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Abstract 2 

Quantitative evaluation on the efficiency of wastewater treatment plants (WWTPs) is 3 

a key issue that needs to be solved. For this purpose, data envelopment analysis (DEA) 4 

was employed to establish a comprehensive efficiency evaluation system on WWTPs, 5 

including three inputs of operating cost, electricity consumption and labor, three 6 

desirable outputs of chemical oxygen demand (COD) removal rate, ammonia nitrogen 7 

(NH3-N) removal rate and reclaimed water yield, and one undesirable output of dry 8 

sludge yield. 861 WWTPs in China were assessed by a slacked-based DEA model 9 

based on cluster benchmarking. The technology gap ratio (TGR) confirmed that large 10 

WWTPs operated more efficiently than small ones. The WWTPs had an average 11 

efficiency score of 0.611. Among them, 170 samples were relatively efficient with a 12 

score of 1, which means these samples could be a benchmark for other inefficient 13 

samples. Different degrees of input excesses or output shortfalls existed in 691 14 

inefficient samples and these samples should be the key objects to improve the 15 

operational efficiency. Furthermore, through the Kruskal-Wallis test, the influent COD 16 

concentration and capacity load rate showed significant effects on the WWTP 17 

performance. These findings, derived from a simple but effective framework, have 18 

potential value for managers to make decisions.  19 

Keywords: Efficiency assessment; Data envelopment analysis; Cluster benchmarking; 20 

Sustainability; Wastewater treatment plant; Slack based measure 21 

1. Introduction 22 

Wastewater treatment plants (WWTPs) help protect the surrounding water 23 

environment by removing the contaminants from wastewater. In recent years, many 24 

countries, particularly quickly developing countries, have made great efforts to 25 

strengthen wastewater treatment. In China, for example, the number of municipal 26 

WWTPs has increased rapidly during the past 40 years. By 2016, 3552 WWTPs have 27 

been built and operated, with a total treatment capacity of 1.76×108 m3/d (China 28 
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Urban Water Association, 2017). There is still a huge demand for future construction 1 

and technical upgrading of WWTPs. According to China’s 13th Five-Year Plan 2 

(NDRC, 2016), by 2020, an additional treatment capacity of 50.22 million cubic 3 

meters per day is targeted; 42.2 million cubic meters per day of wastewater treatment 4 

facilities will be upgraded; 60,000 tons of extra daily sludge (with 80% water content) 5 

will be disposed of harmlessly and the newly-added reclaimed water utilization 6 

facilities will reach a scale of 15.05 million cubic meters per day. 7 

To achieve effective treatment of urban wastewater and ensure sustainable 8 

development of the society, not only should the number of centralized wastewater 9 

treatment facilities be greatly increased, but also the operational efficiency of the 10 

treatment facilities should be improved. Therefore, how to scientifically evaluate and 11 

improve the operational efficiency of existing wastewater treatment facilities has 12 

attracted much attention. The efficiency evaluation can help the governmental 13 

departments formulate reasonable policies to promote the healthy development of 14 

WWTPs, and also provide targeted improvement recommendations for enterprises. 15 

It is necessary to assess the WWTP efficiency from a comprehensive perspective. 16 

The operation of WWTPs is aimed at reducing wastewater pollution from human 17 

activities to minimize adverse impacts on the natural environment and human health 18 

(Wang et al., 2012). Proper treatment and further reuse of wastewater can help solve 19 

water shortage problems and save valuable resources. However, owing to chemical 20 

consumption, energy consumption, and various environmental emissions, WWTPs 21 

also bring many additional environmental impacts (Hospido et al., 2004). For instance, 22 

sludge is a by-product of wastewater treatment and contains lots of heavy metals, 23 

organic pollutants, pathogenic bacteria, and parasite eggs. As the amount of 24 

wastewater treatment increases, sludge production is also increasing rapidly, which 25 

easily leads to secondary pollution (Buonocore et al., 2018). Another challenge in 26 

wastewater treatment is to minimize the economic and manpower inputs involved in 27 

the operation. Therefore, in order to realize the goal of real sustainable development, 28 

the negative effects of a plant should not exceed the benefits of environmental 29 

remediation. 30 
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DEA is a mature nonparametric method to calculate the relative efficiency of 1 

similar entities with various input and output indicators (Charnes et al., 1978). 2 

Recently, DEA has been gradually applied in the efficiency evaluation of WWTPs. 3 

For example, Gao et al. (2006) applied a CCR model to evaluate five sewage 4 

treatment plants in Urumqi, and discussed the influencing factors of operational 5 

efficiency, but limited by the small number of samples. Hernandez-Sancho et al. 6 

(2011) used a non-radial DEA method to assess energy efficiency for WWTPs in 7 

Spain and studied the operating variables that lead to the difference among plants. 8 

Sala-Garrido et al. (2011) utilized the DEA meta-frontier model to evaluate four 9 

technologies involved in 99 Spanish WWTPs. Dong et al. (2017) innovatively 10 

combined a tolerance method with the DEA model to assess the WWTP 11 

eco-efficiency under uncertainty analysis. Generally speaking, the application of DEA 12 

in wastewater treatment industry is gradually diversified. These studies have 13 

demonstrated the adaptability of DEA and have achieved the evaluation of WWTPs in 14 

some regions and countries, but there are still some deficiencies. For instance, 15 

previous studies did not take into account such indicators as labor input, sludge 16 

production, and reclaimed water production. Most of them only considered operating 17 

costs and pollutant removal, so that the evaluation could not comprehensively reflect 18 

the sustainability of WWTPs. In addition, few studies did relevant cluster 19 

benchmarking and comparison of technology gap ratio (TGR) under the scale effect. 20 

