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Abstract

We study problems relating to the D(2)-Problem for metacyclic groups

of type G(p, p− 1) where p is an odd prime.

Specifically we build on Nadim’s thesis [12], which showed that the

Z[G(5, 4)]-module Z admits a diagonal resolution and a minimal representa-

tive for the third syzygy Ω3(Z) is R(2)⊕ [y−1). Motivated by this result, we

show that the Z[G(p, p−1)]-module R(2)⊕ [y−1) is both full and straight for

any odd prime p. Given Johnson’s work on the D(2)-Problem [5], this leads

to the conclusion that G(5, 4) satisfies the D(2)-property, as well as providing

a sufficient condition for the D(2)-property to hold for G(p, p − 1), namely

the condition that R(2)⊕ [y − 1) is a minimal representative for Ω3(Z) over

Z[G(p, p− 1)], which we refer to as the condition M(p).

Following this result, we prove a theorem which simplifies the calcula-

tions required to show that the condition M(p) holds. Finally, we carry out

these calculations in the case where p = 7 and prove that the condition M(7)

holds, which is sufficient to show that G(7, 6) satisfies the D(2)-property.
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Impact statement

This thesis studies the D(2)-Problem, specifically for metacyclic groups

of type G(p, p − 1) where p is an odd prime. Notable strides forward are

made in the study of this problem, namely the results that the D(2)-property

holds for the groups G(5, 4) and G(7, 6). In the future, it is hoped that the

methods which are described and used in this thesis, particularly relating

to the Swan homomorphism and the condition M(p) can be utilised and/or

improved upon to further the study of the D(2)-Problem.
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1 Introduction

1.1 Motivation

1.1.1 The D(2)-Problem

The motivation for this thesis comes primarily from Wall’s D(n)-Problem

which was first formulated in [16].

The D(n)-Problem: Let X be a finite connected cell complex with

geometric dimension n+ 1 and with universal cover X̃ such that:

Hn+1(X̃;Z) = 0 and Hn+1(X;B) = 0,

for all coefficient systems B on X. Is X homotopy equivalent to a finite

complex of dimension n?

In his paper [16], Wall solved the D(n)-Problem in the affirmative for

each natural number n such that n ≥ 3. The D(1)-Problem was later solved

in the affirmative by Stallings and Swan [14], [15]. This left only the D(2)-

Problem, the primary focus of this thesis.

The D(2)-Problem: Let X be a finite connected cell complex with

geometric dimension 3 and with universal cover X̃ such that:

H3(X̃;Z) = 0 and H3(X;B) = 0,

for all coefficient systems B on X. Is X homotopy equivalent to a finite
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complex of dimension 2?

The D(2)-Problem is intrinsically connected to a second problem in

topology, which is known as the two-dimensional realization problem, or the

R(2)-Problem.

1.1.2 The R(2)-Problem

Let G =< x1, . . . , xg | W1, . . . ,Wr > be a presentation for a group G, and

let KG be the presentation complex of G, a two-dimensional CW complex

satisfying π1(KG) ∼= G. Let K̃G be the universal cover of KG, also known as

the Cayley complex of G. The cellular chain complex of K̃G gives rise to:

C∗(G) = (0→ π2(KG)→ C2(K̃G)
∂2−→ C1(K̃G)

∂1−→ C0(K̃G)
∂0−→ Z→ 0),

an exact sequence of right Z[G]-modules. Here, we have identified the mod-

ule Ker(∂2) = H2(K̃G) with π2(KG) via the Hurewicz isomorphism and the

isomorphism induced by the covering map K̃G → KG.

Since each Cn(K̃G) is a free Z[G]-module, this construction suggests that

it might be informative to consider algebraic 2-complexes over G, which are

exact sequences of Z[G]-modules of the form

0→ J → F2 → F1 → F0 → Z→ 0,

where each Fn is a free Z[G]-module. By the third syzygy of Z over Z[G], de-

noted by Ω3(Z), we mean the stable module [J ]. While considering algebraic

2-complexes, an obvious question arises: whether each algebraic 2-complex
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over G can be written as C∗(G) where G is some presentation for G.

The R(2)-Problem: Let G be a finitely presented group. Is every

algebraic 2-complex over G

0→ J → F2 → F1 → F0 → Z→ 0,

geometrically realizable; that is, homotopy equivalent to an algebraic 2-

complex of the form C∗(G), where G is some presentation for G?

Johnson showed in [5] that for finite groups G, the R(2)-Problem is

equivalent to the D(2)-Problem, that is, if the R(2)-Problem holds true for

a finite group G, then the D(2)-Problem holds true for all cell complexes X

satisfying π1(X) = G and vice versa. This result has since been extended

further by Johnson, before reaching its current form, due to Mannan [10]: the

R(2)-Problem and the D(2)-Problem are equivalent for all finitely presented

groups G. If the D(2)-Problem holds true for a group G, we say that G

satisfies the D(2)-property. In this thesis, we focus on problems relating to

the D(2)-Problem for metacyclic groups of type

G(p, p− 1) =< x, y | xp = 1, yp−1 = 1, yx = xmy >,

where p is an odd prime and m is chosen so that the group isomorphism

θ ∈ Aut(Cp) given by θ(x) = xm satisfies ord(θ) = p − 1. In Nadim’s thesis

[12], some work has already been completed relating to the existence of a

diagonal resolution for Z over Z[G(5, 4)], we use this work as motivation to

study the more general case of G(p, p− 1).
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1.2 Statement of results

We begin in chapters 2 and 3 by taking a ring Λ with unity, and covering

some preliminary information relating to the abelian group Ext1Λ(A,B) and

the derived module category of Λ, Der(Λ). In §3.3 we restrict to the case

where G is a finite group and Λ = Z[G], in this context we consider exact

sequences of Λ-lattices and homomorphisms

0→ J
i−→ S →M → 0,

such that S is stably free. We can then define an additive group homomor-

phism, known as the Swan homomorphism

SJ : AutDer(J)→ K̃0(Λ),

f 7→ [lim−→(f, i)],

which plays a key role throughout the thesis.

In chapter 4, we state some results from [11] relating to Milnor squares,

we then outline a method which uses Milnor squares to classify Projective

modules over a ring Λ. This is followed in §4.3 by two theorems, adapted

from [3]:

Theorem 4.3.1.([3], page 30, 4.1.1) Given a quasi-augmentation sequence

S = (0→ S−
i−→ Λ

p−→ S+ → 0),

satisfying the condition
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• HomΛ(S+, S−) = 0;

there exists a Milnor square

Λ EndΛ(S+)

EndΛ(S−) EndDer(S−),

i1

i2 j1

j2

where i1, j2 and j1 are surjective.

Theorem 4.3.2.([3], page 41, 4.5.2) With the hypotheses of the above the-

orem, if f− ∈ EndΛ(S−) is such that f− ∈ AutDer(S−), then

lim−→(f−, i) ∼= M(EndΛ(S+), EndΛ(S−), f−).

These theorems allows us to both construct Milnor squares from quasi-

augmentation sequences and find the kernel and image of the Swan homo-

morphism in some special cases.

In chapter 5, we outline some results from [5] which allow us to formu-

late a sufficient condition for the D(2)-property to hold for a finite group G,

namely:

Theorem 5.5.1. If a finite group G satisfies properties 1,2 and 3 below

1. G admits a balanced presentation;
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2. Ω3(Z) is straight;

3. the minimal module J in Ω3(Z) is full;

then G satisfies the D(2)-property.

This theorem motivates the remainder of the thesis.

In chapter 6 we restrict our focus to the group ring Λ = Z[G(p, p − 1)]

where p is an odd prime. Motivated by the quasi-augmentation sequence

0→ Tp−1(Z, p)→ Λ→ Z[Cp−1]→ 0,

from [7] and our results in chapters 4 and 5, we work towards a deep under-

standing of the ring and Λ-module

Tp−1(Z, p) = {(ai,j)1≤i,j≤p−1 ∈Mp−1(Z) | ai,j ∈ pZ if i > j}.

We begin by outlining results from [7], namely a group presentation

λ∗ : G(p, p− 1)→ Tp−1(Z, p),

and a ring isomorphism

λ̃∗ : Cp−1(Z(ζ), θ̄)→ Tp−1.

These results are then used to endow Tp−1(Z, p) with a right Λ-module struc-

ture. As a right Λ-module, Tp−1(Z, p) is a direct sums of its rows, with this in

mind, we denote by R(i) the ith row of Tp−1(Z, p), and so, as right Λ-modules,

Tp−1(Z, p) ∼=
p−1⊕
i=1

R(i).
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To conclude the chapter, we provide a full description of the ringsHomΛ(R(i), R(j))

for 1 ≤ i, j ≤ p−1, as well as a description of the abelian groupK0(Tp−1(Z, p)).

In chapter 7, we continue to work over Λ = Z[G(p, p− 1)], where p is an

odd prime. A proof is given that G(p, p− 1) admits a balanced presentation

for any odd prime p, leaving only conditions 2 and 3 in Theorem 5.5.1 to

be proven true. Given that Nadim showed in [12] that over Z[G(5, 4)], the

minimal module in Ω3(Z) is R(2)⊕ [y− 1), we are motivated in chapter 7 to

prove that conditions 2 and 3 in Theorem 5.5.1 hold for the stable module

[R(2) ⊕ [y − 1)]. Both of these conditions are proven to be true, in two of

our main theorems:

Theorem 7.1.3. [R(2)⊕ [y − 1)] is straight over Λ = Z[G(p, p− 1)] for any

odd prime p.

Theorem 7.2.5. R(2)⊕ [y − 1) is full over Λ = Z[G(p, p− 1)] for any odd

prime p.

In chapter 8, we begin by defining the condition M(p) on Z[G(p, p− 1)]

as follows:

M(p): The third syzygy of Z over Λ = Z[G(p, p − 1)], Ω3(Z), is the

stable module [R(2)⊕ [y − 1)].
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Given our work in chapters 5 and 7, this immediately leads to the fol-

lowing theorem:

Theorem 8.1.1. Let Λ = Z[G(p, p−1)], if Λ satisfies M(p), then G(p, p−1)

satisfies the D(2)-property.

As previously noted, it has already been shown [12] that the condition

M(5) is satisfied, leading to another one of our main theorems:

Theorem 8.1.2. G(5, 4) satisfies the D(2)-property

The remainder of chapter 8 is dedicated to refining techniques used in

[12] and using these refinements to show that the condition M(7) holds,

which leads to our conclusion and final theorems:

Theorem 8.4.1. Over Λ = Z[G(7, 6)], Ω3(Z) = [R(2) ⊕ [y − 1)] i.e. the

condition M(7) holds.

Theorem 8.4.2. The D(2)-property holds for G = G(7, 6).
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2 The abelian group Ext1Λ

Let Λ be a ring with unity, in this chapter we briefly outline some basic

definitions and properties relating to Ext1Λ, roughly following the scheme of

sections 4.1-4.3 in [6].

2.1 The category of extensions

We denote by Ext1
Λ the collection of exact sequences of Λ-modules and ho-

momorphisms of the form

E = (0→ E+
i−→ E0

p−→ E− → 0),

Ext1
Λ can be regarded as a category by taking morphims to be commutative

diagrams of Λ-homomorphisms as follows:

E (0 E+ E0 E− 0)

F (0 F+ F0 F− 0).

h

i

h+

p

h0 h−

For A,B ∈ ModΛ we denote by Ext1
Λ(A,B) the full subcategory of

Ext1
Λ whose objects E satisfy E+ = B and E− = A. If E,F ∈ Ext1

Λ(A,B), a

morphism h : E→ F is said to be a congruence when it induces the identity

at both ends, i.e. h takes the form:

E (0 B E0 A 0)

F (0 B F0 A 0).

h

i

Id

p

h0 Id
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We write ‘E ≡ F’ when E and F are congruent. By the Five lemma, congru-

ence is an equivalence relation on Ext1
Λ(A,B). We denote by Ext1Λ(A,B) the

collection of equivalence classes in Ext1
Λ(A,B) under ‘≡’. For any Λ-modules

A,B, there is a distinguished extension, the trivial extension

T = (0→ B
iB−→ B ⊕ A πA−→ A→ 0),

where iB(b) = (b, 0) and πA(b, a) = a. An extension

F = (0→ B
j−→ X

p−→ A→ 0)

is said to be split when it is congruent to the trivial extension. F is said to

split on the right when there exists a Λ-homomorphism s : A→ X such that

p◦s = IdA. F is said to split on the left when there exists a Λ-homomorphism

r : X → B such that r◦ j = IdB. The splitting lemma states that for a given

F ∈ Ext1
Λ(A,B),

F splits ⇐⇒ F splits on the left ⇐⇒ F splits on the right.

