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Abstract

Quantitative evaluation on the efficiency of wastésv treatment plants (WWTPS) is
a key issue that needs to be solved. For this germtata envelopment analysis (DEA)
was employed to establish a comprehensive effigieraluation system on WWTPs,
including three inputs of operating cost, electyicconsumption and labor, three
desirable outputs of chemical oxygen demand (C@D)owal rate, ammonia nitrogen
(NH3-N) removal rate and reclaimed water yield, and ondesirable output of dry
sludge yield. 861 WWTPs in China were assessed dhacked-based DEA model
based on cluster benchmarking. The technology gt (TGR) confirmed that large
WWTPs operated more efficiently than small onBse WWTPs had an average
efficiency score of 0.611. Among them, 170 samplese relatively efficient with a

score of 1, which means these samples could benehb&ark for other inefficient

samples. Different degrees of input excesses opubushortfalls existed in 691
inefficient samples and these samples should bek#yeobjects to improve the
operational efficiency. Furthermore, through theidlal-Wallis test, the influent COD
concentration and capacity load rate showed saamfi effects on the WWTP
performance. These findings, derived from a siniplé effective framework, have

potential value for managers to make decisions.

Keywords. Efficiency assessment; Data envelopment anal@@isster benchmarking;

Sustainability; Wastewater treatment plant; Slaagda measure

1. Introduction

Wastewater treatment plants (WWTPs) help proteet shrrounding water
environment by removing the contaminants from waater. In recent years, many
countries, particularly quickly developing counssichave made great efforts to
strengthen wastewater treatment. In China, for gt@nthe number of municipal
WWTPs has increased rapidly during the past 40syd&r 2016, 3552 WWTPs have
been built and operated, with a total treatmentacip of 1.76x18m3d (China
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Urban Water Association, 2017). There is still géalemand for future construction
and technical upgrading of WWTPs. According to @fsnl13th Five-Year Plan
(NDRC, 2016), by 2020, an additional treatment cépaof 50.22 million cubic
meters per day is targeted; 42.2 million cubic mseper day of wastewater treatment
facilities will be upgraded; 60,000 tons of extedlyg sludge (with 80% water content)
will be disposed of harmlessly and the newly-addedaimed water utilization
facilities will reach a scale of 15.05 million calbieters per day.

To achieve effective treatment of urban wastewated ensure sustainable
development of the society, not only should the bemof centralized wastewater
treatment facilities be greatly increased, but dls® operational efficiency of the
treatment facilities should be improved. Therefdrew to scientifically evaluate and
improve the operational efficiency of existing weasater treatment facilities has
attracted much attention. The efficiency evaluaticen help the governmental
departments formulate reasonable policies to prentle¢ healthy development of
WWTPs, and also provide targeted improvement recenaations for enterprises.

It is necessary to assess the WWTP efficiency fmasomprehensive perspective.
The operation of WWTPs is aimed at reducing wastewpollution from human
activities to minimize adverse impacts on the ratenvironment and human health
(Wang et al., 2012). Proper treatment and furtkase of wastewater can help solve
water shortage problems and save valuable resourdmsgever, owing to chemical
consumption, energy consumption, and various enmental emissions, WWTPs
also bring many additional environmental impactegpido et al., 2004). For instance,
sludge is a by-product of wastewater treatment @nttains lots of heavy metals,
organic pollutants, pathogenic bacteria, and prasggs. As the amount of
wastewater treatment increases, sludge producsi@isp increasing rapidly, which
easily leads to secondary pollution (Buonocorelgt2918). Another challenge in
wastewater treatment is to minimize the economa manpower inputs involved in
the operation. Therefore, in order to realize thel @f real sustainable development,
the negative effects of a plant should not excdesl lenefits of environmental

remediation.
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DEA is a mature nonparametric method to calculbte relative efficiency of
similar entities with various input and output icaliors (Charnes et al., 1978).
Recently, DEA has been gradually applied in thecieficy evaluation of WWTPs.
For example, Gao et al. (2006) applied a CCR madekvaluate five sewage
treatment plants in Urumgqi, and discussed the aemfting factors of operational
efficiency, but limited by the small humber of sdeyp Hernandez-Sancho et al.
(2011) used a non-radial DEA method to assess gredffigiency for WWTPS in
Spain and studied the operating variables that teatthe difference among plants.
Sala-Garrido et al. (2011) utilized the DEA metantier model to evaluate four
technologies involved in 99 Spanish WWTPs. Dongakt (2017) innovatively
combined a tolerance method with the DEA model ®seas the WWTP
eco-efficiency under uncertainty analysis. Gengrgpleaking, the application of DEA
in wastewater treatment industry is gradually diifexd. These studies have
demonstrated the adaptability of DEA and have aeli¢he evaluation of WWTPs in
some regions and countries, but there are stillesa®eficiencies. For instance,
previous studies did not take into account suchcatdrs as labor input, sludge
production, and reclaimed water production. Mosthaim only considered operating
costs and pollutant removal, so that the evaluatmrid not comprehensively reflect
the sustainability of WWTPs. In addition, few stesli did relevant cluster
benchmarking and comparison of technology gap (@it®R) under the scale effect.
What's more, quantifying potential improvements each indicator is critical to
supporting the decision-making process. Existingdiss mainly focused on
efficiency evaluation and failed to provide imprawent suggestions for each WWTP,
for lacking further analysis in input excesses antput shortfalls. Therefore, this
paper aims to overcome these deficiencies and rolmeire scientific and useful
assessment results.