What’s more, quantifying potential improvements in each indicator is critical to 21 

supporting the decision-making process. Existing studies mainly focused on 22 

efficiency evaluation and failed to provide improvement suggestions for each WWTP, 23 

for lacking further analysis in input excesses and output shortfalls. Therefore, this 24 

paper aims to overcome these deficiencies and obtain more scientific and useful 25 

assessment results. 26 

According to the difference in how to analyze the distance between units and 27 

measure the production frontier, DEA can generally be divided into radial and 28 

non-radial models (Castellet and Molinos-Senante, 2016). A notable disadvantage of 29 

radial models is that they set reduction/enlargement of input/output vectors in 30 
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proportion, which is inconsistent with most actual situations. To solve this problem, 1 

Tone (2001) put forward a slack based measure (SBM) model, which is a non-radial 2 

DEA model designed to deal straightly with input excesses and output shortfalls. 3 

Hence, this study tends to adopt an input-oriented SBM-DEA model based on variable 4 

returns to scale (VRS) and cluster benchmarking to evaluate WWTPs. 5 

The purpose of this study is to assess the sustainable performance efficiency of 6 

861 WWTPs in China, with a view to providing effective and targeted 7 

countermeasures. The main contents are as follows: (i) evaluate the efficiency of 8 

WWTPs with a comprehensive index system and cluster analysis; (ii) determine the 9 

best practices from samples and quantify the potential improvement for each WWTP; 10 

(iii) identify underlying factors that affect the plant performance. The assessment 11 

takes into account multiple dimensions and statistical analysis of large samples, 12 

making it sufficient to reveal the reasons for the efficiency gap. As this study can 13 

provide reliable scientific benchmarking data and control information, the final results 14 

are expected to have great practical significance for the construction, operation and 15 

management of wastewater treatment plants. 16 

2. Methodology 17 

Different WWTPs run at different efficiency levels. Choosing an appropriate 18 

DEA model and evaluation index is the key to obtain useful information, such as 19 

efficiency scores and projections. Generally, the choice of model needs to consider the 20 

undesirable output, orientation, benchmark and so on. To ensure the simplicity and 21 

effectiveness of the model, only a certain number of indicators are needed. However, 22 

the efficiency of WWTPs may be affected by various factors that have not been 23 

chosen as input or output indicators. Thus, after assessing the efficiency, the next 24 

phase is to find out the explanatory factors. 25 

2.1. DEA model 26 

DEA, developed by Charnes, Cooper and Rhodes, is a method to evaluate the 27 

relative efficiency of decision making units (DMUs) with various input and output 28 

indicators (Charnes et al., 1978). Efficiency is relatively assessed, which means that 29 
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the efficiency of DMUs should be analyzed mutually. After the assessment, DMUs 1 

can be divided into two groups: efficient and inefficient. The envelope formed by 2 

efficient DMUs is called an efficient frontier, which covers inefficient DMUs like an 3 

envelopment, and the name of DEA comes from it.  4 

Conventional DEA models suppose that every output index should be maximized 5 

under the current input level (Bi et al., 2014), such as CCR-DEA model. However, in 6 

the actual production process, desirable outputs are often accompanied by the 7 

production of undesirable outputs, such as solid waste. As undesirable outputs should 8 

be minimized as much as possible, the traditional DEA model is not well suited to 9 

assess the sustainability efficiency, which requires certain special treatment to achieve 10 

a more accurate assessment (Zhang et al., 2016). 11 

The indirect method is to convert the numeric values related to the undesirable 12 

output into an input or a desirable output (Reinhard et al., 2000; Scheel, 2001). 13 

However, this method has certain limitations. For instance, considering an undesirable 14 

output as an input is impractical to a degree, since the input-output structure defining 15 

the production process has been lost (Seiford and Zhu, 2002). Performing a reciprocal 16 

or negative conversion process on the undesirable output may bias the final efficiency 17 

value (Fare and Grosskopf, 2004). 18 

By comparison, the direct method does not change the undesirable output, but 19 

integrates it with constraints into the DEA model (Xiao et al., 2018; Yang et al., 2018). 20 

It has been proved that dealing with the undesirable output in its original form 21 

conforms to the standard axioms and physical laws of production theory (Fare and 22 

Grosskopf, 2004). Therefore, this study adopted the direct method to deal with the 23 

undesirable output. 24 

In this paper, slack based measurement (SBM) was applied to the DEA model 25 

involved (Tone, 2001), which can modify the constraints to add the slacks of 26 

undesirable outputs into the target function. Zhou et al. (2008) have proved that the 27 

SBM model is especially proper for handling undesirable outputs, and it has very high 28 

recognition. 29 

As stated above, an SBM-DEA model is constructed for this study. Suppose there 30 
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are n DMUs, each DMU has k inputs, l desirable outputs and m undesirable outputs, 1 

which are denoted as x∈Rk, y∈Rl and u∈Rm, respectively. Define three matrices X, Y, 2 