2.2 The group structure of Ext1Λ(A,B)

We now work towards describing an abelian group structure on Ext1Λ(A,B)

with T as the identity element. To define the group multiplication, we must

first describe some natural constructions on Ext1
Λ(A,B).

Pushout: LetA,B1, B2 be Λ-modules; if f : B1 → B2 is a Λ-homomorphism

and E = (0→ B1
i−→ E0

η−→ A→ 0) ∈ Ext1
Λ(A,B1), we define
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f∗(E) = (0→ B2
j−→ lim−→(f, i)

ε−→ A→ 0) ∈ Ext1
Λ(A,B2),

where lim−→(f, i) =
B2 ⊕ E0

Im(f ×−i)
denotes the colimit and j : B2 → lim−→(f, i)

is the injection defined by j(x) = [x, 0]. The correspondence E 7→ f∗(E)

determines the pushout mapping f∗ : Ext1
Λ(A,B1) → Ext1

Λ(A,B2). The

pushout gives rise to a commutative diagram with exact rows as follows

(E) (0 B1 E0 A 0)

f∗(E) (0 B2 lim−→(f, i) A 0),

f∗

i

f

η

v Id

j ε

where v(x)=[0,x]. If in addition g : B2 → B3 is a Λ-homomorphism, it is

straighforward to see that

(g ◦ f)∗(E) = g∗f∗(E).

Pullback: LetA1, A2, B be Λ-modules; if f : A1 → A2 is a Λ-homomorphism

and E = (0→ B → E0
η−→ A2 → 0) ∈ Ext1

Λ(A2, B), we define

f ∗(E) = (0→ B → lim←−(η, f)
ε−→ A1 → 0) ∈ Ext1

Λ(A1, B),

where lim←−(η, f) = {(x, y) ∈ E0 × A1 | η(x) = f(y)} and ε : lim←−(η, f) → A1

is the projection ε(x, y) = y. The correspondence E 7→ f ∗(E) defines the

pullback mapping f ∗ : Ext1
Λ(A2, B)→ Ext1

Λ(A1, B). The pullback mapping

gives rise to a commutative diagram with exact rows as follows

f ∗(E) (0 B lim←−(η, f) A1 0)

E (0 B E0 A2 0),

Id

ε

µ0 ff∗

η
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where µ0 : lim←−(η, f) → E0 is the projection µ0(x, y) = x. If in addition

g : A2 → A3 is a Λ-homomorphism, it is straightforward to see that

(g ◦ f)∗(E) = f ∗ ◦ g∗(E).

Direct product: Let A1, A2, B1, B2 be Λ-modules and for r = 1, 2 let

E(r) = (0→ Br → E(r)0 → Ar → 0) ∈ Ext1
Λ(Ar, Br).

Then E(1)× E(2) is defined as the extension

E(1)× E(2) = (0→ B1 ×B2 → E(1)0 × E(2)0 → A1 × A2 → 0),

with the obvious mappings.

Note that each of the above constructions are compatible with congru-

ence, and so they descend to Ext1Λ.

Using these constructions, we can now define the group operation on

Ext1Λ(A,B). Note that the direct product gives a functorial pairing

× : Ext1
Λ(A1, B1)× Ext1

Λ(A2, B2)→ Ext1
Λ(A1 × A2, B1 ×B2).

For Λ-modules A,B1, B2 there is a functorial pairing, the external sum

⊕ : Ext1
Λ(A,B1)× Ext1

Λ(A,B2)→ Ext1
Λ(A,B1 ×B2),

given by E⊕ F = ∆∗(E× F), where ∆ : A→ A× A is given by a 7→ (a, a).

Combining the external sum with the pushout, we obtain the Baer sum on

Ext1
Λ(A,B). Define the mapping α : B × B → B by (b, b′) 7→ b + b′, let

E,F ∈ Ext1
Λ(A,B), we define the Baer sum E + F by

E + F = α∗∆
∗(E× F).
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It is straightforward to see that congruence is compatible with the Baer sum,

and so we have a mapping

+ : Ext1Λ(A,B)× Ext1Λ(A,B)→ Ext1Λ(A,B),

which defines the group operation on the abelian group Ext1Λ(A,B).

Now that we have defined the group structure on Ext1Λ(A,B), we de-

scribe some homomorphisms between these groups which arise as a result of

the pushout construction. If g : B1 → B2 is a Λ-homomorphism, the corre-

spondence E → g∗(E) gives a mapping g∗ : Ext1Λ(A,B1)→ Ext1Λ(A,B2) such

that

g∗(E1 + E2)→ g∗(E1) + g∗(E2).

Thus g induces a group homomorphism g∗ : Ext1Λ(A,B1)→ Ext1Λ(A,B2).

We may also construct a mapping HomΛ(A,N) → Ext1Λ(C,N) us-

ing the pushout construction. Given an exact sequence of Λ-modules and

homomorphisms E = (0 → A
i−→ B

p−→ C → 0), there is a mapping

δ : HomΛ(A,N)→ Ext1Λ(C,N), the connecting mapping, given by

δ(α) = α∗(E).

It is straightforward to check that δ is in fact an abelian group homomor-

phism. We will refer back to δ in § 3.2.
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2.3 Properties of the colimit

In this section, we prove some basic properties of the colimit which will

be utilised later in the thesis. All mappings in this section are Λ-module

homomorphisms. A Λ-module homomorphism g : A⊕B → C ⊕D is said to

be diagonal if, when written in matrix form

g =

g1,1 : A→ C g1,2 : B → C

g2,1 : A→ D g2,2 : B → D

 ,

the matrix is diagonal, i.e. g1,2 = 0 and g2,1 = 0. We now prove a proposition

relating to diagonal Λ-homomorphisms.

Proposition 2.3.1. Consider a short exact sequence of Λ-modules and ho-

momorphisms

0→ B1 ⊕B2
i−→ E(1)0 ⊕ E(2)0

p−→ A1 ⊕ A2 → 0,

in which each of the mappings are diagonal, specifically i = i1 ⊕ i2 where

ir : Br → E(r)0 and p = p1 ⊕ p2 where pr : E(r)0 → Ar for r = 1, 2. Let

f : B1 ⊕ B2 → B1 ⊕ B2 be diagonal, so f = f1 ⊕ f2 where fr : Br → Br for

r = 1, 2. Then

lim−→(f, i) ∼= lim−→(f1, i1)⊕ lim−→(f2, i2)

Proof. Recall that lim−→(f, i) = (B1⊕B2)⊕(E(1)0⊕(E(2)0)
Im(f×−i) ,

while lim−→(f1, i1) =
B1 ⊕ E(1)0

Im(f1 ×−i1)
,

and lim−→(f2, i2) =
B2 ⊕ E(2)0

Im(f2 ×−i2)
.
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Define a Λ-homomorphism

(B1 ⊕B2)⊕ (E(1)0 ⊕ E(2)0)→ lim−→(f1, i1)⊕ lim−→(f2, i2)

((b1, b2), (e1, e2)) 7→ ((b1, e1) + Im(f1 ×−i1), (b2, e2) + Im(f2 ×−i2))

This map is clearly surjective and the mappings f and i are diagonal, there-

fore

Im(f ×−i) = Im(f1 ×−i1)⊕ Im(f2 ×−i2).

We deduce that the kernel of the mapping is Im(f ×−i), this completes the

proof.

Corollary 2.3.1.1. Consider a short exact sequence of Λ-modules and ho-

momorphisms

0→ B1 ⊕B2
i−→ E(1)0 ⊕ E(2)0

p−→ A1 ⊕ A2 → 0,

in which each of the mappings are diagonal and i = i1 ⊕ i2, as above. Let

f2 : B2 → B2 be a Λ-homomorphism, then

lim−→(IdB1 ⊕ f2, i) ∼= E(1)0 ⊕ lim−→(f2, i2).

Proof. For any E ∈ Ext1Λ(A1, B2), Id∗(E) = E and so lim−→(IdB1 , i1) ∼= E(1)0.

The result now follows from the previous proposition.

We now prove a second proposition relating to pushouts.

Proposition 2.3.2. Consider an exact sequence

0→ B1 ⊕B2
i−→ E → A→ 0,

where i = i1 ⊕ i2 and ir : Br → E for r = 1, 2. In this case, an isomorphism

lim−→(IdB1 ⊕ nIdB2 , i)
∼= lim−→(nIdB2 , i2) exists.
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Proof. Recall that

lim−→(IdB1 ⊕ nIdB2 , i) =
(B1 ⊕B2)⊕ E

Im((IdB1 ⊕ nIdB2)×−i)
,

lim−→(nIdB2 , i2) =
(B2)⊕ E

Im(nIdB2 ×−i2)
.

We define a mapping

(B1 ⊕B2)⊕ E → (B2)⊕ E
Im(nIdB2 ×−i2)

,

((b1, b2), e) 7→ (b2, e+ i(b1, 0)) + Im(nIdB2 ×−i2).

One can check easily that the mapping is a Λ-homomorphism and by noting

that ((0, b2), e) 7→ (b2, e)+Im(nIdB2×−i2), we see that the map is surjective.

We now find the kernel of the map.

((b1, b2), e)) ∈ Ker ⇐⇒ (b2, e+ i(b1, 0)) ∈ Im(nIdB2 ×−i2, )

⇐⇒ there exists c2 ∈ B2 such that (b2, e+ i(b1, 0)) = (nc2,−i(0, c2)),

⇐⇒ ((b1, b2), e) = ((b1, nc2),−i(b1, c2)),

⇐⇒ ((b1, b2), e) ∈ Im((IdB1 ⊕ nIdB2)×−i).

This completes the proof.

We close this chapter with one final proposition relating to the colimit.

Proposition 2.3.3. Let i : A⊕B ↪→M be injective and define h : A⊕B → A

by (a, b) 7→ a. Then lim−→(h, i) ∼= M/i(B).

Proof. By definition,

lim−→(h, i) =
A⊕M

Im(h×−i)
.
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Consider the composition of the inclusion M ↪→ A⊕M with the projection

A⊕M → A⊕M
Im(h×−i) ,

ϕ : M → A⊕M
Im(h×−i)

,

m 7→ (0,m) + Im(h×−i).

This map is surjective:

Take a general element (a,m) + Im(h × −i) ∈ A⊕M
Im(h×−i) , m + i(a, 0) is

clearly in M , and

ϕ(m+ i(a, 0)) = (0,m+ i(a, 0)) + Im(h×−i),

= (a,m) + Im(h×−i).

To complete the proof, we simply note that Ker(ϕ) ∼= i(B).
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3 The derived module category

In this chapter we define the derived module category and discuss some of

its properties. The results in the chapter are largely adapted from chapters

5 and 7 of [6] and so complete proofs are not always given, as they can be

found easily in the reference. We take Λ to be a ring with unity.

3.1 Definitions

If f : M → N is inModΛ, we say that f factors through a projective module,

written ’f ≈ 0’, when f can be written as a composite f = ξ ◦ η thus

P

M N,

ξη

f

where P ∈ModΛ is a projective module and η, ξ are Λ-homomorphisms. We

define

〈M,N〉 = {f ∈ HomΛ(M,N) | f ≈ 0}.

By taking η = 0, we see that 0 ∈ 〈M,N〉. If f, g ∈ 〈M,N〉, with their

factorisations through the projective modules P,Q given by f = α ◦ β and

g = γ ◦ δ respectively, then

f − g = ( α γ )
(
β
−δ
)
.

Note that ( α γ ) : P ⊕Q→ N and
(
β
−δ
)

: M → P ⊕Q, and so f − g ≈ 0. It

follows that:

〈M,N〉 is an additive abelian subgroup of HomΛ(M,N)
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We extend ≈ to a binary relation on HomΛ(M,N) via

f ≈ g ⇐⇒ f − g ≈ 0.

By extending≈ in this manner, ≈ becomes an equivalence relation onHomΛ(M,N).

The equivalence relation ≈ is compatible with composition:

Proposition 3.1.1. Given Λ-homomorphisms f, f ′ : Mo →M1, g, g′ : M1 →

M2,

f ≈ f ′ and g ≈ g′ =⇒ g ◦ f ≈ g′ ◦ f ′

Proof. f ≈ f ′, so f − f ′ ≈ 0, therefore g ◦ (f − f ′) ≈ 0 and so

g ◦ f ≈ g ◦ f ′.

Similarly, g − g′ ≈ 0 and so (g − g′) ◦ (f ′) ≈ 0, therefore

g ◦ f ′ ≈ g′ ◦ f ′.

We deduce that g ◦ f ≈ g′ ◦ f ′.

We define the derived module category of Λ, Der(Λ) to be the category

whose objects are right Λ-modules, and in which, for any two objects M,N ,

the set of morphisms HomDer(M,N) is given by

HomDer(M,N) = HomΛ(M,N)/〈M,N〉.

