six never smokers and six current smokers.
Table S2. Bronchial tissue was obtained by lung resection from four never smokers and four 
current smokers at the UMCG.
Table S3. Bronchial tissue was obtained by lung resection from five never smokers and five 
current smokers at the UCL Hospital.
Fig. S1. Single bronchial cells were isolated by FACS.
Fig. S2. scRNA-Seq data quality were evaluated for each donor.
Fig. S3. Low-quality cells were excluded from downstream analyses.
Fig. S4. Bronchial brushings reconstructed in silico from single-cell data resemble data 
generated from bulk bronchial brushings.
Fig. S5. LDA was used to identify Cell-States and Gene-States.
Fig. S6. Gene-State and Cell-State model optimization.
Fig. S7. LDA was used to identify 13 cell clusters.
Fig. S8. LDA was used to identify 19 gene sets.
Fig. S9. Gene set expression across cell clusters.
Fig. S10. T cell receptor genes were detected in CD45+ cell cluster.
Fig. S11. Cluster 13 cells expressed CFTR.
Fig. S12. Distributions of cell clusters within each subject.
Fig. S13. Smoking-associated differential expression of each gene set was analyzed in 
published bulk bronchial brushing data.
Fig. S14. Nonciliated cell AKR1B10 expression was uncommon.
Fig. S15. MN and GCH tissue regions were distributed throughout the bronchial airways of 
current smokers.
Fig. S16. Basal cell numbers were not altered in smokers.
Fig. S17. Increased numbers of indeterminate KRT8+ cells were observed in GCH smoker tissue.
Fig. S18. PG cells were enriched in regions of GCH within the airways of smokers.
Fig. S19. Smoking-induced heterogeneity was observed in the human bronchial epithelium.
Extended table S1. Primer sequences for scRNA-Seq.
Extended table S2. Statistical modeling results, State Specificity, and State Similarity values for 
all genes.
Extended table S3. Functional annotation results for each gene set.

View/request a protocol for this paper from Bio-protocol.

REFERENCES AND NOTES
 1. R. K. Wolff, Effects of airborne pollutants on mucociliary clearance. Environ. Health Perspect. 

66, 223–237 (1986).
 2. S. H. Randell, R. C. Boucher, Effective mucus clearance is essential for respiratory health. 

Am. J. Respir. Cell Mol. Biol. 35, 20–28 (2006).
 3. G. Singh, S. L. Katyal, Clara cell proteins. Ann. N. Y. Acad. Sci. 923, 43–58 (2000).
 4. E. L. Rawlins, T. Okubo, Y. Xue, D. M. Brass, R. L. Auten, H. Hasegawa, F. Wang, 

B. L. M. Hogan, The role of Scgb1a1+ Clara cells in the long-term maintenance 
and repair of lung airway, but not alveolar, epithelium. Cell Stem Cell 4, 525–534 
(2009).

 5. M. J. Evans, L. S. Van Winkle, M. V. Fanucchi, C. G. Plopper, Cellular and molecular 
characteristics of basal cells in airway epithelium. Exp. Lung Res. 27, 401–415 (2001).

 6. K. G. Schoch, A. Lori, K. A. Burns, T. Eldred, J. C. Olsen, S. H. Randell, A subset of mouse 
tracheal epithelial basal cells generates large colonies in vitro. Am. J. Physiol. Lung Cell. 
Mol. Physiol. 286, L631–L642 (2004).

 7. J. R. Rock, M. W. Onaitis, E. L. Rawlins, Y. Lu, C. P. Clark, Y. Xue, S. H. Randell, B. L. M. Hogan, 
Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc. Natl. 
Acad. Sci. U.S.A. 106, 12771–12775 (2009).

 8. M. Borgerding, H. Klus, Analysis of complex mixtures—Cigarette smoke. Exp. Toxicol. Pathol. 
57, 43–73 (2005).

 9. R. Talhout, T. Schulz, E. Florek, J. van Benthem, P. Wester, A. Opperhuizen, Hazardous 
compounds in tobacco smoke. Int. J. Environ. Res. Public Health 8, 613–628 (2011).