According to the difference in how to analyze thstahce between units and
measure the production frontier, DEA can generdaldy divided into radial and
non-radial models (Castellet and Molinos-Senandd62 A notable disadvantage of

radial models is that they set reduction/enlargeéman input/output vectors in
3
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proportion, which is inconsistent with most actsatiations. To solve this problem,
Tone (2001) put forward a slack based measure (SBbel, which is a non-radial
DEA model designed to deal straightly with inputcesses and output shortfalls.
Hence, this study tends to adopt an input-orie&i8M-DEA model based on variable
returns to scale (VRS) and cluster benchmarkireytduate WWTPs.

The purpose of this study is to assess the subtaiperformance efficiency of
861 WWTPs in China, with a view to providing efiget and targeted
countermeasures. The main contents are as follGjvevaluate the efficiency of
WWTPs with a comprehensive index system and clustatysis; (i) determine the
best practices from samples and quantify the piatieintiprovement for each WWTP;
(i) identify underlying factors that affect thdamt performance. The assessment
takes into account multiple dimensions and statibtenalysis of large samples,
making it sufficient to reveal the reasons for #feciency gap. As this study can
provide reliable scientific benchmarking data andtool information, the final results
are expected to have great practical significamcetlfe construction, operation and

management of wastewater treatment plants.
2. Methodology

Different WWTPs run at different efficiency level€hoosing an appropriate
DEA model and evaluation index is the key to obtaseful informationsuch as
efficiency scores and projections. Generally, thei@e of model needs to consider the
undesirable output, orientation, benchmark andrsoTo ensure the simplicity and
effectiveness of the model, only a certain numbdendicators are needed. However,
the efficiency of WWTPs may be affected by varidastors that have not been
chosen as input or output indicators. Thus, afssessing the efficiency, the next

phase is to find out the explanatory factors.
2.1. DEA model

DEA, developed by Charnes, Cooper and Rhodes,nmethod to evaluate the
relative efficiency of decision making units (DMUsjth various input and output

indicators (Charnes et al., 1978). Efficiency imtigely assessed, which means that
4
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the efficiency of DMUs should be analyzed mutuaf§ter the assessment, DMUs
can be divided into two groups: efficient and ir@éint. The envelope formed by
efficient DMUs is called an efficient frontier, wdii covers inefficient DMUs like an
envelopment, and the name of DEA comes from it.

Conventional DEA models suppose that every outpgx should be maximized
under the current input level (Bi et al., 2014)lsas CCR-DEA model. However, in
the actual production process, desirable outpués aiten accompanied by the
production of undesirable outputs, such as soligtevaAs undesirable outputs should
be minimized as much as possible, the traditiondADnodel is not well suited to
assess the sustainability efficiency, which requaertain special treatment to achieve
a more accurate assessment (Zhang et al., 2016).

The indirect method is to convert the numeric valugated to the undesirable
output into an input or a desirable output (Reidhat al., 2000; Scheel, 2001).
However, this method has certain limitations. Fstance, considering an undesirable
output as an input is impractical to a degree,esthe input-output structure defining
the production process has been lost (Seiford dmg 2002). Performing a reciprocal
or negative conversion process on the undesiralifpibmay bias the final efficiency
value (Fare and Grosskopf, 2004).

By comparison, the direct method does not changeutidesirable output, but
integrates it with constraints into the DEA mode€iap et al., 2018; Yang et al., 2018).
It has been proved that dealing with the undesrahltput in its original form
conforms to the standard axioms and physical lafmsr@duction theory (Fare and
Grosskopf, 2004). Therefore, this study adopteddinect method to deal with the
undesirable output.

In this paper, slack based measurement (SBM) wpbedpto the DEA model
involved (Tone, 2001), which can modify the constia to add the slacks of
undesirable outputs into the target function. Zlevwal. (2008) have proved that the
SBM model is especially proper for handling undasie outputs, and it has very high
recognition.