HomΛ(M,N) is an abelian group, and so HomDer(M,N) has the natural

structure of an abelian group. Throughout this thesis, we will use the no-

tation ‘ ’ for homomorphisms in the derived module category, in the sense

that if f ∈ HomΛ(M,N), f is the element in the derived module category

represented by f
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3.2 Results

Let G be a finite group with integral group ring Λ = Z[G]. In this section,

we describe some results from [6] relating to Der(Λ). Each of the results will

be useful during calculations later in the thesis.

A Λ-module M is said to be coprojective if Ext1Λ(M,Λ) = 0. We now

quote a result, the ’de-stabilization lemma’ from ([6], page 97, 5.17).

Lemma 3.2.1. Let

0→ J ⊕Q0
j−→ Q1 →M → 0

be an exact sequence of Λ-modules in which Q0, Q1 are projective; if M is

coprojective then Q1/j(Q0) is projective.

We now work towards describing an exact sequence which can be used

to describe homomorphism groups in the derived module category.

Proposition. Consider E = (0→ A
i−→ B

p−→ C → 0) ∈ Ext1Λ(C,A). If C is

coprojective, then the connecting homomorphism

δ : HomΛ(A,N)→ Ext1Λ(C,N),

given by δ(α) = α∗(E) which we described in §2.2 factors through HomDer(A,N)

according to the diagram

HomΛ(A,N) Ext1Λ(C,N)

HomDer(A,N).

δ

π δ∗
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Proof. Assume that α ∈ HomΛ(A,N) factors through a projective as follows

A N

Q.

α

η ξ

Then α∗(E) = ξ∗ ◦ η∗(E). Now, η∗ : Ext1Λ(C,A) → Ext1Λ(C,Q) is a group

homomorphism, and Ext1(C,Q) = 0 as C is coprojective, therefore

α∗(E) = ξ∗ ◦ η∗(E),

= ξ∗(0),

= 0.

In particular, δ vanishes on 〈A,N〉, as required.

We now describe an exact sequence with connecting homomorphism δ∗.

Proposition 3.2.2. ([6], page 104, 5.28) Let E = (0 → A
i−→ B

p−→ C → 0)

be an exact sequence of Λ-modules in which C is coprojective; then for any

Λ-module N we have an exact sequence of additive groups

HomDer(C,N)
p∗−→ HomDer(B,N)

i∗−→ HomDer(A,N)
δ∗−→ Ext1Λ(C,N)

p∗−→ Ext1Λ(B,N)
i∗−→ Ext1Λ(A,N).

Here, δ∗ is the homomorphism described in the previous proposition and all

other mappings are the standard pullback mappings.

The above proposition has a dual proposition:
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Proposition 3.2.3. ([6], page 101, 5.23) Let E = (0 → A
i−→ B

p−→ C → 0)

be an exact sequence of Λ-modules; then for any Λ-module M there is an

exact sequence

HomDer(M,A)
i∗−→ HomDer(M,B)

p∗−→ HomDer(M,C)
∂∗−→ Ext1Λ(M,A)

i∗−→ Ext1Λ(M,B)
p∗−→ Ext1Λ(M,C).

Here, ∂∗(f) = f ∗(E) and all other mappings are standard pushout mappings.

The above two propositions give rise to functors which will be of use to

us. Define Exact(6) to be the category whose objects are exact sequences

A1 → A2 → A3 → A4 → A5 → A6,

and whose morphisms are commutative diagrams

A1 A2 A3 A4 A5 A6

B1 B2 B3 B4 B5 B6.

Let E = (0 → A
i−→ B

p−→ C → 0) be an exact sequence of Λ-modules and

homomorphisms, then Proposition 3.2.2 defines a covariant functor

Hom(E ,−) : Der(Λ)→ Exact(6).

and Proposition 3.2.3 defines a contravariant functor

Hom(−, E) : Der(Λ)→ Exact(6).

To conclude this section, we will now explicitly describe a relationship

between the endomorphisms in the derived module category of two modules
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satisfying particular conditions. Given an exact sequence

E = (0→ J
i−→ P

p−→M → 0),

of Λ-modules and homomorphisms such that P is projective, one can define a

group homomorphism ρ : EndDer(M) → EndDer(J). Consider a homomor-

phism f ∈ EndΛ(J), the universal property for projective modules implies

that a lift f̃ : P → P exists and so a commutative diagram

0 J P M 0

0 J P M 0,

i

f ′

p

f̃ f

j ρ

exists. Now, the homomorphism f ′ need not be unique, but if we work in

the derived module category we have uniqueness i.e.

f ≈ g =⇒ f ′ ≈ g′.

Therefore, we have a well defined mapping ρ : EndDer(J) → EndDer(M)

One can easily check that ρ is a ring homomorphism, and in fact if M is

coprojective, ρ is an isomorphism. That is

Proposition 3.2.4. ([6], page 133, 7.7) Let E = (0→ J
i−→ P

p−→M → 0) be

an exact sequence of Λ-modules and homomorphisms such that P is projective

and M is coprojective, then ρ : EndDer(J)→ EndDer(M) is an isomorphism

of rings.

3.3 The Swan homomorphism

Let G be a finite group and let Λ = Z[G] be its integral group ring. In this

section, we will define the Swan homomorphism SJ : AutDer(J) → K̃0(Λ)
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and explore some of its properties. This section is adapted from chapters 5

and 7 of [6]. A Λ-module S is said to be stably free if there exists natural

numbers n,m such that S ⊕ Λn ∼= Λm.

Let E = (0 → J
i−→ S

p−→ M → 0) be an exact sequence of Λ-modules

and homomorphisms such that S is stably free. Define a mapping

sE : EndDer(J)→ModΛ,

α 7→ lim−→(α, i).

Proposition 3.3.1. (Swan′s projectivity criterion) If M is coprojective,

then sE(α) is projective if and only if α ∈ AutDer(J).

Proof. Assume that α ∈ AutDer(J), using the pushout construction, we know

that a commutative sequence with exact rows

0 J S M 0

0 J sE(α) M 0,

i

α

p

v Id

j ρ

exists. Let N be a Λ-module, the contravariant functor described in §3.2

gives rise to the following commutative diagram with exact rows

HomDer(N, J) HomDer(N,S) HomDer(N,M) Ext1Λ(N, J)

HomDer(N, J) HomDer(N, sE(α)) HomDer(N,M) Ext1Λ(N, J).

i∗

α∗

p∗

v∗

∂

Id∗ α∗

j∗ ρ∗ ∂

Id∗ is clearly an isomorphism, and since α is an isomorphism in the de-

rived module category, α∗ is an isomorphism on both HomDer(N, J) and
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Ext1Λ(N, J). S is projective, and so HomDer(N,S) = 0, we deduce that

HomDer(N, sE(α)) = 0. Thus, for any Λ-module N , HomDer(N, sE(α)) = 0,

and so sE(α) is projective.

It remains to prove the reverse implication. Assume that sE(α) is pro-

jective. By projectivity of S and sE(α), HomDer(S,N), HomDer(sE(α), N)),

Ext1Λ(S,N) and Ext1Λ(sE(α), N)) are all zero for any Λ-module N . By ap-

plying Proposition 3.2.2 to

0→ J
i−→ S

p−→M → 0,

with N = J , we obtain a commutative diagram with exact rows:

0 EndDer(J) Ext1Λ(M,J) 0

0 EndDer(J) Ext1Λ(M,J) 0.

j∗

α∗ Id∗

j∗

By the Five lemma, α∗ is bijective. Therefore, there exists a β : J → J such

that α∗(β) = β ◦ α ≈ Id. Now,

α∗(α ◦ β) = (α ◦ β) ◦ α

= α ◦ (β ◦ α)

≈ α ◦ Id

≈ Id ◦ α

= α∗(Id).

By injectivity of α∗, α ◦ β ≈ Id and so α ∈ AutDer(J). This completes the

proof.
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We can therefore restrict sE to AutDer(J) and think of it as a mapping

sE : AutDer(J)→ K̃0(Λ).

It is shown in §7 of [6] that sE is not dependant on the choice of E , and is in

fact only dependant on J , we therefore define the mapping

SJ : AutDer(J)→ K̃0(Λ)

α 7→ sE(α).

Furthermore, SJ is an additive group homomorphism, and so we call SJ the

Swan homomorphism.
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4 Milnor squares

Let Λ be a ring with unity. In this chapter we will briefly outline some

results from [11] regarding the classification of projective modules over Λ

using Milnor squares. We will then describe the Milnor square of a quasi-

augmentation sequence and outline a related theorem from [3].

4.1 Projective modules over Milnor squares

Consider a commutative square of rings and ring homomorphisms

Λ Λ1

Λ2 Λ′.

i1

i2 j1

j2

Consider the following conditions on the above commutative square:

Condition 1 : Given any λ1 ∈ Λ1, λ2 ∈ Λ2 such that j1(λ1) = j2(λ2)

in Λ′, there is exactly one element λ ∈ Λ such that i1(λ) = λ1 and i2(λ) = λ2.

Condition 2 : At least one of the two homomorphisms j1 and j2 is sur-

jective.

We say that a commutative square of the above form satisfying Condition 1

is a fibre square, and a commutative square of the above form which satisfies

both Condition 1 and Condition 2 is a Milnor square. For the remainder

of this section we will work only with Milnor squares. Consider projective
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modules P1, P2 over Λ1,Λ2 respectively and a Λ′-module isomorphism

h : P1 ⊗Λ1 Λ′ → P2 ⊗Λ2 Λ′.

Define

ji∗ : Pi → Pi ⊗Λi Λ′,

pi 7→ pi ⊗ 1,

for i = 1, 2. If we define M(P1, P2, h) to be the set

{(p1, p2) ∈ P1 × P2 | h ◦ j1∗(p1) = j2∗(p2)},

we may endow M(P1, P2, h) with a right Λ-module structure as follows:

(p1, p2) · λ = (p1 · i1(λ), p2 · i2(λ)).

In [11], some key theorems are proven relating to the classification of projec-

tive modules using Milnor squares, which we now state without proof.

Theorem. The module M(P1, P2, h) is projective over Λ. Furthermore if P1

and P2 are finitely generated over Λ1 and Λ2 respectively, then M is finitely

generated over Λ.

Theorem. Every projective Λ-module is isomorphic to M(P1, P2, h) for some

suitably chosen P1, P2 and h.

4.2 Classification of projective modules

Later in this thesis, we will deal with several projective modules of type

M(P1, P2, h) where P1, P2 are projective modules over rings Λ1,Λ2 respec-
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tively which arise within Milnor squares of the form

Λ Λ1

Λ2 Λ′.

i1

i2 j1

j2

Consequently, it will be useful to classify modules of this type up to isomor-

phism. To do this, we use results from [6].

By ([6], 3.3, page 40) we know that a 1-1 correspondence,

AutΛ1(P1)\IsoΛ′(P1⊗Λ′, P2⊗Λ′)/AutΛ2(P2)↔


Isomorphism classes of

modules of type

M(P1, P2, h)

 ,

exists, given by

[h] 7→M(P1, P2, h).

In particuar, when P1 = Λ1, P2 = Λ2, we have a 1-1 correspondence,

Λ∗1\Λ′∗/Λ∗2 ↔


Isomorphism classes of

modules of type

M(Λ1,Λ2, h)

 ,

given by

[h] 7→M(Λ1,Λ2, h).

4.3 The Milnor square of a quasi-augmentation sequence

A Λ-module S is called strongly Hopfian if for each integer n ≥ 1 any sur-

jective homomorphism ϕ : Sn → Sn is necessarily an isomorphism. A quasi-

augmentation sequence is then a short exact sequence

S = (0→ S− → S0 → S+ → 0)
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over Λ such that S0 is stably free, satisfying the following conditions:

1. Ext1Λ(S+,Λ) = 0;

2. S+, S− are strongly Hopfian;

3. HomΛ(S−, S+) = 0.

We note that for Λ = Z[G] with G a finite group, in the case where S+

and S− are Λ-lattices, conditions 1 and 2 are automatically satisfied. For the

remainder of this section, we take G to be a finite group and Λ to be the

integral group ring of G, Z[G]. We now prove a related theorem, adapted

from [3]:

Theorem 4.3.1. ([3], page 30, 4.1.1) Given a quasi-augmentation sequence

S = (0→ S−
i−→ Λ

p−→ S+ → 0),

satisfying the condition

• HomΛ(S+, S−) = 0;

there exists a Milnor square

Λ EndΛ(S+)

EndΛ(S−) EndDer(S−),

i1

i2 j1

j2

where i1, j2 and j1 are surjective.