U as X=[x1,…,xn]	∈Rk×n, Y=[y1,…,yn]	∈Rl×n, U=[u1,…,un]	∈Rm×n. The mathematical 3 

expression of the input-oriented SBM based on VRS is shown as follows: 4 

	Min	ρ* =
1 − 1k∑

si− sin�ki=1

1 + 1
l + m�∑

sr+ urn�lr=1 +∑ st− utn�mt=1 �
 

 5 

	s. t.		��jxij + si− = xin , i = 1,2,… , k
n

j=1
 

   6 

��jyrj − sr+ = yrn , r = 1,2,… , l
n

j=1
																																																																																												(1) 

7 

��jutj + st− = utn , t = 1,2,… ,m
n

j=1
 

 8 

��j = 1
n

j=1
 

 9 

								�j ≥ 0	, si− ≥ 0, sr+ ≥ 0, st− ≥ 0, j = 1,2,… , n  10 

where s"#,		s$% and s&# represent the input excesses, desirable output shortfalls and 11 

undesirable output excesses, respectively.	λj  is a non-negative weight vector. In 12 

general, the term “efficiency” refers to the optimal use of resources to satisfy human 13 

desires and needs under given the inputs and technologies. Min	ρ is the objective 14 

function that defines the efficiency for each DMU, and the objective value ρ* in the 15 

range of 0 and 1 denotes the efficiency score. The higher the value of ρ* is, the better 16 

the efficiency of the DMU will be. Let the best solution for the above program 17 

be	(	�∗, s"#∗, s$%∗, s&#∗). 18 

The DMU is efficient only when ρ*=1 and s"#∗ = s$%∗ = s&#∗ = 0. If ρ* < 1, 19 

the relevant DMU is inefficient and its input and output indices should be improved. 20 

Generally, the following SBM-projection can be employed to improve the efficiency 21 

of an inefficient DMU0 (x0, y0, u0) by reducing input excesses and undesirable output 22 

excesses, as well as making up for desirable output shortfalls: 23 

x0 − si−∗ → x0′ , 	y0 + sr+∗ → y0′ , 	u0 − st−∗ → u0′                 (2) 24 
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Nevertheless, the DEA method considers that samples have similar properties 1 

when evaluating the efficiency of DMUs as a whole. The robustness of DEA results is 2 

determined by the homogeneity of samples (Corton and Berg, 2009), therefore 3 

traditional DEA models cannot be used to compare the DMUs with diverse 4 

characteristics (Lozano-Vivas et al., 2002). 5 

Cluster benchmarking is a method of dividing a set of DMUs into groups (i.e. 6 

clusters) according to certain attributes, so DMUs in the same cluster are more similar 7 

to each other than to DMUs in other clusters. The major purpose of grouping is to 8 

maximize the homogeneity of DMUs in the same cluster and the heterogeneity of 9 

DMUs in different clusters (Patra et al., 2011). To achieve the efficiency evaluation of 10 

objects relative to the optimal practice under the respective clusters, it is necessary to 11 

construct the production frontier separately (Zhu, 2013). 12 

Self-benchmarking refers to each cluster taking itself as a "reference set" and 13 

conducting "self-assessment" separately. By comparing the results of the non-grouped 14 

DEA model (traditional method, all DMUs as a reference set) and the results of 15 

self-benchmarking after grouping, the technology gap ratio (TGR) can be obtained. 16 

According to Rao et al. (2003), the formula for calculating TGR is as follows:  17 

TGR = 	ρmeta∗

	ρcluster	∗ 																																																																				(3)
 18 

where 	ρ23&4∗  refers to the efficiency value based on the meta-frontier,		ρ5678&3$	∗  refers 19 

to the efficiency value based on the cluster-frontier. 20 

 21 

Fig. 1. Meta-frontier and cluster-frontier. 22 
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TGR can reflect the gap between the cluster-frontier and the meta-frontier. It is 1 

employed to measure the technical efficiency gap of the same DMU under different 2 

frontiers. At the same time, TGR can also reflect the necessity of dividing different 3 

groups (Rao et al., 2003). The smaller the TGR value is, the greater the necessity of 4 

grouping will be, and vice versa. As illustrated in Fig. 1, the meta-frontier is an 5 

envelope curve higher than the frontier of each cluster, so ρcluster
	* ≥ ρmeta

* , and the 6 

value of TGR ranges from 0 to 1. The closer the numerical value is to 1, the smaller 7 

the gap between the meta-frontier and the cluster-frontier is. The meta-frontier 8 

represents the latent technical level of the whole evaluated individuals, and the 9 

cluster-frontier represents the actual technical level of each cluster. The smaller the 10 

TGR is, the farther the actual technical level of the cluster deviates from the potential 11 

technical frontier, which means that the technology is relatively backward (Zhu, 12 

2013). 13 

2.2. Inputs and Outputs 14 

Reasonable selection of input and output variables can improve the accuracy of 15 

DEA. Several dimensions, such as environment, economy, society, resource and 16 

energy, should be comprehensively considered to fully reflect the operation of 17 

WWTPs. In general, the consumption of labor, capital, resources or energy represent 18 

inputs, while products or services are outputs (Hu et al., 2019). It is important to avoid 19 

introducing a large number of variables, because the more variables there are in the 20 

model, the more difficult it is to differentiate the DMUs (Morita and Avkiran, 2009). 21 