 10. D. F. Church, W. A. Pryor, Free-radical chemistry of cigarette smoke and its toxicological 
implications. Environ. Health Perspect. 64, 111–126 (1985).

 11. D. T. Wright, L. A. Cohn, H. Li, B. Fischer, C. M. Li, K. B. Adler, Interactions of oxygen radicals 
with airway epithelium. Environ. Health Perspect. 102, 85–90 (1994).

 12. R. V. Ebert, M. J. Terracio, The bronchiolar epithelium in cigarette smokers. Observations 
with the scanning electron microscope. Am. Rev. Respir. Dis. 111, 4–11 (1975).

 13. A. B. Lumsden, A. McLean, D. Lamb, Goblet and Clara cells of human distal airways: 
Evidence for smoking induced changes in their numbers. Thorax 39, 844–849 (1984).

 14. M. Saetta, G. Turato, S. Baraldo, A. Zanin, F. Braccioni, C. E. Mapp, P. Maestrelli, 
G. Cavallesco, A. Papi, L. M. Fabbri, Goblet cell hyperplasia and epithelial inflammation 
in peripheral airways of smokers with both symptoms of chronic bronchitis and chronic 
airflow limitation. Am. J. Respir. Crit. Care Med. 161, 1016–1021 (2000).

 15. P. L. Leopold, M. J. O'Mahony, X. J. Lian, A. E. Tilley, B. G. Harvey, R. G. Crystal, Smoking is 
associated with shortened airway cilia. PLOS ONE 4, e8157 (2009).

 16. H. C. Lam, S. M. Cloonan, A. R. Bhashyam, J. A. Haspel, A. Singh, J. F. Sathirapongsasuti, 
M. Cervo, H. Yao, A. L. Chung, K. Mizumura, C. H. An, B. Shan, J. M. Franks, K. J. Haley, 
C. A. Owen, Y. Tesfaigzi, G. R. Washko, J. Quackenbush, E. K. Silverman, I. Rahman, 
H. P. Kim, A. Mahmood, S. S. Biswal, S. W. Ryter, A. M. K. Choi, Histone deacetylase 
6-mediated selective autophagy regulates COPD-associated cilia dysfunction. J. Clin. Invest. 
123, 5212–5230 (2013).

 17. A. Spira, J. Beane, V. Shah, G. Liu, F. Schembri, X. Yang, J. Palma, J. S. Brody, Effects of cigarette 
smoke on the human airway epithelial cell transcriptome. Proc. Natl. Acad. Sci. U.S.A. 101, 
10143–10148 (2004).

 18. J. Beane, P. Sebastiani, G. Liu, J. S. Brody, M. E. Lenburg, A. Spira, Reversible and 
permanent effects of tobacco smoke exposure on airway epithelial gene expression. 
Genome Biol. 8, R201 (2007).

 19. A. E. Hegab, V. L. Ha, D. O. Darmawan, J. L. Gilbert, A. T. Ooi, Y. S. Attiga, B. Bisht, 
D. W. Nickerson, B. N. Gomperts, Isolation and in vitro characterization of basal and 
submucosal gland duct stem/progenitor cells from human proximal airways. 
Stem Cells Transl. Med. 1, 719–724 (2012).

 20. T. Hashimshony, F. Wagner, N. Sher, I. Yanai, CEL-Seq: Single-cell RNA-Seq by multiplexed 
linear amplification. Cell Rep. 2, 666–673 (2012).

 21. L. W. Plasschaert, R. Žilionis, R. Choo-Wing, V. Savova, J. Knehr, G. Roma, A. M. Klein, 
A. B. Jaffe, A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary 
ionocyte. Nature 560, 377–381 (2018).