As stated above, an SBM-DEA model is constructedhiis study. Suppose there
5
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are n DMUs, each DMU has k inputs, | desirable otg@and m undesirable outputs,
which are denoted a€R¥, yeR' and €R™, respectively. Define three matrices X, Y,
U as X=[x,.... %] ER", Y=[yy,....ya] ER™", U=[u,...,u] ER™". The mathematical

expression of the input-oriented SBM based on ViR$hown as follows:

1 Si~
1- KZ¥=1 ! /Sin

Min p* = 1 st o
1+1+m(21”=1 ' /urn +Z{n=1 ‘ /utn)
n
st ) Axy+siT =X, i=12..k
=1
n
leyr]' - Sl’+ =¥Ym, = 1:2: :1 (1)
=1

n
z A]-ut]- +5s. =uy,t=12,...,m
j=1

24=0,5"=0,s,T=0,s,”=0,j=1,2,...,n
where s;~, s,T and s~ represent the input excesses, desirable outputfaltand
undesirable output excesses, respectivelys a non-negative weight vector. In

general, the term “efficiency” refers to the optlmiae of resources to satisfy human
desires and needs under given the inputs and tkgies. Min p is the objective
function that defines the efficiency for each DVAuhd the objective valug* in the
range of 0 and 1 denotes the efficiency score.hidpeer the value op* is, the better
the efficiency of the DMU will be. Let the best gbbn for the above program
be( A% s; 7, s, s:7%).

The DMU is efficient only wherp*=1 and s;™* =s,** =s,7* = 0. If p* <1,
the relevant DMU is inefficient and its input andtput indices should be improved.
Generally, the following SBM-projection can be eoydd to improve the efficiency
of an inefficient DMWY (Xo, Yo, W) by reducing input excesses and undesirable output

excesses, as well as making up for desirable ostpurtfalls:
Xp — Si_* - X;)' Yo + Sr+* - Y£)1 Up — St_* - u;) (2

6
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Nevertheless, the DEA method considers that sant@es similar properties
when evaluating the efficiency of DMUs as a whdlee robustness of DEA results is
determined by the homogeneity of samples (Cortod Berg, 2009), therefore
traditional DEA models cannot be used to compare BMUs with diverse
characteristics (Lozano-Vivas et al., 2002).

Cluster benchmarking is a method of dividing aaebMUs into groups (i.e.
clusters) according to certain attributes, so DNtJthe same cluster are more similar
to each other than to DMUs in other clusters. Tleompurpose of grouping is to
maximize the homogeneity of DMUs in the same clusted the heterogeneity of
DMUs in different clusters (Patra et al., 2011).alhieve the efficiency evaluation of
objects relative to the optimal practice underrigpective clusters, it is necessary to
construct the production frontier separately (Z@4.3).

Self-benchmarking refers to each cluster takinglfitas a "reference set" and
conducting "self-assessment" separately. By comgdhe results of the non-grouped
DEA model (traditional method, all DMUs as a refere set) and the results of
self-benchmarking after grouping, the technologp gatio (TGR) can be obtained.
According to Rao et al. (2003), the formula forocgéting TGR is as follows:

*

TGR = —Pmeta_ 3)

*
cluster

where pt . refers to the efficiency value based on the megatier, p refers

cluster

to the efficiency value based on the cluster-fremti

A

Meta-frontier,

Cluster |

Output

Cluster Il

Cluster Il

v

Input
Fig. 1. Meta-frontier and cluster-frontier.
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TGR can reflect the gap between the cluster-froratred the meta-frontier. It is
employed to measure the technical efficiency gathefsame DMU under different
frontiers. At the same time, TGR can also refl&éet hecessity of dividing different
groups (Rao et al., 2003). The smaller the TGRev&dy the greater the necessity of

grouping will be, and vice versa. As illustrated Fig. 1, the meta-frontier is an

envelope curve higher than the frontier of eaclstelu SOp;usterz and the

Prieta
value of TGR ranges from 0 to 1. The closer the enical value is to 1, the smaller
the gap between the meta-frontier and the cluspatier is. The meta-frontier

represents the latent technical level of the whelaluated individuals, and the
cluster-frontier represents the actual technicegll®f each cluster. The smaller the
TGR is, the farther the actual technical levelhd tluster deviates from the potential
technical frontier, which means that the technolagyrelatively backward (Zhu,

2013).
2.2. Inputs and Outputs

Reasonable selection of input and output variabdesimprove the accuracy of
DEA. Several dimensions, such as environment, eognaociety, resource and
energy, should be comprehensively considered tlty frdflect the operation of
WWTPs. In general, the consumption of labor, cdpresources or energy represent
inputs, while products or services are outputs éHal., 2019). It is important to avoid
introducing a large number of variables, becausentire variables there are in the
model, the more difficult it is to differentiateeliDMUs (Morita and Avkiran, 2009).
Therefore, it is vital to minimize the number ofriadles while preserving necessary
production factors.