Therefore, it is vital to minimize the number of variables while preserving necessary 22 

production factors. 23 

This study referred to the variables selected in the previous efficiency evaluation 24 

of wastewater treatment industry (Caldas et al., 2019; Lorenzo-Toja et al., 2015; 25 

Molinos-Senante et al., 2014; Sala-Garrido et al., 2011; Zeng et al., 2017), and took 26 

into account the difficulty of obtaining the indicator data and the applicability of 27 

indicators in the selected model. To comprehensively evaluate the efficiency of 28 

WWTPs, this study regarded the wastewater treatment as a production process, 29 
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involving three inputs, three desirable outputs, and one undesirable output. Among 1 

them, capital input was expressed by operating cost (x1, CNY/m3), energy input was 2 

expressed by electricity consumption (x2, kWh/m3), and labor input was expressed by 3 

the number of labors (x3, person/104m3). The desirable outputs included chemical 4 

oxygen demand (COD) removal rate (y1, %), ammonia nitrogen (NH3-N) removal rate 5 

(y2, %) and reclaimed water yield (y3, 104 m3/day), while dry sludge yield (u1, t/104 m3) 6 

was chosen as the undesirable output. 7 

2.3. Explanatory factors 8 

The efficiency of WWTPs may also be affected by various factors except for the 9 

variables selected above. Thus, it is essential to identify the potential factors affecting 10 

the WWTP efficiency. According to previous researches (Hu et al., 2019; Longo et al., 11 

2018; Molinos-Senante et al., 2014) and considering the availability of statistics, the 12 

following factors were supposed likely to affect efficiency scores: (i) technology used 13 

to deal with the wastewater, (ii) capacity load rate of wastewater treatment plants; (iii) 14 

influent COD concentration of the wastewater; (iv) discharge standard of pollutants 15 

and (v) geographical location of plants. 16 

Considering that the samples may not satisfy the assumptions of normalcy and 17 

homoscedasticity, the Kruskal–Wallis test (K-W test) was adopted in this paper. The 18 

K-W test is a non-parametric test of one-way variance analysis that can be used to test 19 

the consistency hypothesis of the overall function distribution and its alternative 20 

hypotheses. As an extension of the Mann-Whitney U test, the K-W test can verify the 21 

statistical significance of differences among multiple groups (Zeng et al., 2017). If the 22 

significance is greater than 0.05 (p-value > 0.05), there is no significant difference 23 

among the tested samples. Conversely, if the p-value is less than or equal to 0.05, the 24 

samples are significantly different. 25 

3. Results and discussion 26 

3.1. Characteristics of sample systems 27 

This study investigated 1,456 WWTPs under 37 indicators on the Urban 28 
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Drainage Statistics Yearbook (China Urban Water Association, 2017). 861 valid 1 

samples were screened out from more than 50,000 data in 2016, which is the latest 2 

and most complete inventory of wastewater treatment plants in China. 3 

Chen et al. (2006) found that the correlation between wastewater treatment scale 4 

and operating cost of WWTPs was significant: the operating cost of ton water 5 

decreased with the increase in treatment scale, and became relatively stable until the 6 

treatment scale was greater than 105 m3/d. Therefore, in this study, WWTPs were 7 

divided into four clusters according to the designed treatment scale: Cluster I (micro 8 

WWTPs, ≤2×104 m3/d), Cluster II (small WWTPs, 2~5×104 m3/d), Cluster III 9 

(medium WWTPs, 5~10×104 m3/d) and Cluster IV (large WWTPs, >10×104 m3/d).  10 

Table 1 listed the descriptive statistical results of sample WWTPs. With the 11 

increase in the treatment scale, the average values of three inputs gradually decreased, 12 

while desirable output variables gradually increased. To all WWTPs, the average 13 

operating cost, electricity consumption, and labor were 0.86 CNY/m3, 0.33 kWh/m3, 14 

and 9.96 persons/104 m3 respectively. Average removal rates of COD and NH3-N were 15 

88.74% and 92.47%, while the average reclaimed water and dry sludge yield was 16 

0.47×104 m3/day and 1.47 t/104 m3 respectively. 17 

Table 1 Average statistics (standard deviation in parentheses) of variables for four clusters. 18 

 

Cluster I 

（≤2×104 
m3/d） 

Cluster II 

（2~5×104 
m3/d） 

Cluster III 

（5~10×104 
m3/d） 

Cluster IV 

（>10×104 
m3/d） 

Total 

Inputs 
    

 

Operating cost (CNY/m3) 1.06(±0.73) 0.78(±0.56) 0.75(±0.42) 0.70(±0.41) 0.86(±0.61) 

Electricity (kWh/m3) 0.35(±0.27) 0.33(±0.31) 0.29(±0.98) 0.29(±0.12) 0.33(±0.25) 

Labor (person/104m3) 16.51(±12.26) 7.55(±3.81) 5.52(±3.16) 3.62(±2.66) 9.96(±9.33) 

Desirable outputs 
    

 

COD removal rate (%) 87.29(±6.26) 89.23(±4.11) 89.59(±4.12) 90.44(±4.21) 88.74(±5.12) 

NH3-N removal rate (%) 90.88(±9.42) 93.26(±5.97) 93.23(±6.75) 93.89(±6.62) 92.47(±7.65) 