 22. M.-I. Chung, S. M. Peyrot, S. LeBoeuf, T. J. Park, K. L. McGary, E. M. Marcotte, 
J. B. Wallingford, RFX2 is broadly required for ciliogenesis during vertebrate 
development. Dev. Biol. 363, 155–165 (2012).

 23. M.-I. Chung, T. Kwon, F. Tu, E. R. Brooks, R. Gupta, M. Meyer, J. C. Baker, E. M. Marcotte, 
J. B. Wallingford, Coordinated genomic control of ciliogenesis and cell movement by 
RFX2. ELife 3, e01439 (2014).

 24. L. El Zein, A. Ait-Lounis, L. Morlé, J. Thomas, B. Chhin, N. Spassky, W. Reith, B. Durand, 
RFX3 governs growth and beating efficiency of motile cilia in mouse and controls 
the expression of genes involved in human ciliopathies. J. Cell Sci. 122, 3180–3189 
(2009).

 25. L. Didon, R. K. Zwick, I. W. Chao, M. S. Walters, R. Wang, N. R. Hackett, R. G. Crystal, RFX3 
modulation of FOXJ1 regulation of cilia genes in the human airway epithelium. 
Respir. Res. 14, 70 (2013).

 26. P. D. Taulman, C. J. Haycraft, D. F. Balkovetz, B. K. Yoder, Polaris, a protein involved 
in left-right axis patterning, localizes to basal bodies and cilia. Mol. Biol. Cell 12, 589–599 
(2001).

 27. B. Banizs, M. M. Pike, C. L. Millican, W. B. Ferguson, P. Komlosi, J. Sheetz, P. D. Bell, 
E. M. Schwiebert, B. K. Yoder, Dysfunctional cilia lead to altered ependyma and choroid 
plexus function, and result in the formation of hydrocephalus. Development 132, 
5329–5339 (2005).

 28. S. K. Gilley, A. E. Stenbit, R. C. Pasek, K. M. Sas, S. L. Steele, M. Amria, M. A. Bunni, 
K. P. Estell, L. M. Schwiebert, P. Flume, M. Gooz, C. J. Haycraft, B. K. Yoder, C. Miller, 
J. A. Pavlik, G. A. Turner, J. H. Sisson, P. D. Bell, Deletion of airway cilia results in 
noninflammatory bronchiectasis and hyperreactive airways. Am. J. Physiol. Lung Cell. Mol. Physiol. 
306, L162–L169 (2014).

 29. H. Olbrich, K. Häffner, A. Kispert, A. Völkel, A. Volz, G. Sasmaz, R. Reinhardt, S. Hennig, 
H. Lehrach, N. Konietzko, M. Zariwala, P. G. Noone, M. Knowles, H. M. Mitchison, M. Meeks, 

 on D
ecem

ber 20, 2019
http://advances.sciencem

ag.org/
D

ow
nloaded from

 

http://advances.sciencemag.org/cgi/content/full/5/12/eaaw3413/DC1
http://advances.sciencemag.org/cgi/content/full/5/12/eaaw3413/DC1
https://en.bio-protocol.org/rap.aspx?eid=10.1126/sciadv.aaw3413
http://advances.sciencemag.org/


Duclos et al., Sci. Adv. 2019; 5 : eaaw3413     11 December 2019

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

11 of 11

E. M. K. Chung, F. Hildebrandt, R. Sudbrak, H. Omran, Mutations in DNAH5 cause primary 
ciliary dyskinesia and randomization of left-right asymmetry. Nat. Genet. 30, 143–144 
(2002).

 30. N. Hornef, H. Olbrich, J. Horvath, M. A. Zariwala, M. Fliegauf, N. T. Loges, J. Wildhaber, 
P. G. Noone, M. Kennedy, S. E. Antonarakis, J. L. Blouin, L. Bartoloni, T. Nüsslein, P. Ahrens, 
M. Griese, H. Kuhl, R. Sudbrak, M. R. Knowles, R. Reinhardt, H. Omran, DNAH5 mutations 
are a common cause of primary ciliary dyskinesia with outer dynein arm defects. 
Am. J. Respir. Crit. Care Med. 174, 120–126 (2006).