This study referred to the variables selected éngievious efficiency evaluation
of wastewater treatment industry (Caldas et al192Qorenzo-Toja et al., 2015;
Molinos-Senante et al., 2014; Sala-Garrido et28l11; Zeng et al., 2017), and took
into account the difficulty of obtaining the indica data and the applicability of
indicators in the selected model. To comprehengiwlaluate the efficiency of

WWTPs, this study regarded the wastewater treatrasntn production process,
8
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involving three inputs, three desirable outputs] ane undesirable output. Among
them, capital input was expressed by operating @@sCNY/m?), energy input was
expressed by electricity consumption, (Wh/nT), and labor input was expressed by
the number of labors §x person/1tm®). The desirable outputs included chemical
oxygen demand (COD) removal ratg, (®6), ammonia nitrogen (N¢-N) removal rate
(y2, %) and reclaimed water yields(y10' m*/day), while dry sludge yield (ut/10* m)

was chosen as the undesirable output.
2.3. Explanatory factors

The efficiency of WWTPs may also be affected byioass factors except for the
variables selected abovEhus, it is essential to identify the potentialtéas affecting
the WWTP efficiency. According to previous reseasHu et al., 2019; Longo et al.,
2018; Molinos-Senante et al., 2014) and considetiiegavailability of statistics, the
following factors were supposed likely to affedi@éncy scores: (i) technology used
to deal with the wastewater, (ii) capacity loacrat wastewater treatment plants; (iii)
influent COD concentration of the wastewater; @gcharge standard of pollutants
and (v) geographical location of plants.

Considering that the samples may not satisfy tiseraptions of normalcy and
homoscedasticity, the Kruskal-Wallis test (K-W }Yesas adopted in this paper. The
K-W test is a non-parametric test of one-way vargaanalysis that can be used to test
the consistency hypothesis of the overall functébstribution and its alternative
hypotheses. As an extension of the Mann-Whitnegdt, the K-W test can verify the
statistical significance of differences among nplétigroups (Zeng et al., 2017). If the
significance is greater than 0.05 (p-value > 0.@5¢re is no significant difference
among the tested samples. Conversely, if the pevialless than or equal to 0.05, the

samples are significantly different.
3. Resultsand discussion
3.1. Characteristics of sample systems
This study investigated 1,456 WWTPs under 37 intdisa on the Urban

9



Drainage Statistics Yearbook (China Urban Watero&sgion, 2017). 861 valid
samples were screened out from more than 50,0@0idd016, which is the latest

and most complete inventory of wastewater treatmkamtts in China.

4 Chen et al. (2006) found that the correlation betweastewater treatment scale
5 and operating cost of WWTPs was significant: theerapng cost of ton water
6 decreased with the increase in treatment scalepbaocame relatively stable until the
7 treatment scale was greater thart bf/d. Therefore, in this study, WWTPs were
8 divided into four clusters according to the destytreatment scale: Cluster | (micro
9  WWTPs, <2x10" m¥d), Cluster Il (small WWTPs, 2~5xiom®d), Cluster Il
10 (medium WWTPs, 5~10xf0n*d) and Cluster IV (large WWTPs, >10*%10°d).
11 Table 1 listed the descriptive statistical resutssample WWTPs. With the
12 increase in the treatment scale, the average vafuesee inputs gradually decreased,
13 while desirable output variables gradually incrélasgo all WWTPs, the average
14 operating cost, electricity consumption, and lavere 0.86 CNY/m, 0.33 kWh/nf,
15 and 9.96 persons/i@n® respectively. Average removal rates of COD and-NHvere
16  88.74% and 92.47%, while the average reclaimed nmatd dry sludge yield was
17 0.47x10 m*day and 1.47 t/70m° respectively.
18  Table 1 Average statistics (standard deviation in paresgleof variables for four clusters.
Cluster | Cluster Il Cluster 11l Cluster IV
(<2x10"  (2~5x1d  (5~10x1d (>10x1d Total
m’/d) m°/d) m%/d) m%/d)
Inputs
Operating cost (CNY/f) 1.06(x0.73)  0.78(x0.56) 0.75(x0.42) 0.70(x0.41) .86§+0.61)
Electricity (kwh/n?) 0.35(+0.27)  0.33(+0.31) 0.29(+0.98)  0.29(+0.12) .33§+0.25)
Labor (person/1tn®) 16.51(+12.26) 7.55(+3.81) 5.52(+3.16) 3.62(+¥2.66) 9.96(+9.33)
Desirable outputs
COD removal rate (%) 87.29(+£6.26) 89.23(+4.11) 98¢t8.12) 90.44(x4.21) 88.74(x5.12)

NHs-N removal rate (%)  90.88(+9.42) 93.26(+5.97) 9&B375) 93.89(+6.62) 92.47(+7.65)

Reclaimed water (ffn*/d)  0.09(+0.32)  0.45(+1.63) 0.74(¥1.93) 1.31(+4.31) 734.98)
Undesirable output

Dry sludge yield (¥16m%  1.13(x1.11) 1.70(¥1.92) 1.56(x1.33) 1.70(¢1.43)1.47(x1.53)

19

20

3.2. Efficiency analysis

3.2.1. Efficiency scores
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In this study, the input-oriented SBM model based WRS and cluster
benchmarking was solved by the software MaxDEA&J8&r(No 812-182). Detailed
data can be found in Table S1 in Appendix.