Proof. We first define the maps in the Milnor square. Given an element

λ ∈ Λ, we define a map fλ : Λ → Λ by f(1) = λ. Since HomΛ(S−, S+) = 0,

fλ defines two unique maps, f+, f− such that
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S = (0 S− Λ S+ 0)

S = (0 S− Λ S+ 0),

i

f−

p

fλ f+

commutes. We define i1(λ) = f+ and i2(λ) = f−, by construction it is clear

that these two maps are ring homomorphisms. Every map in EndΛ(S+) lifts

to a map in EndΛ(Λ) by the universal property of projective modules, and

so i1 is surjective, as claimed. We now move on to the maps j2 and j1. j2 Is

simply the standard projection map

EndΛ(S−)→ EndDer(S−).

Now, utilising Proposition 3.2.3 we see that EndDer(S+) ∼= Ext1Λ(S+, S−)

via the pullback ∂∗ : EndDer(S+) → Ext1Λ(S+, S−). By Proposition 3.2.2

Ext1Λ(S+, S−) ∼= EndDer(S−) via the pushout δ∗ : EndDer(S−)→ Ext1Λ(S+, S−),

we can now describe j1 as the composition of the standard projection map

EndΛ(S+)→ EndDer(S+) with ∂∗ and δ−1
∗ :

EndΛ(S+)→ EndDer(S+)
∂∗−→ Ext1Λ(S+, S−)

δ−1
∗−−→ EndDer(S−).

Clearly j1 and j2 are surjective ring homomorphisms.

We will now show that j1 ◦ i1 = j2 ◦ i2. Fix a λ ∈ Λ, there exists a

commutative diagram with exact rows

S = (0 S− Λ S+ 0)

S = (0 S− Λ S+ 0),

i

f−

p

fλ f+

i p

such that f− = i1(λ) and f+ = i2(λ). By ([8], 1.5, page 66) the above
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commutative diagram factors in the sense that a commutative diagram with

exact rows

S = (0 S− Λ S+ 0)

0 S− M S+ 0)

S = (0 S− Λ S+ 0)

i

f−

p

f1λ Id

i

Id

p

f2λ f+

exists such that f 2
λ ◦ f 1

λ = fλ. We deduce immediately that for each

λ ∈ Λ, j1i1(λ) = j2i2(λ).

It remains only to prove that given an f+ ∈ EndΛ(S+), f− ∈ EndΛ(S−)

such that j1(f+) = j2(f−), there exists a unique λ ∈ Λ such that i1(λ) = f+

and i2(λ) = f−. Let f+, f− satisfy these conditions. A commutative dia-

gram similar to the one above shows that there exists a λ ∈ Λ such that

i1(λ) = f+ and i2(λ) = f−, the uniqueness of λ follows from the condi-

tions HomΛ(S−, S+) = 0 and HomΛ(S+, S−) = 0 in our hypothesis. This

completes the proof.

We conclude this chapter with the following theorem, which will allow us

to calculate the image of the Swan map in some cases which are of particular

interest in this thesis.

Theorem 4.3.2. ([3], page 41, 4.5.2) With the hypotheses of the above the-

orem, if f− ∈ EndΛ(S−) is such that f− ∈ AutDer(S−), then

lim−→(f−, i) ∼= M(EndΛ(S+), EndΛ(S−), f−).
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5 A sufficient condition for the D(2)-property

Let G be a finite group and let Λ be the integral group ring of G, Z[G]. In

this chaper, we will briefly outline some results from [5], concluding with a

sufficient condition for the D(2)-property to hold for a finite group G. When

we refer to Λ-lattices, it is assumed that the lattice has finite rank over Z.

5.1 Stable modules and their associated trees

Let M be a Λ-lattice. We define the stable module represented by M to be

the set

[M ] = {N ∈ModΛ | there exists a, b ∈ N such that M⊕Λa ∼= N⊕Λb and N � 0}.

We can associate with [M ] a tree structure by drawing an upward di-

rected arrow from N to N ⊕ Λ for each N ∈ [M ]. As the Z-rank of Λ,

rkZ(Λ) = |G| is finite, it is clear that the tree extends finitely downwards

and infinitely upwards.

• We call N0 ∈ [M ] a minimal module if it has minimal Z-rank, i.e.

rkZ(N0) = min{rkZ(N) | N ∈ [M ]}.

• We call N1 ∈ [M ] a root module if there is no N ′1 ∈ [M ] such that

N ′1 ⊕ Λ ∼= N1.

Note that all minimal modules are root modules, while the converse is

not true in general. Fix a minimal module N0 ∈ [M ], let N ∈ [M ]; by the

definition of [M ], there exists an a, b ∈ N such that N0 ⊕ Λa ∼= N ⊕ Λb. As
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rkZ(N0) ≤ rkZ(N), a ≥ b and so a− b ≥ 0, we can therefore define a height

function

h : [M ]→ N,

N 7→ a− b.

Note that the height function is independent of our choice of minimal

module N0. We can now think of the minimal modules of [M ] simply as

the elements of [M ] with height zero. The stable module [M ] is said to be

straight if |h−1(n)| = 1 for each natural number n, a straight stable module

with root module N0 will have the following tree structure:

...

N0.

5.2 The Swan-Jacobinski Theorem

In this section, we briefly describe a special case of the Swan-Jacobinski

Theorem [2] and explore some of its connotations which are useful in the

context of this thesis. This treatment of the Swan-Jacobinski Theorem is

adapted from section 15 in [5].
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Let ΛR = R[G]. Wedderburn’s Theorem gives a decomposition of ΛR

into a direct sum of simple two-sided ideals

ΛR ∼=
m∏
i=1

Mdi(R)×
n∏
j=1

Mej(C)×
r∏

k=1

Mfk(H).

We say that Λ satisfies the Eichler condition if either r = 0, or fk 6= 1

for all k. We say that a Λ-lattice M satisfies the cancellation property when,

for any Λ-lattice N such that rkZ(M) ≤ rkZ(N),

N ⊕ Λm ∼= M ⊕ Λn =⇒ N ∼= M ⊕ Λn−m.

Now, ([2], page 324, 51.28) gives the following special case of the Swan-

Jacobinski Theorem:

Theorem. Let G be a finite group such that Λ = Z[G] satisfies the Eichler

condition. Let M be a Λ-lattice, then each N ∈ [M ] for which there exists

an N0 ∈ModΛ satisfying N0 ⊕ Λ ∼= N satisfies the cancellation property.

We can use the Swan-Jacobinski Theorem to make deductions about the

tree structure of stable modules over Λ.

Proposition 5.2.1. Let G be a finite group such that Λ = Z[G] satisfies the

Eichler condition. If M is a Λ-lattice, and h : [M ]→ N is the height function

for [M ], then |h−1(n)| = 1 for each n ≥ 1.

Proof. Let Mn, Nn be such that h(Mn) = h(Nn) = n where n ≥ 1. We will

show that Mn
∼= Nn. Let M0 ∈ [M ] be minimal, then there exists an r, s

such that r − s = n and

M0 ⊕ Λr ∼= Mn ⊕ Λs,
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M0 ⊕ Λr ∼= Nn ⊕ Λs.

By the Swan-Jacobinski Theorem, M0⊕Λr−s satisfies the cancellation prop-

erty and so

M0 ⊕ Λr−s ∼= Mn,

M0 ⊕ Λr−s ∼= Nn.

This completes the proof.

Therefore, if Λ satisfies the Eichler condition, for each Λ-lattice M , the

stable module [M ] has the following shape:

...

. . .

where the minimal level of the tree has k ≥ 1 elements. Note that for stable

modules over rings satisfying the Eichler condition, minimal modules are

equivalent to root modules. Recall the definition of stably free from §3.3.

We say that Λ satisfies stably free cancellation (SFC) if every stably free

Λ-module is free, note that the following statements are equivalent:

• Λ satisfies SFC;
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• S ⊕ Λa ∼= Λb implies that S ∼= Λb−a;

• the stable module [Λ] is straight.

A stably free Λ-lattice is said to be non-trivial if it is not free. It can be shown

easily that any integral group ring which satisfies the Eichler condition also

satisfies SFC.

Proposition. Let G be a finite group and let Λ = Z[G]. If Λ satisfies the

Eichler condition, then Λ satisfies SFC.

Proof. Let S be a stably free Λ-module. In this case, there exists integers

a, b such that

S ⊕ Λa ∼= Λb.

Clearly b > a, and so Λb−a satisfies the cancellation property by the Swan-

Jacobinski Theorem. We deduce that S ∼= Λb−a.

5.3 Full modules

Consider an exact sequence of Λ-modules and homomorphisms

Φ = (0→ J
j−→ S →M → 0),

such that S is stably free. Recall the Swan homomorphism from §3.3

SJ : AutDer(J)→ K̃0(Λ),

f 7→ [lim−→(f, j)].

45



We may also define a mapping

vJ : AutΛ(J)→ AutDer(J),

f 7→ f.

If f is in AutΛ(J), we know from §2.2 that a commutative diagram

Φ = (0 J S M 0)

f∗(Φ) = (0 J lim−→(f, j) M 0),

f g Id

p

with exact rows exists. By the Five lemma, g is an isomorphism and so

[lim−→(f, j)] = [S] = 0 ∈ K̃0(Λ). Therefore

Im(vJ) ⊂ Ker(SJ).

We say that J is full if the reverse inclusion holds, that is, if

Im(vJ) = Ker(SJ).

5.4 Balanced presentations

Given any finitely generated Λ-module M we know that a surjective homo-

morphism Λn � M exists for some natural number n, therefore, an exact

sequence

0→ J3 → Λa2 → Λa1 → Λ→ Z→ 0,

exists. We define the third syzygy of Z, Ω3(Z) to be the stable module [J3],

the third syzygy is well defined by Schanuel’s lemma. Given a group G with
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presentation G =< x1, . . . , xg | W1, . . . ,Wr >, there exists an exact sequence

(the cellular chain complex of the Cayley complex for G)

0→ π2(G)→ Λr → Λg → Λ→ Z→ 0.

A finite group G admits a balanced presentation if there exists a group pre-

sentation

G =< x1, . . . , xg | W1, . . . ,Wr >,

for G such that g = r. Therefore, if G admits a balanced presentation G,

there exists an exact sequence

0→ π2(G)→ Λg → Λg → Λ→ Z→ 0.

We say that K in Ω3(Z) is realizable if there exists a presentation G for G

such that K ∼= π2(G).

Now, if G is a balanced presentation, rkZ(π2(G)) = rkZ(Λ) − 1, in this

case, π2(G) is clearly a minimal module (and, by extension, a root module)

in Ω3(Z). We have shown:

Proposition. If G admits a balanced presentation, then there exists a min-

imal module J ∈ Ω3(Z) such that J is realizable.

5.5 The sufficient condition

We now have a key theorem from [5]:

Theorem. ([5], page 216, Theorem III) If each minimal module J ∈ Ω3(Z)

is both realizable and full, then G satisfies the realization property.
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For finite groups, the realization property is equivalent to the D(2)-

property [5], we can therefore conclude the chapter with the following suffi-

cient condition for the D(2)-property to hold.

Theorem 5.5.1. If a finite group G satisfies properties 1,2 and 3 below

1. G admits a balanced presentation;

2. Ω3(Z) is straight;

3. the minimal module J in Ω3(Z) is full;

then G satisfies the D(2)-property.
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6 The ring Tp−1(Z, p)

Let p be an odd prime, denote by Cp the cyclic group Cp =< x | xp = 1 >,

Aut(Cp) ∼= Cp−1 and so there exists a θ ∈ Aut(Cp) such that ord(θ) = p− 1,

let m be such that θ(x) = xm. We define the metacyclic group

G(p, p− 1) =< x, y | xp = 1, yp−1 = 1, yx = xmy >,

whose isomorphism class is independent of our choice of m. Let Λ be the

integral group ring of G(p, p− 1), Z[G(p, p− 1)], we will study the ring

Tp−1(Z, p) = {(ai,j)1≤i,j≤p−1 ∈Mp−1(Z) | ai,j ∈ pZ if i > j}.

For brevity, we will refer to Tp−1(Z, p) as Tp−1. In [7] it was shown that a

surjective ring homomorphism Λ � Tp−1 exists, which allows us to endow

Tp−1 with a Λ-module structure. In this chapter we will outline several results

from [7] before studying some other properties of Tp−1, both as a ring and as

a Λ-module.

6.1 The cyclic algebra construction

In this section, we will describe the cyclic algebra construction, as in [6]. Let

S be a commutative ring and θ : S → S be a ring automorphism with order

dividing q; in particular, θ satisfies the identity θq = Id. We define the cyclic

algebra Cq(S, θ) as the (two-sided) free S-module

Cq(S, θ) = S · 1 + S · y + · · ·+ S · yq−1,
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of rank q with basis {1, y, . . . , yq−1} and with multiplication determined by

the relations

yq = 1 ; yξ = θ(ξ)y (ξ ∈ S).

