Environmental contaminants impose multi-billion Euro costs on human and wildlife health in Europe (Trasande et al. 2015). Although there are more than 60,000 chemicals marketed in Europe, so far only 600 chemicals have been screened and identified as PBT (persistent, bioaccumulative, toxic), ED (endocrine disrupting) and/or CMR (carcinogenic, mutagenic, toxic for reproduction) (Gkotsis et al 2019). A suite of EU chemicals legislation (EC 2001, EC 2004a, EC 2004b, EC 2004c, EC 2006, EC 2008, EC 2009a, EC 2009b, EC 2012) aims to reduce chemical risks to humans and wildlife, and the EU’s Seventh Environment Action Programme (EC 2014) calls for better scientific knowledge towards achieving a non-toxic environment.

Movalli et al. (2017) noted the value of raptors as sentinels of environmental health in general, and highlighted in particular the potential value of raptor tissue collections, which can be analysed for contaminant exposure to inform risk assessment of chemicals, assess the effectiveness of chemicals risk management measures, and provide early warning of emerging contaminant problems. They argued for development of a framework bringing together raptor tissue collections in Europe – including those of natural history museums (NHMs), environmental specimen banks (ESBs) and others (e.g. in research institutions) – in support of contaminant research and monitoring for better chemicals management. They suggested this framework would involve among other things identifying and digitising relevant collections and developing a searchable database of these collections to make them more visible and accessible to ecotoxicologists and competent authorities.

Here, we outline progress that has been made in this regard through the launch of two mutually reinforcing initiatives, the COST Action *European Raptor Biomonitoring Facility* (ERBFacility²), which launched in October 2017 and in which 27 COST member countries are participating, and the EU LIFE project *Systematic use of contaminant data from apex predators and their prey in chemicals management* (LIFE APEX³), which launched in September 2018.

Using raptors as particularly appropriate sentinels for persistent, bio-accumulative and toxic (PBT) compounds, ERBFacility will help answer what the environmental risks are for specific chemicals, whether there are emerging contaminant problems needing remedial action and whether legislation is at all effective in reducing environmental exposure to contaminants in Europe.
ERBFacility builds on five years of research networking among ecotoxicologists and ornithologists under the European Science Foundation’s EURAPMON (Research and Monitoring for and with Raptors in Europe). At its first General Meeting in Ciudad Real, Spain in February 2018, ERBFacility set in motion work to bring together natural history museums and environmental specimen banks and other research collections towards development of a European Raptor Specimen Bank. ERBFacility has since concluded a review of raptor collections in Europe (Ramello et al. in prep). The review, which collated data from over a hundred collections across Europe, revealed that many thousands of raptor specimens arrive annually at these collections, offering a very substantial resource of raptor tissue samples for contaminant monitoring. In the UK, specimens are processed and tissues stored by the Predatory Bird Monitoring Scheme maintained by the Centre for Ecology and Hydrology. In Sweden the lead is taken by the national ESB at the Naturhistoriska Riksmuseet. But such specimen banks, set up specifically for the purposes of contaminant monitoring, are the exception rather than the rule. In most countries, the main recipients of raptor specimens are NHMs. Indeed, the review found that around 75% of responding NHMs across Europe receive fresh raptor/owl specimens. Most NHMs freeze raptor carcasses on arrival and then process and freeze wet tissues; indeed, around a third of responding NHMs are already active in storing frozen raptor tissue samples suitable for contaminant monitoring.

At a recent ERBFacility meeting convened at the Royal Belgian Institute of Natural Sciences in Brussels, collections came together to validate the review of raptor collections and consider how to build on this towards development of the European Raptor Specimen Bank. The meeting found that there is strong interest among collections to work together in this regard. However, many collections, particularly in eastern and southern Europe, are stretched for resources, so any new ‘ask’ (e.g. in terms of expanding tissue collections and/or strengthening standard operating procedures to ensure sample quality) must be tightly specified. Moreover, collections cannot be expected to build a substantial raptor tissue bank unless there is a clear regulatory demand for contaminant data and resources for the necessary analyses to be performed.

There exists here something of a Catch 22, in that regulatory demand is likely to grow only once the ability of raptor biomonitoring to provide pan-European assessments pertinent to chemicals management is proven, while proving this ability requires a substantial sample bank to be available in the first place. Overcoming this will probably involve carefully targeted proof on concept work on one or two selected species and tissue matrices for which a substantial pan-European bank of samples already exists, and for one or two priority substances of particular interest to regulators.