The efficiency scores of the WWTPs from four clustevere compared with
those based on the meta-frontier, as illustratdelgr?. It is obvious that meta-frontier
efficiency scores were lower than those calculabgd cluster-frontier, just as
theoretically derived. As shown in Table 2, therage TGRs of the four clusters were
between 0.578 and 0.938. With the increase in ittee &f the WWTPs, the average
efficiency and TGR were basically increasing, iradiieg that the gap between the two
frontiers was smaller. In other words, the lardpr plant is, the more efficient it may
be. Moreover, the number of efficient WWTPs inceshswhen using cluster
benchmarking. Some WWTPs were inefficient in thetadfeontier analysis but
efficient in the cluster analysis. Since clustealgsis is a method to maximize the
homogeneity of DMUs in the same cluster, its assess$ result is considered to be
closer to reality, so the efficiency scores in tbkowing discussion are scores based

on the cluster-frontier.

1.0 - 5 00 DCoooOC—— R — SR ——

o °
o] (o]
1 1

v

Efficiency Score
o
=

0.2

Cluster |

0.0

U T e T e T L T
0 200 400 600 800
WWTPs
Cluster-frontier - Meta-frontier

Fig. 2. Efficiency scores of 861 WWTPs based on cluster-froatiel meta-frontier respectively.
Note: Cluster | € 2x10* m%d), Cluster Il (2~5x1bm%d), Cluster Il (5~10x1Ddm*d) and Cluster
IV (>10x10" m¥/d).

11
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Table 2 Comparison of operating efficiency of WWTPs from différeaatment scale clusters.

Cluster | Cluster Il Cluster IlI Cluster IV
(<2x10"  (2~5x10 (5~10x10 (>10x1d Total
m%d) m%d) m’/d) m’/d)
Number of plants 309 305 145 102 861
Number of Efficient plants 59 40 31 40 170
% Efficient plants 19.09 13.11 21.38 39.22 19.74
Average efficiency score 0.622 0.563 0.623 0.710 0.611
Technology gap ratio (TGR) 0.578 0.828 0.850 0.938 0.755

As shown in Table 2, 170 plants got a full effigigrscore, meaning that 19.74%
of plants were efficient and the rest were inefiiti The allocation of capital, labor,
and energy in these efficient WWTPs was relativgdpd during the operation, and
these plants were located on the best practicetidroamong 861 samples. The
WWTPs had an average efficiency score of 0.611.s(@ening that a WWTP with a
score of 1 is the benchmark for best practicejrtiprovement potential of the sample
plants is about 38.9%. As plotted in Fig. 3, 548fficient plants scored between 0.3

and 0.7. Therefore, inefficient WWTPs had a lotaaim to improve their efficiencies.

180
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-

-

100 H

80
] 66

Number of WWTPs
3
1
)
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41

N
IS)
[
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O ? T T

25
6
T T T
N} D (D) BN QD  a® D (D« A) A
O 207 a0 0% 0% 01 0% 507 GO

OF a8 02 9% 08 9o 91 g

Efficiency score

Fig. 3. Interval distribution of WWTP efficiencies.

3.2.2. Improvement potential of the WWTPs

The statistical comparison of efficient and ineéidt WWTPs is shown in Fig. 4.
It was found that the average values of three mauid the undesirable output of
efficient plants were significantly lower than tleosf inefficient plants. For instance,

the average operating cost of efficient plants We83 CNY/n?, while that of

12



1 inefficient plants was 0.92 CNY/niIn contrast, the reclaimed water yield of effitie
2 plants was 1.41xfom%d, far higher than that of inefficient plants, whiwas
3 0.24x1d m’/d. Moreover, there was no significant differenoepollutant removal

4  variables, for the removal rates of COD and 3NNH could reach 90% in most

5 WWTPs.
Dry sludge yield (t10*m?) 1.28 152 |
Reclaimed water (10*m3/d) 1 1.41 0.24 |
NHs-N removal rate (%) 1 94.43 91.99 |
COD removal rate (%) 1 89.84 88.47 |
Labor (person/10*mg) 1 6.72 10.75 |
Electricity (kWh/m3) 1 0.24 0.35 |
Operating cost (CNY/m3) 1 0.63 0.92
0% zsl% 5(;% 75:% 1o|0%

. Efficient WWTPs Inefficient WWTPs

7 Fig.4. Comparison of seven variables in efficient and ineficl&@WTPs.

0o

In addition to providing overall efficiency scorespftware MaxDEA can also
9 provide target improvement for each plant, inclgdatl inputs and outputs. WWTPs
10 can improve performance and become efficient byiged) input and undesirable
11  output excesses, as well as making up for desimaltieut shortfalls. The results of

12 improvement potential are shown in Table 3 and Fig.
13 Table 3 The improvement potential of all WWTPs in this study.