Two cyclic algebras are of particular interest to us. The first is constructed

by taking S = Z[Cp], we then take θ ∈ Aut(S) to be given by θ(x) = xm, as

in the introduction to this chapter. It is straightforward to see that

Λ ∼= Cp−1(Z[Cp], θ). (1)

For our second cyclic algebra let Σx = 1 + x+ · · ·+ xp−1 in Z[Cp], and let ζ

be the primitive pth root of unity e
2πi
p , we can then make the identification

Z(ζ) = Z[Cp]/[Σx), where [Σx) is the right ideal generated by Σx. We take

our commutative ring S to be S = Z(ζ). As θ(Σx) = 0, θ induces an

automorphism θ̄ : Z(ζ) → Z(ζ) given by θ̄(ζ) = ζm. We can now construct

the cyclic algebra

Cp−1(Z(ζ), θ̄).

From our constructions, it is obvious that a surjective ring homomorphism

Cp−1(Z[Cp], θ)� Cp−1(Z(ζ), θ̄) exists and so we have a surjection

Λ� Cp−1(Z(ζ), θ̄);

x 7→ ζ;

y 7→ y.

We can use this surjection to endow Cp−1(Z(ζ), θ̄) with a Λ-module structure.

We will see later in this chapter that Cp−1(Z(ζ), θ̄) is isomorphic as a ring to

Tp−1, and so when we endow Tp−1 with a Λ-module structure in the obvious
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way,

Tp−1(Z, p) ∼=Λ Cp−1(Z(ζ), θ̄). (2)

6.2 The isomorphism Cp−1(Z(ζ), θ̄) ∼= Tp−1(Z, p)

We now describe a ring homomorphism λ̃∗ : Cp−1(Z(ζ), θ̄)→ Tp−1(Z, p) which

was first formulated in [7]. Observe that {1, ζ, . . . , ζp−2} is a Z-basis for Z(ζ).

Note that (ζ − 1)r =
∑r

k=0(−1)r−k
(
r
k

)
ζk and so

ζ = (ζ − 1) + 1;

ζ2 = (ζ − 1)2 + 2(ζ − 1) + 1;

...

ζr = (ζ − 1)r −
r−1∑
k=0

(−1)r−k
(
r

k

)
ζk.

By making elementary basis transformations, we see that

{(ζ − 1)p−2, (ζ − 1)p−3, . . . , (ζ − 1), 1},

is a Z-basis for Z(ζ). Now, consider the right action of G(p, p− 1) on Z(ζ)

Z(ζ)×G(p, p− 1)→ Z(ζ)

z · (xrys) = θ−s(z · ζ−r).

Identifying Z(ζ) = Zp−1 with the basis {(ζ − 1)p−2−r}0≤r≤p−2, the above

action describes a representation λ : G(p, p− 1)→ GLp−1(Z). Observe that
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for 0 ≤ r ≤ p− 3,

λ(x−1)[(ζ − 1)r] = (ζ − 1)rζ

= (ζ − 1)r+1 + (ζ − 1)r,

whilst

λ(x−1)[(ζ − 1)p−2] = (ζ − 1)p−1 + (ζ − 1)p−2.

Now, it is well known ([1], page 87, 3) that p = (ζ−1)p−1u for some u ∈ Z(ζ)∗,

and so

λ(x−1)[(ζ − 1)p−2] = (ζ − 1)p−2 + pu−1.

Therefore, λ(x−1) takes the form

λ(x−1) =



1 + pap−2 1 0 . . . 0 0

pap−3 1 1 . . . 0 0

pap−4 0 1 . . . 0 0
...

...
...

. . . 1 0

pa1 0 0 0 1 1

pa0 0 0 0 0 1


.

Now, x−1 generates Cp and λ(x−1) lies in the unit group of Tp−1(Z, p),

Up−1(Z, p), and so

λ(Cp) ⊂ Up−1(Z, p).

This result is expanded on in [7] to show the following:

Proposition. λ(G(p, p− 1)) ⊂ Up−1(Z, p)

We can now think of λ as a map λ : G(p, p − 1) → Up−1(Z, p), which

extends naturally to a ring homomorphism

λ∗ : Λ→ Tp−1.
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It is clear from our description of λ that λ(Σx) = 0, and so λ∗ induces a ring

homomorphism

λ̃∗ : Cp−1(Z(ζ), θ̄)→ Tp−1.

In [7], it is shown that λ̃∗ is in fact a ring isomorphism. We can therefore

endow Tp−1 with a right Λ-module structure which is inherited from the

Λ-module structure of Cp−1(Z(ζ), θ̄). As λ∗(Σx) = 0, we can now prove a

proposition which we will utilise later in this thesis.

Proposition 6.2.1. For any t ∈ Tp−1(Z, p), t · Σx = 0.

Proof. t · Σx = t · (λ∗(Σx)) = t · 0 = 0.

We now use this result to prove that Tp−1
∼= [x− 1)

Proposition. Ker(λ∗) = SpanZ{Σx,Σx · y, . . . ,Σx · yp−2}.

Proof. Let S = SpanZ{Σx,Σx ·y, . . . ,Σx ·yp−2}, λ∗(Σx) = 0 by Proposition

6.2.1 and so S ⊂ Ker(λ∗). We now have a short exact sequence

0→ Ker(λ∗)/S → Λ/S → Tp−1 → 0.

To prove our result, it is therefore sufficient to show that Λ/S is torsion free,

but {xayb | 0 ≤ a, b ≤ p−2}∪{Σx,Σx ·y, . . . ,Σx ·yp−2} is a basis for Λ which

includes a basis for S, and so Λ/S is torsion free.

We now consider the map ϕ : Λ → [x − 1) given by α 7→ (x − 1)α, we

have the following proposition.

Proposition. Ker(ϕ) = Ker(λ∗)
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Proof. Consider the exact sequence

0→ Ker(ϕ)→ Λ
ϕ−→ [x− 1)→ 0.

Note that Ker(λ∗) ⊂ Ker(ϕ), this gives rise to a second exact sequence:

0→ Ker(ϕ)/Ker(λ∗)→ Λ/Ker(λ∗)→ [x− 1)→ 0.

But Λ/Ker(λ∗) and [x − 1) are both torsion free with Z-rank (p − 1)2, and

so any surjection Λ/Ker(λ∗) → [x − 1) is necessarily an isomorphism. We

deduce that Ker(ϕ) = Ker(λ∗).

The above propositions provide us with an explicit isomorphism

Tp−1(Z, p) ∼= [x− 1.)

We have shown:

Corollary 6.2.1.1. Tp−1(Z, p) ∼= [x− 1).

6.3 HomΛ(R(i), R(j))

When considered as a right Λ-module, one can think of Tp−1 simply as a

direct sum of its rows, we denote the ith row of Tp−1 by R(i), and so as

Λ-modules,

Tp−1(Z, p) ∼=
p−1⊕
i=1

R(i).

In this section, we will find explicit descriptions of the ringsHomΛ(R(i), R(j)),

and then state the description of HomDer(R(i), R(j)) from [7]. We begin by
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defining a mapping f : Z2 → {0, p− 1} by

f(i, j) =

p− 1, if i > j,

0, otherwise.

If ε(i, j) is the (p− 1)× (p− 1) matrix described by ε(i, j)r,s = δi,rδj,s, then

Tp−1 has Z-basis given by

{t(i, j) = ε(i, j)(1 + f(i, j)) | 1 ≤ i, j ≤ p− 1}.

We now define p− 1 vectors in M1×(p−1)(Z), each with a right Λ-action given

via Tp−1 in the obvious way.

• a1 = ( 1 0 ... 0 0 ) ;

• a2 = ( 0 1 ... 0 0 ) ;
...

• ap−2 = ( 0 0 ... 1 0 ) ;

• ap−1 = ( 0 0 ... 0 1 ) .

We can think of R(i) as having a Z-basis

{aj(1 + f(i, j)) = ait(i, j) | 1 ≤ j ≤ p− 1}.

We have shown:

Proposition. R(i) is generated over Λ by ai.

Therefore, any Λ-homomorphism ϕ : R(i)→ R(j) is defined completely

by ϕ(ai). Assume that

ϕ(ai) =

p−1∑
n=1

xnan ∈ R(j).
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Where xn ∈ Z for each n. Note that we have not placed any further restric-

tions on the values of xn, and so ϕ(ai) need not be in R(j) as things stand,

this is done in order to simplify the following calculation, and the discrepancy

is dealt with shortly. Now, ai
∑

m 6=i t(m,m) = 0, and so

0 = ϕ(ai
∑
m 6=i

t(m,m)) =

p−1∑
n=1

xnan
∑
m6=i

t(m,m) =
∑
n6=i

xnan,

and so xn = 0 for n 6= i. Concluding,

ϕ(ai) = xiai.

Finally,

ϕ(ait(i, k)) = ϕ(ai)t(i, k) = xiait(i, k).

We have shown:

Proposition. Let ϕ ∈ HomΛ(R(i), R(j)), then there exists an integer xi

such that if we take a general element α in R(i),

α = ( α1(1+f(i,1)), α2(1+f(i,2)), ... ,αp−2(1+f(i,p−2)), αp−1(1+f(i,p−1)) ) ∈ R(i),

then the element ϕ(α) in R(j) is given by

ϕ(α) = ( xiα1(1+f(i,1)), xiα2(1+f(i,2)), ... ,xiαp−2(1+f(i,p−2)), xiαp−1(1+f(i,p−1) ) ∈ R(j).

We can therefore think of elements of HomΛ(R(i), R(j)) as right multi-

plication by some nIp−1 ∈ Tp−1 for some integer n. To deal with the discrep-

ancy mentioned above, we must ensure that right multiplication of elements

of R(i) by nIp−1 gives an element of R(j). This can be ensured by placing a

condition on n, we clearly have two cases:
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• If i ≥ j, Im(nIp−1) ⊂ R(j) for each n ∈ Z;

• If i < j, Im(nIp−1) ⊂ R(j) for each n ∈ pZ.

We have shown:

Proposition.

HomΛ(R(i), R(j)) =

right multiplication by nIp−1, n ∈ Z, if i ≥ j,

right multiplication by pnIp−1, n ∈ Z if i < j.

From our description, it is clear that Λ-homomorphisms ϕ : R(i)→ R(j)

and ψ : R(j)→ R(k) compose in the obvious manner, i.e. if ϕ = nIp−1 and

ψ = mIp−1, then ψ ◦ ϕ = mnIp−1 : R(i) → R(k). It is now clear that if we

think of EndΛ(Tp−1(Z, p)) as a ring of matrices of the form (mi,j)1≤i,j≤p−1

where mi,j : R(j)→ R(i), then our explicit description of HomΛ(R(i), R(j))

shows that EndΛ(Tp−1(Z, p)) ∼= Tp−1(Z, p), as expected.

We conclude this section by stating a result from [7] which describes the

rings HomDer(R(i), R(j)).

Proposition 6.3.1.

HomDer(R(i), R(j)) =

Z/pZ if i = j,

0 if i 6= j.

6.4 Projective modules over Tp−1

In [13], MI Rosen showed that the ring Tp−1 is hereditary. In this section, we

will use techniques from [11] to find a description for all projective modules
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over Tp−1. This will provide a full description of all submodules of projective

modules over Tp−1.

Consider the Milnor square

Tp−1(Z, p) Mp−1(Z)

Tp−1(Fp) Mp−1(Fp).

i1

i2 j1

j2

Here, Fp is the finite field with p elements, and Tp−1(Fp) = Tp−1(Z, p)/pMp−1(Z).

The mappings are the standard inclusion and projection maps. In [11], it is

shown that given such a Milnor square, there exists an exact sequence

K1(Tp−1(Z, p))→ K1(Mp−1(Z))⊕K1(Tp−1(Fp))→ K1(Mp−1(Fp))

∂−→ K0(Tp−1(Z, p))→ K0(Mp−1(Z))⊕K0(Tp−1(Fp))→ K0(Mp−1(Fp)).

Here, the homomorphisms

Kα(Tp−1(Z, p))→ Kα(Mp−1(Z))⊕Kα(Tp−1(Fp))→ Kα(Mp−1(Fp)),

for α = 0, 1 are made up of the standard induced mappings in Kα, and are

defined by

x 7→ (i1∗(x), i2∗(x)),

and

(y, z) 7→ j1∗(y)− j2∗(z).