Reclaimed water (104m3/d) 0.09(±0.32) 0.45(±1.63) 0.74(±1.93) 1.31(±4.31) 0.47(±1.98) 

Undesirable output 
    

 

Dry sludge yield (t/104 m3) 1.13(±1.11) 1.70(±1.92) 1.56(±1.33) 1.70(±1.43) 1.47(±1.53) 

3.2. Efficiency analysis 19 

3.2.1. Efficiency scores 20 
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In this study, the input-oriented SBM model based on VRS and cluster 1 

benchmarking was solved by the software MaxDEA Ultra 8 (No 812-182). Detailed 2 

data can be found in Table S1 in Appendix. 3 

The efficiency scores of the WWTPs from four clusters were compared with 4 

those based on the meta-frontier, as illustrated in Fig.2. It is obvious that meta-frontier 5 

efficiency scores were lower than those calculated by cluster-frontier, just as 6 

theoretically derived. As shown in Table 2, the average TGRs of the four clusters were 7 

between 0.578 and 0.938. With the increase in the size of the WWTPs, the average 8 

efficiency and TGR were basically increasing, indicating that the gap between the two 9 

frontiers was smaller. In other words, the larger the plant is, the more efficient it may 10 

be. Moreover, the number of efficient WWTPs increased when using cluster 11 

benchmarking. Some WWTPs were inefficient in the meta-frontier analysis but 12 

efficient in the cluster analysis. Since cluster analysis is a method to maximize the 13 

homogeneity of DMUs in the same cluster, its assessment result is considered to be 14 

closer to reality, so the efficiency scores in the following discussion are scores based 15 

on the cluster-frontier. 16 

 17 

Fig. 2. Efficiency scores of 861 WWTPs based on cluster-frontier and meta-frontier respectively. 18 

Note：Cluster I (≤	2×104 m3/d), Cluster II (2~5×104 m3/d), Cluster III (5~10×104 m3/d) and Cluster 19 

IV (>10×104 m3/d). 20 
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Table 2 Comparison of operating efficiency of WWTPs from different treatment scale clusters. 1 

 Cluster I 

（≤2×104 
m3/d） 

Cluster II 

（2~5×104 
m3/d） 

Cluster III 

（5~10×104 
m3/d） 

Cluster IV 

（>10×104 
m3/d） 

Total 

Number of plants 309 305 145 102 861 

Number of Efficient plants 59 40 31 40 170 

% Efficient plants 19.09 13.11 21.38 39.22 19.74 

Average efficiency score 0.622 0.563 0.623 0.710 0.611 

Technology gap ratio (TGR) 0.578 0.828 0.850 0.938 0.755 

As shown in Table 2, 170 plants got a full efficiency score, meaning that 19.74% 2 

of plants were efficient and the rest were inefficient. The allocation of capital, labor, 3 

and energy in these efficient WWTPs was relatively good during the operation, and 4 

these plants were located on the best practice frontier among 861 samples. The 5 

WWTPs had an average efficiency score of 0.611. Considering that a WWTP with a 6 

score of 1 is the benchmark for best practice, the improvement potential of the sample 7 

plants is about 38.9%. As plotted in Fig. 3, 543 inefficient plants scored between 0.3 8 

and 0.7. Therefore, inefficient WWTPs had a lot of room to improve their efficiencies. 9 

 10 

Fig. 3. Interval distribution of WWTP efficiencies. 11 

3.2.2. Improvement potential of the WWTPs 12 

The statistical comparison of efficient and inefficient WWTPs is shown in Fig. 4. 13 

It was found that the average values of three inputs and the undesirable output of 14 

efficient plants were significantly lower than those of inefficient plants. For instance, 15 

the average operating cost of efficient plants was 0.63 CNY/m3, while that of 16 
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inefficient plants was 0.92 CNY/m3. In contrast, the reclaimed water yield of efficient 1 

plants was 1.41×104 m3/d, far higher than that of inefficient plants, which was 2 

0.24×104 m3/d. Moreover, there was no significant difference in pollutant removal 3 

variables, for the removal rates of COD and NH3-N could reach 90% in most 4 

WWTPs. 5 

 6 

Fig.4. Comparison of seven variables in efficient and inefficient WWTPs. 7 

In addition to providing overall efficiency scores, software MaxDEA can also 8 

provide target improvement for each plant, including all inputs and outputs. WWTPs 9 

can improve performance and become efficient by reducing input and undesirable 10 

output excesses, as well as making up for desirable output shortfalls. The results of 11 

improvement potential are shown in Table 3 and Fig. 5. 12 

Table 3 The improvement potential of all WWTPs in this study.  13 

 Origin Projection Improvement Improvement ratio 

Operating cost (104 CNY/d) 3776.05 1961.84 -1814.21 -48.05% 

Electricity (104 kWh/d) 1498.70 986.51 -512.19 -34.18% 

Labor (person) 28012 15832 -12179 -43.48% 

COD removal rate (%) 88.74 90.67 1.93 2.17% 

NH3-N removal rate (%) 92.47 94.20 1.73 1.87% 

Reclaimed water (104 m3/d) 406.95 425.21 18.26 4.49% 

Dry sludge yield (t/d) 8092.27 5704.07 -2388.20 -29.51% 

Note：Negative values in improvement represent input excesses or undesirable output excesses 14 

that should be reduced, positive values represent the desirable output shortfalls that need to be 15 

made up for.  16 

0.63 

0.24 

6.72 
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 1 

Fig. 5. The improvement potential of each WWTP. 2 

Under the current output level, ineffective WWTPs had diverse levels of input 3 

excesses, i.e. inefficient allocations of capital, labor, and energy. For the existing 861 4 

samples, the operating costs, electricity consumption and labor could be reduced by 5 