Origin  Projection Improvement Improvement ratio

Operating costi0’ CNY/d)  3776.05 1961.84 -1814.21 -48.05%
Electricity (10" kWh/d) 1498.70 986.51 -512.19 -34.18%
Labor (person) 28012 15832 -12179 -43.48%
COD removal rate (%) 88.74 90.67 1.93 2.17%
NHs-N removal rate (%) 92.47 94.20 1.73 1.87%
Reclaimed water (fon%d)  406.95 425.21 18.26 4.49%
Dry sludge yield (t/d) ~ 8092.27  5704.07 -2388.20 -29.51%

14  Note: Negative values in improvement represent input €s&® or undesirable output excesses
15 that should be reduced, positive values representitisirable output shortfalls that need to be
16  made up for.
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Fig. 5. The improvement potential of each WWTP.
Under the current output level, ineffective WWTRalHdiverse levels of input

excesses, i.e. inefficient allocations of capi@bor, and energy. For the existing 861
samples, the operating costs, electricity conswnpéind labor could be reduced by
1.81x10d CNY/d, 5.12x18 kwh/d, and 12,179 people respectively.

Under the current input level, the ineffective WWsTRBIso had some output
shortages, in other words, there is room for imprognt in COD removal rate,
NHs-N removal rate and reclaimed water yield. For ¢lxesting 861 samples, these
three desirable output indicators could be incrédse1.93%, 1.73%, and 1.83x10
m3/d, respectively. For undesirable output, dry skidgeld could be reduced by
2388.21 t/d.

Overall, according to the improvement ratio, thepiavement space of input
indicators is larger than that of output indicatdrsrough a further and more detailed
analysis, it is possible to determine which itemsstrbe focused on for each plant to

improve efficiency (see Table S2 in Appendix).

3.3. Explanatory factors
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Fig. 6. Boxplots of the explanatory factors.
Efficiency scores of plants were grouped accordmthe explanatory factors in
this study. Fig. 6 visually shows the characterssof efficiency categorized by the
five factors. To examine the differences among ehgoups, Kruskal-Wallis tests

were conducted by SPSS 24.0. The results are listEable 4.

Table 4 Efficiency scores by explanatory factors and Krikallis test results.
Total Efficient
WWTPs WWTPs

% Eff. Mean Std.dev. P-value Chi-sq.

Technology
CAS 8 0 0.0 0.513 0.106
A"/O 300 81 27.0 0.635 0.255
oD 226 37 16.4 0.613 0.228
SBR 164 30 18.3 0.612 0.238 0.076  11.437
BIOLAK 26 5 19.2 0.620 0.226
Biofilm 25 0 0.0 0.470 0.158
MBR 9 0 0.0 0.553 0.195
Load rate
(0,40] 38 3 7.9 0.469 0.224
(40,80] 328 45 13.7 0572 0.225
0.000 38.522
(80,120] 479 117 24.4 0.645 0.241
(120,160] 16 5 31.3 0.753 0.213
Influent COD
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(0, 200] 345 84 24.3 0.655 0.242
(200, 400] 440 69 15.7 0.584 0.226
0.000 20.688
(400, 600] 61 12 19.7 0.565 0.257
(600, 1600] 15 5 33.3 0.588 0.335
Discharge standard
First class A 448 89 19.9 0.601 0.240
First class B 308 57 18.5 0.612 0.235 0.769 0.525
Second class 30 8 26.7 0.620 0.276
Geogr aphical
location
Northeastern 44 5 11.4 0.564 0.200
Central 136 28 20.6 0.607 0.245
0.114  5.959
Eastern 563 123 21.8 0.624 0.244
Western 118 14 11.9 0.575 0.216

3.3.1. Treatment technology

In China, there are many kinds of technologiesiagph WWTPs, and different
technologies often have diverse costs and treateféetts. Considering such critical
conditions as influent characteristics and dischat@ndards, managers often select
certain technologies for maximizing WWTP efficien®@ong et al., 2017).

The wastewater treatment process usually falls ihiee stages: primary,
secondary and tertiary treatment. In order to makeleeper and centralized
comparison, this study only considered secondaatrnent technology. According to
the classification of secondary treatment provitgdLi et al. (2018), the WWTPs
were divided into seven categories, including CA8ngentional activated sludge
process), AO (anoxic/oxic process), OD (oxidation ditch), SBfequencing batch
reactor), BIOLAK, biofilm, and MBR (membrane bioaor).

The boxplot of efficiency scores by seven technie®gs demonstrated in Fig.
6(a). The average scores of CAS/@, OD, SBR, BIOLAK, biofilm, and MBR were
0.513, 0.635, 0.613, 0.612, 0.620, 0.470 and 0.B&shectively. Among them, the
average efficiencies of 20, OD and SBR were high, especially/@, while the
biofilm method had the lowest average efficiencyty®.470. Therefore, the activated
sludge process was more effective than the biofiracess. This conclusion is
consistent with the relevant technical mechanisenthe biofilm process has poorer
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operational flexibility and additional investmemr fbiofilm carrier (Hu et al. 2019;
Wanner et al., 1988)

As a high-energy technology (Tolkou and Zoubouf§16), MBR had the
highest average operating cost and electricity wampgion among all technologies,
1.13 CNY/n? and 0.53 kWh/r) respectively, so its relative efficiency was low.
Unlike MBR plants, WWTPs using the"#® process had moderate operating costs
and electricity consumption (0.84 CNYIn0.32 kWh/ni on average), so"O plants
generally had higher efficiency levels. It is sugjge to adopt the A0 process in
economically backward areas.