We will now use this exact sequence to find a practical description for

K0(Tp−1(Z, p)), along with a set of generators. As Fp is a field, there is an

obvious isomorphism K1(Mp−1(Fp)) ∼= F∗p, where F∗p is the unit group of Fp.
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Moreover, the map on unit groups Tp−1(Fp)∗ → F∗p given by the determinant

is surjective, and so the map

K1(Mp−1(Z))⊕K1(Tp−1(Fp))→ K1(Mp−1(Fp)),

is surjective. We deduce that the mapping ∂ : K1(Mp−1(Fp))→ K0(Tp−1) is

the zero mapping. By Morita’s theorem,

K0(Mp−1(Z)) ∼= Z,

and

K0(Mp−1(Fp)) ∼= Z,

and one can easily check that the standard projection Z → Fp induces an

isomorphism K0(Mp−1(Z)) → K0(Mp−1(Fp)). Therefore, we can extract an

isomorphism

i2∗ : K0(Tp−1(Z, p)) ∼−→ K0(Tp−1(Fp)),

from the above exact sequence. Now, to find a description and set of gener-

ators for K0(Tp−1(Z, p)), we will find a description and set of generators for

K0(Tp−1(Fp)) and make use of the isomorphism i2∗. We begin by consider-

ing some projective modules over Tp−1(Fp). Let R̂(i) denote the ith row of

Tp−1(Fp). As

Tp−1(Fp) ∼=
p−1⊕
i=1

R̂(i),

then R̂(i) is projective.

Proposition 6.4.1. Let R̂(i) denote the ith row of Tp−1(Fp), with this nota-

tion, K0(Tp−1(Fp)) ∼= Zp−1, with free basis {R̂(i)}1≤i≤p−1.
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Proof. Define N = {A = (ai,j) ∈ Tp−1(Fp) | ai,i = 0 + pZ for all i}. It is

easily seen that N is a radical ideal and Tp−1(Fp)/N ∼= Fp−1
p . By ([9], 6.37,

page 183) every projective module over Tp−1(Fp) can be written uniquely as a

lift of projective modules over Tp−1(Fp)/N . As noted, each R̂(i) is projective,

and the modules R̂(i)/N , i = 1, . . . , p−1 provide a complete list of generators

for K0(Tp−1(Fp)/N), this leads to our result.

We can now describe K0(Tp−1(Z, p)) explicitly.

Proposition 6.4.2. K0(Tp−1(Z, p)) ∼= Zp−1, with basis {R(i)}1≤i≤p−1.

Proof. Clearly R(i) maps to R̂(i) for i = 1, 2, . . . , p−1 under the isomorphism

i2∗ : K0(Tp−1(Z, p))→ K0(Tp−1(Fp)),

the result then follows from Proposition 6.4.1.
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7 The module R(2)⊕ [y − 1)

Recall the sufficient condition, discussed in §5, for a finite group to satisfy

the D(2)-property.

Theorem 5.5.1. If a finite group G satisfies properties 1,2 and 3 below

1. G admits a balanced presentation;

2. Ω3(Z) is straight;

3. The minimal module J in Ω3(Z) is full;

then G satisfies the D(2)-property.

Let p be an odd prime and let Λ = Z[G(p, p − 1)]. In [12], it was

shown that R(2)⊕ [y− 1) is minimal in Ω
G(5,4)
3 (Z), and we will see in §8 that

R(2)⊕ [y − 1) is minimal in Ω
G(7,6)
3 (Z). If this property were to hold for the

group G(p, p−1) where p is any odd prime, that is, R(2)⊕ [y−1) is minimal

in Ω
G(p,p−1)
3 (Z) for each odd prime p, then we can rewrite properties 2 and 3

as follows:

2′. [R(2)⊕ [y − 1)] is straight over Z[G(p, p− 1)];

3′. R(2)⊕ [y − 1) is full over Z[G(p, p− 1)].

In our specific case, namely the group G(p, p − 1) where p is an odd

prime, it was shown by JW Wamsley [17] that G(p, p− 1) admits a balanced

presentation. We will now give an alternative proof of this result.
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Proposition. Let p be an odd prime and let

G(p, p− 1) = < x, y | xp = 1, yp−1 = 1, yxy−1 = xm >,

as defined in §6, then

G(p, p− 1) ∼= < x, y | xp = yp−1, yxiy−1 = xi+1 >,

where i is any integer such that i ≡ (m− 1)−1(modp).

Proof. Firstly, we note that in < x, y | xp = 1, yp−1 = 1, yxy−1 = xm >, the

equality yxiy−1 = xi+1 holds true, as yxy−1 = xm implies that

yxiy−1 = xmi

= xi+1.

Secondly, we see that in < x, y | xp = yp−1, yxiy−1 = xi+1 >, xp = 1 and so

yp−1 = 1:

xp = x(i+1)p−ip

= yxipy−1x−ip

= yxip−ipy−1

= 1,

since xp = yp−1 and so x−ip commutes with y−1. It remains to show that

in < x, y | xp = yp−1, yxiy−1 = xi+1 >, yxy−1 = xm. By our hypothesis,
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i(m− 1) ≡ 1(modp), and we have already seen that xp = 1, therefore

yxy−1 = yxi(m−1)y−1

= (yxiy−1)m−1

= x(i+1)(m−1)

= xi(m−1)xm−1

= xm.

We have shown:

Theorem 7.0.1. Let Λ = Z[G(p, p−1)] where p is an odd prime. If the third

syzygy of Z, Ω3(Z) = [R(2) ⊕ [y − 1)] and the properties 2′, 3′ are satisfied,

then G(p, p− 1) satisfies the D(2)-property.

In §7.1 we will show that 2′ holds for any odd prime p. In §7.2 we will

show that 3′ holds for any odd prime p.

7.1 Straightness of R(2)⊕ [y − 1)

7.1.1 An exact sequence

By the Swan-Jacobinski Theorem, discussed in §5.2, in order to show that

[R(2) ⊕ [y − 1)] is straight over Λ = Z[G(p, p − 1)], it is sufficient to show

that if S is a Λ-module satisfying

Λ⊕ S ∼= R(2)⊕ [y − 1)⊕ Λ,
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then S ∼= R(2) ⊕ [y − 1). To do this, we begin by showing that S can be

expressed as an extension of I(Cp−1) by R(2)⊕
⊕

i 6=1 R(i) where I(Cp−1) will

be defined shortly. For brevity, we denote
⊕

i 6=k R(i) by R(k̂). Assume that

S is a Λ-module such that

Λ⊕ S ∼= R(2)⊕ [y − 1)⊕ Λ.

Let I(Cp−1) be the kernel of the augmentation mapping ε : Z[Cp−1] → Z

when considered as a Λ-homomorphism. Consider the short exact sequence

0→ R(1̂)→ [y − 1)→ I(Cp−1)→ 0,

from [7]. We can now easily construct a second exact sequence

E = (0→ R(2)⊕R(1̂)→ R(2)⊕ [y − 1)→ I(Cp−1)→ 0), (3)

in the obvious manner. It is also shown in [7] that another exact sequence

0→
p−1⊕
j=1

R(j)→ Λ→ Z[Cp−1]→ 0,

exists. By taking the direct sum of this exact sequence with E , we can

construct the following exact sequence:

0→ R(2)⊕R(1̂)⊕
p−1⊕
j=1

R(j)→ R(2)⊕ [y− 1)⊕Λ→ I(Cp−1)⊕Z[Cp−1]→ 0.

By assumption, S ⊕ Λ ∼= R(2) ⊕ [y − 1) ⊕ Λ, and so we also have a short

exact sequence

0→ R(2)⊕R(1̂)⊕
p−1⊕
j=1

R(j)→ S ⊕ Λ
p−→ I(Cp−1)⊕ Z[Cp−1]→ 0. (4)
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We will now manipulate (4) to extract an exact sequence Φ of the following

form:

Φ = (0→ R(2)⊕R(1̂)→ S → I(Cp−1)→ 0). (5)

To complete the manipulation we will require some propositions.

Proposition. HomΛ(Tp−1,Z[Cp−1]⊕ I(Cp−1)) = 0

Proof. I(Cp−1) is a Λ-submodule of Z[Cp−1], so it suffices to show that

HomΛ(Tp−1,Z[Cp−1]) = 0. We know from Proposition 6.2.1 that for any

t ∈ Tp−1, t · (1 + x+ · · ·+ xp−1) = 0. Now, as x acts trivially on Z[Cp−1] and

Z[Cp−1] is a Λ-lattice, we may deduce the result.

Proposition. For the surjection p : S ⊕ Λ → I(Cp−1) ⊕ Z[Cp−1] defined by

the short exact sequence (4), p(S) ∩ p(Λ) = 0.

Proof. For a Λ-lattice M , we set MQ = M ⊗Z Q, which we think of as a

ΛQ-module. As S⊕Λ ∼= R(2)⊕ [y−1)⊕Λ, SQ⊕ΛQ ∼= R(2)Q⊕ [y−1)Q⊕ΛQ.

By Wedderburn’s Theorem, it follows that SQ ∼= R(2)Q ⊕ [y − 1)Q. By the

Wedderburn-Maschke Theorem, we can use the exact sequence (3) to form a

split exact sequence

0→ (R(2)⊕R(1̂))Q → SQ → I(Cp−1)Q → 0,

and so

SQ ∼= I(Cp−1)Q ⊕ (R(2)⊕R(1̂))Q.

Now, HomΛQ((Tp−1)Q, (I(Cp−1)⊕ Z[Cp−1])Q) = 0, therefore

HomΛQ(SQ, (I(Cp−1)⊕Z[Cp−1])Q) ∼= HomΛQ(I(Cp−1)Q, I(Cp−1)Q⊕Z[Cp−1]Q).
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We deduce that the image of Λ-homomorphisms f : S → I(Cp−1)⊕ Z[Cp−1]

can have rank of at most p− 2. By utilising the split exact sequence

0→ Tp−1Q → ΛQ → Z[Cp−1]Q → 0,

in a similar manner, we see that the maximal rank of the image of a Λ-

homomorphism g : Λ → I(Cp−1) ⊕ Z[Cp−1] is p − 1. As p is surjective and

rkZ(I(Cp−1)⊕Z[Cp−1]) = (p−2) + (p−1) we can now deduce the result.

Let K1 = S ∩ ker(p) and K2 = Λ ∩ ker(p). We can now think of (4) as

a diagonal short exact sequence of the following form.

0→ K1 ⊕K2 → S ⊕ Λ→ p(S)⊕ p(Λ)→ 0.

Given our work in §6.4, we know that the modules K1 and K2 must be direct

sums of R(i) modules, namely K1 =
⊕m

i=1 R(ai) and K2 =
⊕n

j=1 R(bj) for

some ai, bj such that m+ n = 2(p− 1). Recall the exact sequence

0→
p−1⊕
i=1

R(i)→ Λ→ Z[Cp−1]→ 0,

from [7]. Consider the following commutative diagram with exact rows:

0
⊕p−1

i=1 R(i) Λ Z[Cp−1] 0

0
⊕n

j=1 R(bj) Λ p(Λ) 0.

Id

Now, as HomΛ(Tp−1, p(Λ)) = 0 and HomΛ(Tp−1,Z[Cp−1]) = 0, Id : Λ → Λ

induces and restricts to isomorphisms

Z[Cp−1] ∼= p(Λ),
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and
p−1⊕
i=1

R(i) ∼=
n⊕
j=1

R(bj),

respectively. Clearly n = p− 1 and so m = p− 1. We now wish to show that

p(S) ∼= I(Cp−1), to do this we require a proposition.

Proposition. Let J be a Z[Cp−1]-module such that

J ⊕ Z[Cp−1] ∼= I(Cp−1)⊕ Z[Cp−1],

as Z[Cp−1]-modules. Then J ∼= Z[Cp−1].

Proof. Let J satisfy the above hypothesis. By stabilising the augmentation

sequence on Cp−1, we construct the following exact sequence:

0→ I(Cp−1)⊕ Z[Cp−1]→ Z[Cp−1](2) → Z→ 0.

By substituting J ⊕ Z[Cp−1] for I(Cp−1) ⊕ Z[Cp−1], we construct the exact

sequence

0→ J ⊕ Z[Cp−1]
j−→ Z[Cp−1](2) → Z→ 0.

Let T = Z[Cp−1](2)/Im(j|Z[Cp−1]), taking quotients, we can now construct the

exact sequence

0→ J → T → Z→ 0.

By Lemma 3.2.1, T is projective and so the exact sequence

0→ Z[Cp−1]
j−→ Z[Cp−1](2) → T → 0,

splits, therefore T ⊕ Z[Cp−1] ∼= Z[Cp−1](2). Now, Z[Cp−1] satisfies the Eichler

condition and so by the Swan-Jacobinski theorem discussed in §5.2, Z[Cp−1]
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has stably free cancellation. Therefore, T ∼= Z[Cp−1] and we have a short

exact sequence

0→ J → Z[Cp−1]→ Z→ 0.