 31. J. Raidt, J. Wallmeier, R. Hjeij, J. G. Onnebrink, P. Pennekamp, N. T. Loges, H. Olbrich, 
K. Häffner, G. W. Dougherty, H. Omran, C. Werner, Ciliary beat pattern and frequency 
in genetic variants of primary ciliary dyskinesia. Eur. Respir. J. 44, 1579–1588 (2014).

 32. O. S. Shin, T. Uddin, R. Citorik, J. P. Wang, P. Della Pelle, R. L. Kradin, C. D. Bingle, L. Bingle, 
A. Camilli, T. R. Bhuiyan, T. Shirin, E. T. Ryan, S. B. Calderwood, R. W. Finberg, F. Qadri, 
R. C. LaRocque, J. B. Harris, LPLUNC1 modulates innate immune responses to Vibrio 
cholerae. J. Infect. Dis. 204, 1349–1357 (2011).

 33. F.-E. Johansen, C. S. Kaetzel, Regulation of the polymeric immunoglobulin receptor 
and IgA transport: New advances in environmental factors that stimulate pIgR expression 
and its role in mucosal immunity. Mucosal Immunol. 4, 598–602 (2011).

 34. G. Chen, T. R. Korfhagen, Y. Xu, J. Kitzmiller, S. E. Wert, Y. Maeda, A. Gregorieff, H. Clevers, 
J. A. Whitsett, SPDEF is required for mouse pulmonary goblet cell differentiation 
and regulates a network of genes associated with mucus production. J. Clin. Invest. 119, 
2914–2924 (2009).

 35. B. W. Schroeder, C. Verhaeghe, S. W. Park, L. T. Nguyenvu, X. Huang, G. Zhen, D. J. Erle, 
AGR2 is induced in asthma and promotes allergen-induced mucin overproduction.  
Am. J. Respir. Cell Mol. Biol. 47, 178–185 (2012).

 36. A. Wiede, W. Jagla, T. Welte, T. Köhnlein, H. Busk, W. Hoffmann, Localization of TFF3, 
a new mucus-associated peptide of the human respiratory tract. Am. J. Respir. Crit. Care Med. 
159, 1330–1335 (1999).

 37. A. T. Ooi, A. C. Gower, K. X. Zhang, J. L. Vick, L. Hong, B. Nagao, W. D. Wallace, 
D. A. Elashoff, T. C. Walser, S. M. Dubinett, M. Pellegrini, M. E. Lenburg, A. Spira, 
B. N. Gomperts, Molecular profiling of premalignant lesions in lung squamous cell 
carcinomas identifies mechanisms involved in stepwise carcinogenesis. Cancer Prev. Res. 
7, 487–495 (2014).

 38. H. P. Kuo, J. A. Rohde, P. J. Barnes, D. F. Rogers, Cigarette smoke-induced airway goblet 
cell secretion: Dose-dependent differential nerve activation. Am. J. Physiol. 263, 
L161–L167 (1992).

 39. M. X. G. Shao, T. Nakanaga, J. A. Nadel, Cigarette smoke induces MUC5AC mucin 
overproduction via tumor necrosis factor-alpha-converting enzyme in human airway 
epithelial (NCI-H292) cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 287, L420–L427 (2004).

 40. T. K. Baginski, K. Dabbagh, C. Satjawatcharaphong, D. C. Swinney, Cigarette smoke 
synergistically enhances respiratory mucin induction by proinflammatory stimuli. 
Am. J. Respir. Cell Mol. Biol. 35, 165–174 (2006).

 41. K. Dabbagh, K. Takeyama, H. M. Lee, I. F. Ueki, J. A. Lausier, J. A. Nadel, IL-4 induces mucin 
gene expression and goblet cell metaplasia in vitro and in vivo. J. Immunol. 162, 
6233–6237 (1999).