1.81×107 CNY/d, 5.12×106 kWh/d, and 12,179 people respectively. 6 

Under the current input level, the ineffective WWTPs also had some output 7 

shortages, in other words, there is room for improvement in COD removal rate, 8 

NH3-N removal rate and reclaimed water yield. For the existing 861 samples, these 9 

three desirable output indicators could be increased by 1.93%, 1.73%, and 1.83×105 10 

m3/d, respectively. For undesirable output, dry sludge yield could be reduced by 11 

2388.21 t/d. 12 

Overall, according to the improvement ratio, the improvement space of input 13 

indicators is larger than that of output indicators. Through a further and more detailed 14 

analysis, it is possible to determine which items must be focused on for each plant to 15 

improve efficiency (see Table S2 in Appendix). 16 

3.3. Explanatory factors 17 

 18 
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 1 

Fig. 6. Boxplots of the explanatory factors.  2 

Efficiency scores of plants were grouped according to the explanatory factors in 3 

this study. Fig. 6 visually shows the characteristics of efficiency categorized by the 4 

five factors. To examine the differences among these groups, Kruskal-Wallis tests 5 

were conducted by SPSS 24.0. The results are listed in Table 4. 6 

Table 4 Efficiency scores by explanatory factors and Kruskal-Wallis test results. 7 

 

Total 

WWTPs 

Efficient 

WWTPs 
% Eff. Mean Std.dev. P-value Chi-sq. 

Technology 
       

CAS 8 0 0.0 0.513 0.106 

0.076 11.437 

An/O 300 81 27.0 0.635 0.255 

OD 226 37 16.4 0.613 0.228 

SBR 164 30 18.3 0.612 0.238 

BIOLAK 26 5 19.2 0.620 0.226 

Biofilm 25 0 0.0 0.470 0.158 

MBR 9 0 0.0 0.553 0.195 

Load rate 
       

(0,40] 38 3 7.9 0.469 0.224 

0.000 38.522 
(40,80] 328 45 13.7 0.572 0.225 

(80,120] 479 117 24.4 0.645 0.241 

(120,160] 16 5 31.3 0.753 0.213 

Influent COD 
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concentration 

(0, 200] 345 84 24.3 0.655 0.242 

0.000 20.688 
(200, 400] 440 69 15.7 0.584 0.226 

(400, 600] 61 12 19.7 0.565 0.257 

(600, 1600] 15 5 33.3 0.588 0.335 

Discharge standard 
       

First class A 448 89 19.9 0.601 0.240 

0.769 0.525 First class B 308 57 18.5 0.612 0.235 

Second class 30 8 26.7 0.620 0.276 

Geographical 

location        

Northeastern 44 5 11.4 0.564 0.200 

0.114 5.959 
Central 136 28 20.6 0.607 0.245 

Eastern 563 123 21.8 0.624 0.244 

Western 118 14 11.9 0.575 0.216 

3.3.1. Treatment technology 1 

In China, there are many kinds of technologies applied in WWTPs, and different 2 

technologies often have diverse costs and treatment effects. Considering such critical 3 

conditions as influent characteristics and discharge standards, managers often select 4 

certain technologies for maximizing WWTP efficiency (Dong et al., 2017). 5 

The wastewater treatment process usually falls into three stages: primary, 6 

secondary and tertiary treatment. In order to make a deeper and centralized 7 

comparison, this study only considered secondary treatment technology. According to 8 

the classification of secondary treatment provided by Li et al. (2018), the WWTPs 9 

were divided into seven categories, including CAS (conventional activated sludge 10 

process), An/O (anoxic/oxic process), OD (oxidation ditch), SBR (sequencing batch 11 

reactor), BIOLAK, biofilm, and MBR (membrane bio-reactor). 12 

The boxplot of efficiency scores by seven technologies is demonstrated in Fig. 13 

6(a). The average scores of CAS, An/O, OD, SBR, BIOLAK, biofilm, and MBR were 14 

0.513, 0.635, 0.613, 0.612, 0.620, 0.470 and 0.553, respectively. Among them, the 15 

average efficiencies of An/O, OD and SBR were high, especially An/O, while the 16 

biofilm method had the lowest average efficiency, only 0.470. Therefore, the activated 17 

sludge process was more effective than the biofilm process. This conclusion is 18 

consistent with the relevant technical mechanism, as the biofilm process has poorer 19 
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operational flexibility and additional investment for biofilm carrier (Hu et al. 2019; 1 

Wanner et al., 1988) 2 

As a high-energy technology (Tolkou and Zouboulis, 2016), MBR had the 3 

highest average operating cost and electricity consumption among all technologies, 4 