However, the selection of specific treatment tedbgy did not seem to have a
significant impact on the performance of WWTPs. A\Ktest was carried out for
seven technologies and the result indicated therethvas no statistical difference
(p=0.076>0.05), as shown in Table 4. This resuleeg with the findings of Hu et al.
(2019) and D'Inverno et al. (2018). It is worthingtthat the uneven distribution of
the sample may affect the analysis result. The gotmm of seven technologies in
sample WWTPs is illustrated in Fig. S1 in Append&/O, OD, and SBR were the
three most common wastewater treatment technolog@sout of 861 plants adopted
these three technologies and the daily treatmep#taiy reached 3.75xifh®. On the

other hand, fewer than 20 plants adopted CAS an& Micesses.
3.3.2. Load rate

According to the previous analysis, the performawfca plant is tightly bound to
its scale. Nevertheless, the designed capacity otanompletely represent the
operating condition. Actually, operating conditioms WWTPs are not always
consistent with the expected conditions, so theaipe load of WWTPs may be high
or low, which will affect the operating performanocé WWTPs to a certain extent
(Teklehaimanot et al., 2015). Therefore, the opegatoad rate was chosen as a
potential factor affecting the efficiency of the WWSs. Four groups have been
classified according to the capacity load ratetegp than 40%, (ii) between 40% and
80%, (iif) between 80% and 120%, and (iv) greatant120%.
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As shown in Fig. 6(b) and Table 4, the load ratd agositive and significant
influence on plant efficiency. With the increasdadad rate, the efficiency of WWTPs
also increased. The average efficiency scoresefdbr groups were 0.469, 0.572,
0.645 and 0.753, respectively. Interestingly, tfeiency continued to increase for
overload plants (within the scope of assessmentshould be noted that heavy
overload plants may be out of order, resulting étedoration of wastewater quality
and non-compliance with discharge standards (Loeg@l., 2018). Actually, the
existing literature is quite contradictory in thiéctor. Gomez et al. (2017) discovered
that overload or underload conditions had no sigaiit influence on WWTP
efficiency. Dong et al. (2017) considered that WWWTWith excessive capacity are
often inefficient. Our result is consistent withrign et al. (2018). The higher the
capacity load rate, the more efficient WWTP tendsbe, even if WWTP is

overloaded.
3.3.3. Influent COD concentration

The influent component is a powerful driving foredfecting wastewater
treatment performance. For instance, aeration ddraad sludge yield have close ties
with influent COD concentration (Dong et al., 2017)

According to the influent COD concentration, the VIR were categorized into
four groups: (i) below 200 mg/L, (ii) between 20@/nand 400 mg/L, (iii) between
400 mg/L and 600 mg/L, and (iv) above 600 mg/L. €ffeciency scores of these four
groups are illustrated in Fig. 6(c). The K-W testified that the impact of the influent
COD concentration was significant (p=0.000<0.05).

For the four groups of WWTPs, the median efficienggs monotonically
decreasing (0.612, 0.532, 0.500, 0.484), but therame efficiency was not
monotonically decreasing (0.655, 0.584, 0.565, &).5Bor the first three groups, the
efficiency of plants decreased gradually as thi@mt COD concentration increased,
meaning that reducing the low influent COD concatiin is helpful to improve the
efficiency of plants. Hu et al. (2019) drew a samilconclusion. When the
concentration was more than 600 mg/L, the distiaoubf efficiency score became
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more discrete, that is to say, the standard dewiatalue was higher. The result
implied that high influent COD concentration helgetprove the WWTP efficiency
to some extent. The reason might be that high C@izentration contributed to the

anaerobic reaction.
3.3.4. Discharge standard

With the tightening of the national environmentabtection policy, lots of
WWTPs are facing the situation of upgrading. Onlihsis of the Discharge Standard
of Pollutants for Municipal Wastewater Treatmenar®l(GB18918-2002) in China
(NEPA, 2002), three main groups were divided: g first class A, (ii) the first class
B, and (iii) the second class. Among the 861 WWTdagut 52% of plants met the
first class A discharge standard and 36% met tediass B.

In order to achieve more comprehensive pollutiontrad objectives, WWTPs
generally need to invest more energy and chemioabumption to meet higher
discharge standards (Fine and Nadas, 2012). Cothpétk the plants meeting the
second class standard, although the pollutant rahrate of the WWTPs meeting the
first class A increased, at the same time, theaijpey cost, labor input and electricity
consumption increased by 0.06 CNY/m0.07 kWh/mi and 2 persons/{th’
respectively. As shown in Fig. 6(d), when the stadd became more stringent, the
efficiency score of WWTPs demonstrated a downweaedd, with an average score of
0.620, 0.612 and 0.601, respectively. However, Kh&/ test revealed that the
discharge standard had no significant effect at@ significance level. It is well
known that higher discharge standards may bringenmmeuse of reclaimed water.
Therefore, under our assessment framework, it iseMs® that the benefits of
improving effluent quality can make up for the gage of high input. If WWTPs are
all upgraded to the first class A, it is estimatkdt the electricity consumption will
increase by 1.18x20kwh/d and reclaimed water yield will increase hpax1¢
m>/d.