There are clear incentives for collections to engage in this work. These include: the opportunity to engage in a major European initiative with key regulatory applications, helping to demonstrate the societal relevance of collections; the opportunity presented by novel collaboration between NHMs, ESBs and research

4 www.eurapmon.eu
collections; the opportunity to expand research interests into ecotoxicology, and
to expand publications output; and the opportunity to know of and exchange
samples with other NHMs and thereby broaden individual collections.

Taking forward the concept of a distributed ERSpeB will involve further work
under the auspices of the COST Action on a number of issues. These include:
prioritising species, tissue matrices and compounds and carrying out proof of
concept work; addressing legal, personnel and freezer constraints to expanding
raptor tissue sample collections and shipping samples for analysis; adapting
NHM standards and protocols (learning from ESBs) for the gathering, processing
and storage of samples, to enhance sample quality for contaminant analysis;
developing appropriate policy on access to samples to ensure valuable samples
required for contaminant monitoring are not consumed for other purposes;
circumscribing the data content of the European samples database and how it
will be developed, populated and updated to provide real-time information on
raptor tissue samples across Europe. These issues will all be addressed by a
sequence of scientific missions and meetings planned by ERBFacility for the next
12-15 months.

This paper focuses on work being done in the ‘collections arena’ under the
auspices of ERBFacility, but it is worth noting that ERBFacility also involves
work in the ‘analytical arena’, involving ecotoxicologists, veterinary scientists
and chemists, to develop a prioritized European Raptor Biomonitoring Scheme,
and work in the ‘field arena’ involving field ornithologists and ecologists, to
develop a European Raptor Sampling Programme. Advancing work towards a
comprehensive European Raptor Biomonitoring Facility, capable of delivering
pan-European contaminant data for chemicals management, involves
collaboration across these three arenas.

While this work is progressing under ERBFacility, LIFE APEX is working to
demonstrate the systematic use of contaminant data from raptors and other
apex predators for chemicals management. Like ERBFacility, LIFE APEX is
building collaborations between collections and analytical laboratories. But
while the focus of ERBFacility is on building networks across the collections,
analysis and field arenas and developing the overall Facility, the focus of LIFE
APEX is on demonstrating that contaminant data from apex predators has useful
regulatory applications, notably in relation to the REACH and Biocides

LIFE APEX will in particular demonstrate the use of wide-scope target screening
(of more than 2,400 contaminants of emerging concern - CECs), wide-scope
suspect screening (of more than 40,000 CECs) and non-target screening of
samples from raptors (in the terrestrial environment) and other apex predators
(in the freshwater and marine environments) to help the European Chemicals
Agency (ECHA) prioritise substances (among the many tens of thousands
currently used) for more strenuous PBT assessments and identify predominant
chemical mixtures in biota. LIFE APEX will also demonstrate the power of
targeted analyses of raptor matrices to assess the effectiveness of EU chemicals
risk management measures. Proof of concept work on this latter demonstrator
is under way by the Naturalis Biodiversity Center with the UK Centre for Ecology
and Hydrology (which hosts the UK Predatory Bird Monitoring Scheme) (Movalli et al. in prep, Shore et al. in prep).

Taken together, the growing collaborations across the collections, analysis and field arenas under ERBFacility and LIFE APEX offer considerable promise to enhance early warning of emerging contaminant problems, for more timely identification and management of persistent and bio-accumulative substances in the environment, for putting risk management measures in place more quickly, for better understanding predominant chemical mixtures in the environment, and to ascertain whether risk management measures (and by extension chemicals regulations) are actually delivering on their purpose in reducing negative impacts on human and wildlife health. This will complement ongoing work to monitoring impacts of contaminants on human health.5

Acknowledgments

European Raptor Biomonitoring Facility COST Action (CA16224) is supported by COST (European Cooperation in Science and Technology) and funded by the Horizon 2020 Framework Programme of the European Union

Life APEX is financed by the European Union through the program LIFE17 ENV/SK/000355 “Systematic use of contaminant data from apex predators and their prey in chemicals management”.

References


5 www.hbm4eu.eu

EEA 2013. Late lessons from early warnings: science, precaution, innovation.