 42. D. A. Kuperman, X. Huang, L. L. Koth, G. H. Chang, G. M. Dolganov, Z. Zhu, J. A. Elias, 
D. Sheppard, D. J. Erle, Direct effects of interleukin-13 on epithelial cells cause airway 
hyperreactivity and mucus overproduction in asthma. Nat. Med. 8, 885–889 (2002).

 43. H. C. Atherton, G. Jones, H. Danahay, IL-13-induced changes in the goblet cell density 
of human bronchial epithelial cell cultures: MAP kinase and phosphatidylinositol 3-kinase 
regulation. Am. J. Physiol. Lung Cell. Mol. Physiol. 285, L730–L739 (2003).

 44. H. Tadaki, H. Arakawa, T. Mizuno, T. Suzuki, K. Takeyama, H. Mochizuki, K. Tokuyama, 
S. Yokota, A. Morikawa, Double-stranded RNA and TGF- promote MUC5AC induction 
in respiratory cells. J. Immunol. 182, 293–300 (2008).

 45. J. Bai, S. L. Smock, G. R. Jackson, K. D. MacIsaac, Y. Huang, C. Mankus, J. Oldach, B. Roberts, 
Y. L. Ma, J. A. Klappenbach, M. A. Crackower, S. E. Alves, P. J. Hayden, Phenotypic 
responses of differentiated asthmatic human airway epithelial cultures to rhinovirus. 
PLOS ONE 10, e0118286 (2015).

 46. J. R. Rock, X. Gao, Y. Xue, S. H. Randell, Y. Y. Kong, B. L. M. Hogan, Notch-dependent 
differentiation of adult airway basal stem cells. Cell Stem Cell 8, 639–648 (2011).

 47. P. G. Woodruff, B. Modrek, D. F. Choy, G. Jia, A. R. Abbas, A. Ellwanger, J. R. Arron, 
L. L. Koth, J. V. Fahy, T-helper type 2-driven inflammation defines major subphenotypes 
of asthma. Am. J. Respir. Crit. Care Med. 180, 388–395 (2009).

 48. L. R. Bonser, L. Zlock, W. Finkbeiner, D. J. Erle, Epithelial tethering of MUC5AC-rich mucus 
impairs mucociliary transport in asthma. J. Clin. Invest. 126, 2367–2371 (2016).

 49. M. G. Roy, A. Livraghi-Butrico, A. A. Fletcher, M. M. McElwee, S. E. Evans, R. M. Boerner, 
S. N. Alexander, L. K. Bellinghausen, A. S. Song, Y. M. Petrova, M. J. Tuvim, R. Adachi, 
I. Romo, A. S. Bordt, M. G. Bowden, J. H. Sisson, P. G. Woodruff, D. J. Thornton, K. Rousseau, 
M. M. de la Garza, S. J. Moghaddam, H. Karmouty-Quintana, M. R. Blackburn, S. M. Drouin, 
C. W. Davis, K. A. Terrell, B. R. Grubb, W. K. O’Neal, S. C. Flores, A. Cota-Gomez, 
C. A. Lozupone, J. M. Donnelly, A. M. Watson, C. E. Hennessy, R. C. Keith, I. V. Yang, 

L. Barthel, P. M. Henson, W. J. Janssen, D. A. Schwartz, R. C. Boucher, B. F. Dickey, 
C. M. Evans, Muc5b is required for airway defence. Nature 505, 412–416 (2014).

 50. A. Pardo-Saganta, B. M. Law, P. R. Tata, J. Villoria, B. Saez, H. Mou, R. Zhao, J. Rajagopal, 
Injury induces direct lineage segregation of functionally distinct airway basal 
stem/progenitor cell subpopulations. Cell Stem Cell 16, 184–197 (2015).