3.3.5. Geographical location

The sample WWTPs covers 155 cities in 23 provin¢esinicipalities,
19
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autonomous regions) from China. It is interestimg study whether there are
additional differences in geographical location.n€idering the average score of all
plants in a province as an inter-provincial effiaig, the spatial discrepancy of plants
can be observed. As shown in Fig. 7, different il@present different efficiency
levels. Overall, inter-provincial efficiencies wemmostly at a medium level.
High-efficiency provinces mainly included Shaanxi.972), Hainan (0.832), and
Guangdong (0.799). Ningxia performed the worstlinhe provinces evaluated, with
an average efficiency of only 0.418. The resultgine further consideration to avoid
biased conclusions, as the sample distribution geegyraphically uneven and some

provinces were not evaluated for the lack of data.

= . 6-0.
N e B o.os
) ) B o.s-0.9
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- Ee— a— Viles ) - 0.9-1.0

Fig. 7. Average efficiency scores in different provinces of China

Since China is a country with a vast territory amgeven socio-economic
development level (Zhang et al., 2016), in ordemtke the results more extensive, a
K-W test was carried out on four independent samfilem eastern, northeastern,

central and western China. In this study, the eagstgion included nine provinces
20
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(municipalities) with an average efficiency of 0M62wvhich was higher than the
national average and ranked first in the four regidn fact, the K-W test showed no
significant difference in the distributions of efgéncy scores among four regions
(p=0.114>0.05). As the frontier of China's reforndapening up, the eastern region
has great advantages in absorbing, introducing wiliding advanced wastewater
treatment technologies at home and abroad. Its geament system is also in a
leading position. Generally speaking, some advarigezign technologies are often
first absorbed by the eastern region, and thenrotegions begin to learn

corresponding technologies from the eastern regibherefore, the industry

development of the eastern region basically reptesthe best state of China and is

the benchmark of other regions.
4. Conclusions

With the requirement of sustainable developmentpmprehensive and robust
evaluation for WWTPs is receiving more and moreerdtbn. In this study, an
SBM-DEA model based on cluster benchmarking was leyed to assess 861
WWTPs in China. The evaluation index system comsiflenultiple dimensions such
as economic, environment and society. The resolvetl 170 plants obtained a full
efficiency score. From a policy perspective, theeasment could help government
agencies identify the best practices in China atdagpropriate improvement targets
for inefficient plants on the basis of projectioalwes. According to the improvement
ratio, there is still much room for saving in theee input indicators (operating cost,
electricity consumption, and labor), especially famall plants € 5x1¢ md).
Therefore, WWTP managers should focus on strengtbeself-inspection of the
plant, such as rational investment of funds andleyeges, and energy consumption
analysis. Energy saving and consumption reducgsoa comprehensive work, which
requires attention to various aspects such as gsopcequipment, electrical and
automatic control. The K-W test revealed that thiguent COD concentration and
capacity load rate affected the plant efficienagndicantly. It is recommended to
control the load rate at about 100% and the inlil@@D concentration below 200
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mg/L. Moreover, let more wastewater be reused fdram miscellaneous water
consumption or scenic environment use.

Overall, the DEA model applied to this paper cambme the efficiency of
WWTPs with sustainability issues, and can be usea laenchmark model to provide
recommendations for improving plants, thereby acdhge the best utilization of
existing resources. There is no doubt that the odetlogy and applications in this
study are useful for government departments anergmge managers. The evaluation
system can help the government understand thaveelaperation of WWTPs and
strengthen the supervision of third-party entegsrisn the operation and management
of WWTPs. It can also help enterprises to undedstdéweir own shortcomings and
improvement potential. It ifeasibleto conduct incentive control on WWTPs, with
rewards and punishments based on periodic evahsato rankings of operational
efficiency.

In addition, it is worth noting that DEA can effeely assess the relative
efficiency, but cannot reflect the absolute efi@g Due to the data uncertainty and
guantity limitation of indices, further study camnduct sensitivity analysis and
extend the index set, such as the use of chengagknts and potential environmental
impacts. Life cycle assessment (LCA) is a new fooenvironmental management to
guantitatively evaluate environmental impacts. €hme, the combination of LCA

and DEA may achieve a more accurate and comprefeeegaluation.
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Highlights

861 WWTPs were assessed by an SBM-DEA model based on cluster
benchmarking.

The evaluation index was extended to economic, environmental and social
domains.

170 plants were regarded as best practices over the latest inventory in China.

The improvement potential for sample plants was about 38.9%.

Potential factors affecting the performance efficiency of WWTPs were discussed.