1.13 CNY/m3 and 0.53 kWh/m3, respectively, so its relative efficiency was low. 5 

Unlike MBR plants, WWTPs using the An/O process had moderate operating costs 6 

and electricity consumption (0.84 CNY/m3, 0.32 kWh/m3 on average), so An/O plants 7 

generally had higher efficiency levels. It is suggested to adopt the An/O process in 8 

economically backward areas. 9 

However, the selection of specific treatment technology did not seem to have a 10 

significant impact on the performance of WWTPs. A K-W test was carried out for 11 

seven technologies and the result indicated that there was no statistical difference 12 

(p=0.076>0.05), as shown in Table 4. This result agreed with the findings of Hu et al. 13 

(2019) and D'Inverno et al. (2018). It is worth noting that the uneven distribution of 14 

the sample may affect the analysis result. The proportion of seven technologies in 15 

sample WWTPs is illustrated in Fig. S1 in Appendix. An/O, OD, and SBR were the 16 

three most common wastewater treatment technologies. 690 out of 861 plants adopted 17 

these three technologies and the daily treatment capacity reached 3.75×107 m3. On the 18 

other hand, fewer than 20 plants adopted CAS and MBR processes. 19 

3.3.2. Load rate 20 

According to the previous analysis, the performance of a plant is tightly bound to 21 

its scale. Nevertheless, the designed capacity cannot completely represent the 22 

operating condition. Actually, operating conditions of WWTPs are not always 23 

consistent with the expected conditions, so the operating load of WWTPs may be high 24 

or low, which will affect the operating performance of WWTPs to a certain extent 25 

(Teklehaimanot et al., 2015). Therefore, the operating load rate was chosen as a 26 

potential factor affecting the efficiency of the WWTPs. Four groups have been 27 

classified according to the capacity load rate: (i) less than 40%, (ii) between 40% and 28 

80%, (iii) between 80% and 120%, and (iv) greater than 120%. 29 
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As shown in Fig. 6(b) and Table 4, the load rate had a positive and significant 1 

influence on plant efficiency. With the increase in load rate, the efficiency of WWTPs 2 

also increased. The average efficiency scores of the four groups were 0.469, 0.572, 3 

0.645 and 0.753, respectively. Interestingly, the efficiency continued to increase for 4 

overload plants (within the scope of assessment). It should be noted that heavy 5 

overload plants may be out of order, resulting in deterioration of wastewater quality 6 

and non-compliance with discharge standards (Longo et al., 2018). Actually, the 7 

existing literature is quite contradictory in this factor. Gomez et al. (2017) discovered 8 

that overload or underload conditions had no significant influence on WWTP 9 

efficiency. Dong et al. (2017) considered that WWTPs with excessive capacity are 10 

often inefficient. Our result is consistent with Longo et al. (2018). The higher the 11 

capacity load rate, the more efficient WWTP tends to be, even if WWTP is 12 

overloaded. 13 

3.3.3. Influent COD concentration 14 

The influent component is a powerful driving force affecting wastewater 15 

treatment performance. For instance, aeration demand and sludge yield have close ties 16 

with influent COD concentration (Dong et al., 2017). 17 

According to the influent COD concentration, the WWTPs were categorized into 18 

four groups: (i) below 200 mg/L, (ii) between 200 mg/L and 400 mg/L, (iii) between 19 

400 mg/L and 600 mg/L, and (iv) above 600 mg/L. The efficiency scores of these four 20 

groups are illustrated in Fig. 6(c). The K-W test verified that the impact of the influent 21 

COD concentration was significant (p=0.000<0.05). 22 

For the four groups of WWTPs, the median efficiency was monotonically 23 

decreasing (0.612, 0.532, 0.500, 0.484), but the average efficiency was not 24 

monotonically decreasing (0.655, 0.584, 0.565, 0.588). For the first three groups, the 25 

efficiency of plants decreased gradually as the influent COD concentration increased, 26 

meaning that reducing the low influent COD concentration is helpful to improve the 27 

efficiency of plants. Hu et al. (2019) drew a similar conclusion. When the 28 

concentration was more than 600 mg/L, the distribution of efficiency score became 29 
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more discrete, that is to say, the standard deviation value was higher. The result 1 

implied that high influent COD concentration helped improve the WWTP efficiency 2 

to some extent. The reason might be that high COD concentration contributed to the 3 

anaerobic reaction. 4 

3.3.4. Discharge standard 5 

With the tightening of the national environmental protection policy, lots of 6 

WWTPs are facing the situation of upgrading. On the basis of the Discharge Standard 7 

of Pollutants for Municipal Wastewater Treatment Plant (GB18918-2002) in China 8 

(NEPA, 2002), three main groups were divided: (i) the first class A, (ii) the first class 9 

B, and (iii) the second class. Among the 861 WWTPs, about 52% of plants met the 10 

first class A discharge standard and 36% met the first class B. 11 

In order to achieve more comprehensive pollution control objectives, WWTPs 12 

generally need to invest more energy and chemical consumption to meet higher 13 

discharge standards (Fine and Nadas, 2012). Compared with the plants meeting the 14 

second class standard, although the pollutant removal rate of the WWTPs meeting the 15 

first class A increased, at the same time, the operating cost, labor input and electricity 16 

consumption increased by 0.06 CNY/m3, 0.07 kWh/m3 and 2 persons/104m3 17 

respectively. As shown in Fig. 6(d), when the standards became more stringent, the 18 

efficiency score of WWTPs demonstrated a downward trend, with an average score of 19 