 51. D. M. Goldenberg, R. M. Sharkey, F. J. Primus, Carcinoembryonic antigen in 
histopathology: Immunoperoxidase staining of conventional tissue sections. 
J. Natl. Cancer Inst. 57, 11–22 (1976).

 52. S. Hammarström, The carcinoembryonic antigen (CEA) family: Structures, suggested 
functions and expression in normal and malignant tissues. Semin. Cancer Biol. 9, 67–81 
(1999).

 53. J. Olsburgh, P. Harnden, R. Weeks, B. Smith, A. Joyce, G. Hall, R. Poulsom, P. Selby, 
J. Southgate, Uroplakin gene expression in normal human tissues and locally advanced 
bladder cancer. J. Pathol. 199, 41–49 (2003).

 54. S. S. Kachala, A. J. Bograd, J. Villena-Vargas, K. Suzuki, E. L. Servais, K. Kadota, J. Chou, 
C. S. Sima, E. Vertes, V. W. Rusch, W. D. Travis, M. Sadelain, P. S. Adusumilli, Mesothelin 
overexpression is a marker of tumor aggressiveness and is associated with reduced 
recurrence-free and overall survival in early-stage lung adenocarcinoma. Clin. Cancer Res. 
20, 1020–1028 (2014).

 55. X. He, L. Wang, H. Riedel, K. Wang, Y. Yang, C. Z. Dinu, Y. Rojanasakul, Mesothelin 
promotes epithelial-to-mesenchymal transition and tumorigenicity of human lung 
cancer and mesothelioma cells. Mol. Cancer 16, 63 (2017).

 56. Z. Gu, G. Thomas, J. Yamashiro, I. P. Shintaku, F. Dorey, A. Raitano, O. N. Witte, J. W. Said, 
M. Loda, R. E. Reiter, Prostate stem cell antigen (PSCA) expression increases with high 
gleason score, advanced stage and bone metastasis in prostate cancer. Oncogene 19, 
1288–1296 (2000).

 57. A. B. Raff, A. Gray, W. M. Kast, Prostate stem cell antigen: A prospective therapeutic 
and diagnostic target. Cancer Lett. 277, 126–132 (2009).

 58. E. Y. Chen, C. M. Tan, Y. Kou, Q. Duan, Z. Wang, G. Meirelles, N. R. Clark, A. Ma’ayan, 
Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. 
BMC Bioinformatics 14, 128 (2013).

 59. M. V. Kuleshov, M. R. Jones, A. D. Rouillard, N. F. Fernandez, Q. Duan, Z. Wang, S. Koplev, 
S. L. Jenkins, K. M. Jagodnik, A. Lachmann, M. G. McDermott, C. D. Monteiro, 
G. W. Gundersen, A. Ma'ayan, Enrichr: A comprehensive gene set enrichment analysis 
web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016).