Up to sign, the augmentation mapping ε : Z[Cp−1]→ Z is the only surjective

homomorphism Z[Cp−1]→ Z and so J ∼= I(Cp−1) as claimed.

Using this proposition, we see that p(S) ∼= I(Cp−1) as a Z[Cp−1]-module.

Given that p(S)⊕p(Λ) ∼= I(Cp−1)⊕Z[Cp−1] as Λ-modules, Z[Cp] clearly acts

trivially on p(S), and so p(S) ∼= I(Cp−1) as a Λ-module. We now have an

exact sequence

0→
p−1⊕
i=1

R(ai)→ S
p|S−→ I(Cp−1)→ 0.

Now, K2
∼=
⊕p−1

i=1 R(i) and so

R(2)⊕R(1̂)⊕
p−1⊕
i=1

R(i) ∼= K1 ⊕K2
∼=

p−1⊕
j=1

R(aj)⊕
p−1⊕
i=1

R(i).

We can now use Proposition 6.3.1. to show that

R(2)⊕R(1̂) ∼=
p−1⊕
j=1

R(aj).

We have shown that we can express S as an extension Φ of I(Cp−1) by

R(2)⊕R(1̂):

Φ = (0→ R(2)⊕R(1̂)→ S → I(Cp−1)→ 0). (5)

Which we wish to compare to

E = (0→ R(2)⊕R(1̂)→ R(2)⊕ [y − 1)→ I(Cp−1)→ 0), (3)

in order to show that S ∼= R(2)⊕ [y − 1).
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7.1.2 Ext1Λ(I(Cp−1), R(2)⊕R(1̂))

Let Λ = Z[G(p, p− 1)] where p is an odd prime. We wish to find a practical

description for Ext1Λ(I(Cp−1), R(2) ⊕ R(1̂)), in order to compare the exten-

sions (3) and (5). We will use the exact sequence from Proposition 3.2.2

to describe Ext1Λ(I(Cp−1), R(2)⊕R(1̂)) as a quotient of the additive abelian

group EndDer(R(2)⊕R(1̂)). Recall the short exact sequence

E = (0→ R(2)⊕R(1̂)→ R(2)⊕ [y − 1)→ I(Cp−1)→ 0), (3)

Applying Proposition 3.2.2 to E , we find an exact sequence

HomDer(Ip−1, R(2)⊕R(1̂))→ HomDer(R(2)⊕ [y − 1), R(2)⊕R(1̂)) (6)

→ EndDer(R(2)⊕R(1̂))→ Ext1Λ(Ip−1, R(2)⊕R(1̂))

→ Ext1Λ(R(2)⊕ [y − 1), R(2)⊕R(1̂))→ . . .

where, for brevity, we denote I(Cp−1) by Ip−1. We now find practical de-

scriptions for some of the groups in this exact sequence, beginning with

HomDer(Ip−1, R(2) ⊕ R(1̂)). Let t ∈ Tp−1, then by Proposition 6.2.1

t · (1 + x + · · · + xp−1) = 0, and for i ∈ Ip−1 i · (1 + x + · · · + xp−1) = p · i.

Now, Ip−1 is a Λ-lattice, and so HomΛ(Ip−1, R(2) ⊕ R(1̂)) = 0, therefore

HomDer(Ip−1, R(2)⊕R(1̂)) = 0.

We now state without proof a proposition which will allow us to simplify

the exact sequence (6).
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Proposition. ([7], page 47, 5.8)

Ext1Λ(Ip−1, R(k)) =

0, if k = 1

Z/pZ, otherwise

To calculate the second term, we require a lemma.

Lemma 7.1.1. HomDer([y − 1), Tp−1) = 0

Proof. Recall that [y − 1) occurs in an exact sequence

0→ R(1̂)→ [y − 1)→ Ip−1 → 0.

Applying this exact sequence to Proposition 3.2.2 with N = Tp−1, we

construct the exact sequence

HomDer(Ip−1, Tp−1)→ HomDer([y − 1), Tp−1)→ HomDer(R(1̂), Tp−1)

→ Ext1Λ(Ip−1, Tp−1)→ Ext1Λ([y − 1), Tp−1)→ Ext1Λ(R(1̂), Tp−1).

By the above proposition, Ext1Λ(Ip−1, Tp−1) = (Z/pZ)p−2, using this result in

conjunction with Proposition 6.3.1 the above exact sequence becomes

0→ HomDer([y − 1), Tp−1)→ (Z/pZ)p−2 → (Z/pZ)p−2

→ Ext1Λ([y − 1), Tp−1)→ . . .

Therefore, if we can show that Ext1Λ([y − 1), Tp−1) = 0, our proof of the

lemma will be complete. Let j : Z[Cp] → Λ be the standard inclusion map

and let [x− 1)′ be the right Z[Cp]-module generated by x− 1, then

Tp−1
∼= [x− 1) ∼= j∗([x− 1)′),
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by Corollary 6.2.1.1. We also note that j∗([y − 1)) ∼= Z[Cp]
p−2, therefore,

by the Eckmann-Shapiro lemma,

Ext1Λ([y − 1), Tp−1) ∼= Ext1Λ([y − 1), j∗([x− 1)′))

∼= Ext1Z[Cp](Z[Cp]
p−2, [x− 1)′)

= 0.

This completes the proof.

Collecting our results, we can rewrite the exact sequence (6) as

0→ (Z/pZ)2 → (Z/pZ)p+1 → (Z/pZ)p−1 p∗−→ Ext1Λ(R(2)⊕[y−1), R(2)⊕R(1̂))→ . . .

We deduce that p∗ = 0, rewriting (6) a final time, we find the exact sequence

0→ HomDer(R(2)⊕ [y − 1), R(2)⊕R(1̂))
i∗−→ EndDer(R(2)⊕R(1̂))

δ−→ Ext1Λ(Ip−1, R(2)⊕R(1̂))→ 0.

We will now calculate Im(i∗), and use this information to give a practical de-

scription for Ext1Λ(Ip−1, R(2)⊕R(1̂)). When considered as a matrix, elements

f in EndΛ(R(2)⊕R(1̂)) take the form

f =

f1 : R(2)⊕R(2)→ R(2)⊕R(2) f2 :
⊕

i 6=1,2R(i)→ R(2)⊕R(2)

f3 : R(2)⊕R(2)→
⊕

i 6=1,2R(i) f4 :
⊕

i 6=1,2R(i)→
⊕

i 6=1,2R(i)

 .

By Proposition 6.3.1, the element represented by f in the derived module
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category, f takes the form

f =

f1 0

0 f4

 =



a1,1 + pZ a1,2 + pZ

a2,1 + pZ a2,2 + pZ
0

0

a3,3 + pZ

a4,4 + pZ
. . .

ap−1,p−1 + pZ


,

Here, elements in the matrix are zero if not otherwise specified. The elements

an,n+pZ are in EndDer(R(n)) for 3 ≤ n ≤ p−1. To find Im(i∗), take a general

element f ′ ∈ HomΛ(R(2)⊕ [y − 1), R(2)⊕R(1̂)) which, when considered as

a matrix takes the form

f ′ =

f ′1 : R(2)→ R(2)⊕R(2) f ′2 : [y − 1)→ R(2)⊕R(2)

f ′3 : R(2)→
⊕

i 6=1,2R(i) f ′4 : [y − 1)→
⊕

i 6=1,2R(i)

 .

We proved earlier in this section that HomDer([y − 1), Tp−1) = 0, and so the

element represented by f ′ in the derived module category, f
′

is given by

f
′
=

f1
′
: R(2)→ R(2)⊕R(2) 0 : [y − 1)→ R(2)⊕R(2)

0 : R(2)→
⊕

i 6=1,2R(i) 0 : [y − 1)→
⊕

i 6=1,2R(i)

 =

f1
′

0

0 0

 .

Now, i∗(f ′) = f ′ ◦ i = f ′ ◦ i and so

Im(i∗) = {


a1,1 + pZ 0 + pZ

a2,1 + pZ 0 + pZ
0

0 0

 ∈ EndDer(R(2)⊕R(1̂)) | a1,1, a2,1 ∈ Z}.
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We conclude that given an α in EndΛ(R(2)⊕R(1̂)), which takes the form

a1,1 a1,2 a1,3 a1,4 . . . a1,p−2 a1,p−1

a2,1 a2,2 a2,3 a2,4 . . . a2,p−2 a2,p−1

pa3,1 pa3,2 a3,3 a3,4 . . . a3,p−2 a3,p−1

pa4,1 pa4,2 pa4,3 a4,4 . . . a4,p−2 a4,p−1

...
...

...
...

. . .
...

...

pap−1,1 pap−1,2 pap−1,3 pap−1,4 . . . pap−1,p−2 ap−1,p−1


,

the element in EndDer(R(2) ⊕
⊕

i 6=1 R(i))/Im(i∗) represented by α, which

we denote by [α] is given by

[α] =



0 a1,2 + pZ

0 a2,2 + pZ
0

0

a3,3 + pZ

a4,4 + pZ
. . .

ap−1,p−1 + pZ


.

Using our rewritten version of (6), we know that

EndDer(R(2)⊕R(1̂)/Im(i∗) ∼= Ext1Λ(Ip−1, R(2)⊕R(1̂))

via the mapping [α] 7→ α∗(E), we have shown:

Theorem 7.1.2. Every element of Ext1Λ(Ip−1, R(2) ⊕ R(1̂)) can be written
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uniquely as α∗(E), where α ∈ EndΛ(R(2)⊕R(1̂)) is given by a matrix

α =



0 a1,2

0 a2,2

0

0

a3,3

a4,4

. . .

ap−1,p−1


,

where ai,j ∈ Z and 0 ≤ ai,j ≤ p− 1 for each i, j. Elements of the matrix are

zero if not otherwise specified.

Recall Φ, the short exact sequence (5), we deduce that Φ = α∗(E) for

some α ∈ EndΛ(R(2)⊕R(1̂)) of the above form. We now prove some lemmas

which allow us to place restrictions on the form of α.

Lemma. Assume that α∗(E) = Φ, then it can not be true that a1,2 = a2,2 = 0.

Proof. Recall that Φ takes the form

Φ = (0→ R(2)⊕
⊕
i 6=1

R(i)→ S → I(Cp−1)→ 0).

Assume that a1,2 = a2,2 = 0, then by Proposition 2.3.1 S must take the

form

S ∼= R(2)⊕R(2)⊕X,

for some Λ-module X. We know that S ⊕ Λ ∼= R(2)⊕ [y − 1)⊕ Λ, and so

HomDer(R(2)⊕R(2)⊕X ⊕ Λ, R(2)) ∼= HomDer(R(2)⊕ [y − 1)⊕ Λ, R(2)),
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but

HomDer(R(2)⊕R(2)⊕X ⊕ Λ, R(2)) ∼= (Z/pZ)2 ⊕HomDer(X,R(2)),

while

HomDer(R(2)⊕ [y − 1)⊕ Λ, R(2)) ∼= Z/pZ.

This gives a contradiction, completing the proof.

Similarly, we can prove the following:

Lemma. Assuming that α∗(E) = Φ, it can not be true that ai,i = 0 for any

i satisfying 3 ≤ i ≤ p− 1.

7.1.3 Realising the matrices as automorphisms

In this section, we will prove that there must exist an automorphism

α : R(2)⊕R(1̂)→ R(2)⊕R(1̂),

such that Φ = α∗(E), by the Five lemma, this results leads to the conclusion

that R(2)⊕ [y − 1) ∼= S. Let α be a general element of EndΛ(R(2)⊕R(1̂)),

when considered as a matrix, α takes the form

a1,1 a1,2 a1,3 a1,4 . . . a1,p−2 a1,p−1

a2,1 a2,2 a2,3 a2,4 . . . a2,p−2 a2,p−1

pa3,1 pa3,2 a3,3 a3,4 . . . a3,p−2 a3,p−1

pa4,1 pa4,2 pa4,3 a4,4 . . . a4,p−2 a4,p−1

...
...

...
...

. . .
...

...

pap−1,1 pap−1,2 pap−1,3 pap−1,4 . . . pap−1,p−2 ap−1,p−1


.
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Define a map

k : EndΛ(R(2)⊕
⊕
i 6=1

R(i))→ (Z/pZ)p−1,

by

α 7→ (a1,2 + pZ, a2,2 + pZ, a3,3 + pZ, a4,4 + pZ, . . . , ap−1,p−1 + pZ).