0.620, 0.612 and 0.601, respectively. However, the K-W test revealed that the 20 

discharge standard had no significant effect at a 5% significance level. It is well 21 

known that higher discharge standards may bring more reuse of reclaimed water. 22 

Therefore, under our assessment framework, it is believed that the benefits of 23 

improving effluent quality can make up for the shortage of high input. If WWTPs are 24 

all upgraded to the first class A, it is estimated that the electricity consumption will 25 

increase by 1.18×106 kWh/d and reclaimed water yield will increase by 2.00×106 26 

m3/d. 27 

3.3.5. Geographical location  28 

The sample WWTPs covers 155 cities in 23 provinces (municipalities, 29 
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autonomous regions) from China. It is interesting to study whether there are 1 

additional differences in geographical location. Considering the average score of all 2 

plants in a province as an inter-provincial efficiency, the spatial discrepancy of plants 3 

can be observed. As shown in Fig. 7, different colors represent different efficiency 4 

levels. Overall, inter-provincial efficiencies were mostly at a medium level. 5 

High-efficiency provinces mainly included Shaanxi (0.972), Hainan (0.832), and 6 

Guangdong (0.799). Ningxia performed the worst in all the provinces evaluated, with 7 

an average efficiency of only 0.418. The results require further consideration to avoid 8 

biased conclusions, as the sample distribution was geographically uneven and some 9 

provinces were not evaluated for the lack of data. 10 

 11 

Fig. 7. Average efficiency scores in different provinces of China. 12 

Since China is a country with a vast territory and uneven socio-economic 13 

development level (Zhang et al., 2016), in order to make the results more extensive, a 14 

K-W test was carried out on four independent samples from eastern, northeastern, 15 

central and western China. In this study, the eastern region included nine provinces 16 
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(municipalities) with an average efficiency of 0.624, which was higher than the 1 

national average and ranked first in the four regions. In fact, the K-W test showed no 2 

significant difference in the distributions of efficiency scores among four regions 3 

(p=0.114>0.05). As the frontier of China's reform and opening up, the eastern region 4 

has great advantages in absorbing, introducing and utilizing advanced wastewater 5 

treatment technologies at home and abroad. Its management system is also in a 6 

leading position. Generally speaking, some advanced foreign technologies are often 7 

first absorbed by the eastern region, and then other regions begin to learn 8 

corresponding technologies from the eastern region. Therefore, the industry 9 

development of the eastern region basically represents the best state of China and is 10 

the benchmark of other regions. 11 

4. Conclusions 12 

With the requirement of sustainable development, a comprehensive and robust 13 

evaluation for WWTPs is receiving more and more attention. In this study, an 14 

SBM-DEA model based on cluster benchmarking was employed to assess 861 15 

WWTPs in China. The evaluation index system considered multiple dimensions such 16 

as economic, environment and society. The result showed 170 plants obtained a full 17 

efficiency score. From a policy perspective, the assessment could help government 18 

agencies identify the best practices in China and set appropriate improvement targets 19 

for inefficient plants on the basis of projection values. According to the improvement 20 

ratio, there is still much room for saving in the three input indicators (operating cost, 21 

electricity consumption, and labor), especially for small plants (≤ 5×104 m3/d). 22 

Therefore, WWTP managers should focus on strengthening self-inspection of the 23 

plant, such as rational investment of funds and employees, and energy consumption 24 

analysis. Energy saving and consumption reduction is a comprehensive work, which 25 

requires attention to various aspects such as process, equipment, electrical and 26 

automatic control. The K-W test revealed that the influent COD concentration and 27 

capacity load rate affected the plant efficiency significantly. It is recommended to 28 

control the load rate at about 100% and the influent COD concentration below 200 29 
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mg/L. Moreover, let more wastewater be reused for urban miscellaneous water 1 

consumption or scenic environment use. 2 

Overall, the DEA model applied to this paper can combine the efficiency of 3 

WWTPs with sustainability issues, and can be used as a benchmark model to provide 4 

recommendations for improving plants, thereby achieving the best utilization of 5 

existing resources. There is no doubt that the methodology and applications in this 6 

study are useful for government departments and enterprise managers. The evaluation 7 

system can help the government understand the relative operation of WWTPs and 8 

strengthen the supervision of third-party enterprises on the operation and management 9 

of WWTPs. It can also help enterprises to understand their own shortcomings and 10 

improvement potential. It is feasible to conduct incentive control on WWTPs, with 11 

rewards and punishments based on periodic evaluations or rankings of operational 12 

efficiency.  13 

In addition, it is worth noting that DEA can effectively assess the relative 14 

efficiency, but cannot reflect the absolute efficiency. Due to the data uncertainty and 15 

quantity limitation of indices, further study can conduct sensitivity analysis and 16 

extend the index set, such as the use of chemical reagents and potential environmental 17 

impacts. Life cycle assessment (LCA) is a new tool for environmental management to 18 

quantitatively evaluate environmental impacts. Therefore, the combination of LCA 19 

and DEA may achieve a more accurate and comprehensive evaluation. 20 
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Highlights 

� 861 WWTPs were assessed by an SBM-DEA model based on cluster 

benchmarking. 

� The evaluation index was extended to economic, environmental and social 

domains. 

� 170 plants were regarded as best practices over the latest inventory in China. 

� The improvement potential for sample plants was about 38.9%. 

� Potential factors affecting the performance efficiency of WWTPs were discussed. 