Acknowledgments: We thank I. Yanai (New York University School of Medicine) for 
assistance with the CEL-Seq protocol, B. Gomperts (University of California, Los Angeles) for 
help with tissue dissociation and fluorescence-activated cell sorting (FACS), and X. Varelas 
(Boston University School of Medicine) for providing fluorescence microscopy support. 
Funding: This study was supported by funding from Department of Defense grant 
W81XWH-14-1-0234 (to J.B.). J.B. and J.D.C. were supported by the LUNGevity Career 
Development Award. G.E.D. was supported by NIH T32 training grant HL007035. S.M.J. is a 
Wellcome Trust Senior Fellow in Clinical Science and is supported by the Rosetrees Trust and 
UCLH Charitable Foundation. V.H.T. and S.M.J. are funded by the Roy Castle Lung Cancer 
Foundation. This work was partially undertaken at the UCLH/UCL, which received funding 
from the UK Department of Health’s NIHR Biomedical Research Centre’s funding scheme 
(to S.M.J.). Author contributions: Study conception and design: G.E.D., J.B., J.D.C., A.S., and 
M.E.L.; collection of clinical samples: Y.B.G., R.T., and Y.M.D.; sample processing: G.E.D. and 
P.A.; library preparation and sequencing: G.E.D. and G.L.; data analysis: G.E.D., J.B., and J.D.C.; 
immunofluorescence: G.E.D., V.H.T., W.T., S.M.J., M.v.d.B., C.-A.B., and M.A.R.-L.; manuscript 
writing: G.E.D., J.B., and J.D.C.; manuscript editing: G.E.D., J.B., J.D.C., S.A.M., A.S., M.E.L., W.T., 
M.v.d.B., and C.-A.B. Competing interests: A.S. is an employee of Johnson & Johnson. The 
other authors declare that they have no competing interests. Data and materials 
availability: All data needed to evaluate the conclusions in the paper are present in the 
paper and/or the Supplementary Materials. scRNA-Seq data from bronchial cells have been 
deposited in NCBI GEO under accession code GSE131391. Code used for analyses is available 
on GitHub (https://github.com/grant-duclos/manuscript-code-repository). Additional data 
related to this paper may be requested from the authors.

Submitted 11 December 2018
Accepted 15 October 2019
Published 11 December 2019
10.1126/sciadv.aaw3413

Citation: G. E. Duclos, V. H. Teixeira, P. Autissier, Y. B. Gesthalter, M. A. Reinders-Luinge, 
R. Terrano, Y. M. Dumas, G. Liu, S. A. Mazzilli, C.-A. Brandsma, M. van den Berge, S. M. Janes, 
W. Timens, M. E. Lenburg, A. Spira, J. D. Campbell, J. Beane, Characterizing smoking-induced 
transcriptional heterogeneity in the human bronchial epithelium at single-cell resolution. 
Sci. Adv. 5, eaaw3413 (2019).

 on D
ecem

ber 20, 2019
http://advances.sciencem

ag.org/
D

ow
nloaded from

 

https://github.com/grant-duclos/manuscript-code-repository
http://advances.sciencemag.org/


epithelium at single-cell resolution
Characterizing smoking-induced transcriptional heterogeneity in the human bronchial

Lenburg, Avrum Spira, Joshua D. Campbell and Jennifer Beane
Dumas, Gang Liu, Sarah A. Mazzilli, Corry-Anke Brandsma, Maarten van den Berge, Sam M. Janes, Wim Timens, Marc E. 
Grant E. Duclos, Vitor H. Teixeira, Patrick Autissier, Yaron B. Gesthalter, Marjan A. Reinders-Luinge, Robert Terrano, Yves M.

DOI: 10.1126/sciadv.aaw3413
 (12), eaaw3413.5Sci Adv 

ARTICLE TOOLS http://advances.sciencemag.org/content/5/12/eaaw3413

MATERIALS
SUPPLEMENTARY http://advances.sciencemag.org/content/suppl/2019/12/09/5.12.eaaw3413.DC1

REFERENCES

http://advances.sciencemag.org/content/5/12/eaaw3413#BIBL
This article cites 59 articles, 10 of which you can access for free

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Terms of ServiceUse of this article is subject to the 

 is a registered trademark of AAAS.Science AdvancesYork Avenue NW, Washington, DC 20005. The title 
(ISSN 2375-2548) is published by the American Association for the Advancement of Science, 1200 NewScience Advances 

License 4.0 (CC BY-NC).
Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial 
Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of

 on D
ecem

ber 20, 2019
http://advances.sciencem

ag.org/
D

ow
nloaded from

 

http://advances.sciencemag.org/content/5/12/eaaw3413
http://advances.sciencemag.org/content/suppl/2019/12/09/5.12.eaaw3413.DC1
http://advances.sciencemag.org/content/5/12/eaaw3413#BIBL
http://www.sciencemag.org/help/reprints-and-permissions
http://www.sciencemag.org/about/terms-service
http://advances.sciencemag.org/