By §7.1.2, EndDer(R(2) ⊕ R(1̂))/Im(i∗) ∼= Ext1Λ(Ip−1, R(2) ⊕ R(1̂)) via the

pushout map δ, and so if α, β ∈ EndΛ(R(2) ⊕ R(1̂)), then [α] = [β] if and

only if k(α) = k(β). Therefore δ(α) = δ(β) if and only if k(α) = k(β). We

noted in the lemmas at the end of the previous section that Φ = α∗(E) for

some α such that k(α) can have at most one zero entry, and ai,i+pZ 6= 0+pZ

for 3 ≤ i ≤ p − 1, therefore, if we can find an automorphism α for each of

these cases, it must be true that S ∼= R(2)⊕ [y − 1) by the Five lemma.

Define the set of units

U(a1,2,a2,2,...,ap−1,p−1)
= {α ∈ AutΛ(R(2)⊕R(1̂)) | k(α) =

(a1,2 + pZ, a2,2 + pZ, a3,3 + pZ, . . . , ap−1,p−1 + pZ)}.

To prove that S ∼= R(2) ⊕ [y − 1), we will show that U(a1,2,a2,2,...,ap−1,p−1)
is

non-empty whenever a1,2, a2,2 are not both zero (modp) and ai,i 6≡ 0(modp)

for 3 ≤ i ≤ p− 1. We begin by noting some generating elements:

f(n,1,1,...,1) =


1 n

0 1
0

0 Ip−3

 ∈ U(n,1,1,...,1),
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f(1,0,1,...,1) =


0 1

1 0
0

0 Ip−3

 ∈ U(1,0,1,...,1),

f(0,2,1,1,...,1) =



p+1
2

0

−1 2

1 0 . . . 0

0 0 . . . 0

0 p

0 0
...

...

0 0

1

1
. . .

1


∈ U(0,2,1,...,1).

Note that

U(a1,2,a2,2,...,ap−1,p−1) · f(0,2,1,...,1) ⊂ U(2a1,2,2a2,2,a3,3,...ap−1,p−1).

Therefore, by considering automorphisms of the form

f(n,1,1,...,1) · fa(0,2,1,1,...,1) and f(1,0,1,...,1) · fa(0,2,1,1,...,1),

one sees easily that U(a1,2,a2,2,1,1...,1) is non-empty whenever a1,2, a2,2 are not

both zero.

We now note two more generating elements:

f(0,1,2,1,...,1) =



p+1
2

0

0 1

1 0 . . . 0

0 0 . . . 0

p 0

0 0
...

...

0 0

2

1
. . .

1


∈ U(0,1,2,1,...,1),
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f(0,1, p+1
2
,2,1,...,1) =



1 0

0 1
0

0

p+1
2

1

p 2

1
. . .

1


∈ U(0,1, p+1

2
,2,1,...,1).

By considering automorphisms of the form fa(0,1,2,1,...,1), we see that

U(0,1,a3,3,1,...,1) is non-empty whenever a3,3 6≡ 0(modp).

Now, note that f(0,1,2,1,...,1) · f(0,1, p+1
2
,2,1,...1) ∈ U(0,1,1,2,1,...,1). If we define the

automorphism f(0,1,1,2,1,...,1) = f(0,1,2,1,...,1) · f(0,1, p+1
2
,2,1,...1), then by considering

automorphisms of the form fa(0,1,1,2,1,...,1) we can see similarly that

U(0,1,1,a4,4,...,1) is non-empty whenever a4,4 6≡ 0(modp).

Repeating this process, we see that U(0,1,1,...ai,i,...,1) is non-empty whenever

ai,i 6≡ 0(modp) for 3 ≤ i ≤ p− 1. Now, note that

U(0,1,a3,3,1,...,1) · U(0,1,1,a4,4,...,1) · · · · · U(0,1,1,...,ap−1,p−1) ⊂ U(0,1,a3,3,a4,4,...,ap−1,p−1).

We deduce that

U(0,1,a3,3,a4,4,...,ap−1,p−1) is non-empty whenever ai,i 6≡ 0(modp) 3 ≤ i ≤ p− 1.

Finally, we note that

f(a1,2,a2,2,1,...,1) · U(0,1,a3,3,a4,4,...,ap−1,p−1) ⊂ U(a1,2,a2,2,a3,3,a4,4,...,ap−1,p−1).

We have shown:
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Proposition. U(a1,2,a2,2,...,ap−1,p−1)
is non-empty whenever a1,2, a2,2 are not

both zero (modp) and ai,i 6≡ 0(modp) for 3 ≤ i ≤ p− 1

Therefore, there exists an automorphism α ∈ AutΛ(R(2) ⊕
⊕

i 6=1R(i))

such that Φ = α∗(E). In conclusion:

Theorem 7.1.3. S ∼= R(2)⊕ [y − 1) and so [R(2)⊕ [y − 1)] is straight over

Λ = Z[G(p, p− 1)] for any odd prime p.

7.2 R(2)⊕ [y − 1) is full

In this section, we will show that for any odd prime p, R(2)⊕ [y − 1) is full

over Λ = Z[G(p, p − 1)]. We will begin by showing that R(2) and [y − 1)

are both full Λ-modules, before building upon these results to show that

R(2)⊕ [y − 1) is full.

To show that R(2) is full, we must find the kernel of the Swan homo-

morphism discussed in §3.3, SR(2) : AutDer(R(2)) → K̃0(Λ). Recall that

EndΛ(R(2)) = {nIdR(2) | n ∈ Z} ∼= Z, and EndDer(R(2)) ∼= Z/pZ, so

AutDer(R(2)) = {nIdR(2) | 1 ≤ n < p} ∼= (Z/pZ)∗, the units of Z/pZ. Recall

the exact sequence

0→
p−1⊕
i=1

R(i)
ι−→ Λ→ Z[Cp−1]→ 0,

which is in fact a quasi-augmentation sequence which satisfies the condition

that HomΛ(Z[Cp−1],
⊕p−1

i=1 R(i)) = 0. Using this exact sequence, we can form

an exact sequence

0→ R(2)
ι|R(2)−−−→ Λ→ Λ/ι(R(2))→ 0.
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In order to find Ker(SR(2)), we must answer the question: ’for which n ∈

(Z/pZ)∗ is lim−→(nIdR(2), ι|R(2)) stably free?’ As Λ satisfies the Eichler condi-

tion, and so by the Swan-Jacobinski Theorem satisfies SFC, we simply need

to find when lim−→(nIdR(2), ι|R(2)) ∼= Λ. Using the Five lemma, it is immedi-

ately obvious that for n = 1, n = p − 1, lim−→(nIdR(2), ι|R(2)) ∼= Λ. We will

show that these are the only two choices for n ∈ (Z/pZ)∗ such that this

isomorphism holds.

Let the mapping

ñIdR(2) :

p−1⊕
i=1

R(i)→
p−1⊕
i=1

R(i),

be defined by

(r1, r2, r3, . . . , rp−1) 7→ (r1, nr2, r3, . . . rp−1),

by Proposition 2.3.2, lim−→(ñIdR(2), ι) ∼= lim−→(nIdR(2), ι|R(2)). We can there-

fore use the Milnor square of the above quasi-augmentation sequence which

also satisfies the extra condition HomΛ(Z[Cp−1],
⊕p−1

i=1 ) = 0 to calculate

Ker(SR(2)). The Milnor square takes the form

Λ EndΛ(Z[Cp−1])

EndΛ(
⊕p−1

i=1 R(i)) EndDer(
⊕p−1

i=1 R(i)).

i1

i2 j1

j2

Recall that in matrix form, EndΛ(
⊕p−1

i=1 R(i)) ∼= Tp−1(Z, p) and EndDer(
⊕p−1

i=1 R(i))

is the ring of (p−1)×(p−1) matrices with elements of Z/pZ on the diagonal,

and zeroes elsewhere. The map j1 : EndΛ(
⊕p−1

i=1 R(i))→ EndDer(
⊕p−1

i=1 R(i)),

80



when considered in matrix form is given by
a1,1 a1,2 . . . a1,p−1

pa2,1 a2,2 . . . a2,p−1

...
...

. . .
...

pap−1,1 pap−1,2 . . . ap−1,p−1

 7→

a1,1 + pZ

a2,2 + pZ
. . .

ap−1,p−1 + pZ

 .

By Theorem 4.3.2, lim−→(ñIdR(2), ι) ∼= M(EndΛ(Z[Cp−1]), Tp−1, ñIdR(2)). As

a result of our work in §4.2, projective modules of typeM(EndΛ(Z[Cp−1]), Tp−1, h)

are in 1− 1 correspondence with the quotient set

j2(EndΛ(Z[Cp−1])∗)\AutDer(
p−1⊕
i=1

R(i))/j1(T ∗p−1).

To show that lim−→(ñIdR(2), ι) � Λ when n 6≡ ±1(modp) it is therefore sufficient

to show that the class of ĨdR(2) is different to that of ñIdR(2) in the above

quotient set. In order to do this, we begin by simplifying our description of

the quotient set.

Lemma.

j2(EndΛ(Z[Cp−1])∗)\AutDer(
p−1⊕
i=1

R(i))/j1(T ∗p−1) ∼= AutDer(

p−1⊕
i=1

R(i))/j1(T ∗p−1)

Proof. Take a unit f ∈ EndΛ(Z[Cp−1]), f clearly lifts to a unit fλ ∈ EndΛ(Λ),

which in turn lifts to an f̃ ∈ EndΛ(
⊕p−1

i=1 R(i)) such that

0
⊕p−1

i=1 R(i) Λ Z[Cp−1] 0

0
⊕p−1

i=1 R(i) Λ Z[Cp−1] 0,

f̃ fλ f
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commutes. By the Five lemma, f̃ is an isomorphism, and by our construction

of the Milnor square, j1(f̃) = j2(f). Therefore, there exists an f̃ ∈ T ∗p−1 such

that j1(f̃) = j2(f), completing the proof.

To show that lim−→(ñIdR(2), ι) � Λ for n 6≡ ±1(modp), it is now sufficient

to show that no unit in T ∗p−1 has (1(modp), n(modp), 1(modp), . . . , 1(modp))

on the diagonal. Basic considerations relating to the determinant show that

any such matrix would have determinant n(modp), and so if n 6≡ ±1(modp),

lim−→(ñIdR(2), ι) � Λ. We have shown:

Proposition. Over Λ = Z[G(p, p− 1)], Ker(SR(2)) = {±Id}.

Now, {±Id} ⊂ Im(vR(2)) and so Im(vR(2)) = Ker(SR(2)), concluding:

Proposition. Over Λ = Z[G(p, p− 1)], R(2) is full.

We will now show that [y−1) is full, to do this, we will first consider the

problem over Z[Cp−1]. Let [y− 1)′ be the right Z[Cp−1]-module generated by

(y − 1).

Proposition 7.2.1. Over Z[Cp−1], [y − 1)′ is full and

S[y−1)′ : AutDer([y − 1)′)→ K̃0(Z[Cp−1])

is the zero map.

Proof. Consider the standard augmentation sequence

0→ [y − 1)′ → Z[Cp−1]
ε−→ Z→ 0,

where ε(y) = 1. By Proposition 3.2.4, AutDer([y − 1)′) ∼= AutDer(Z), and

so AutDer([y − 1)′) = {nId[y−1)′ | gcd(n, p − 1) = 1; 1 ≤ n ≤ p − 2}. We
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will find a representative for each element of AutDer([y − 1)′) which is also

an element of AutΛ([y − 1)′), and our result will follow by the Five lemma.

Fix an r such that 1 ≤ r ≤ p− 2 and gcd(r, p− 1) = 1. Let

(1 + y + · · ·+ yr−1) : [y − 1)′ → [y − 1)′

be the Z[Cp−1]-homomorphism given by multiplication by (1+y+ · · ·+yr−1).

Firstly, we will show that (1 + y + · · ·+ yr−1) : [y − 1)′ → [y − 1)′ is an

automorphism by showing that y − 1 lies in its image. By assumption, r is

coprime to p− 1, so there exists an s such that rs ≡ 1(mod(p− 1)). Clearly

yr − 1, y2r − yr, . . . , ysr − y(s−1)r are elements of Im(1 + y + · · ·+ yr−1), and

their sum is y − 1. Therefore (1 + y + · · ·+ yr−1) ∈ AutΛ([y − 1)′).

To complete the proof, it remains only to show that

(1 + y + · · ·+ yr−1) = rId ∈ EndDer([y − 1)′).

To prove this, it is sufficient to show that

−r + (1 + y + · · ·+ yr−1) ∈ [y − 1)′.

But

−r + (1 + y + · · ·+ yr−1) = −(r − 1) + y + y2 + · · ·+ yr−1,

= (y − 1) + (y2 − 1) + · · ·+ (yr−1 − 1) ∈ [y − 1)′.

Therefore, each f ∈ AutDer([y − 1)′) lifts to an automorphism over Λ and

S[y−1)′ = 0, as required.

Before we can extend this proposition to Λ-modules, we first need a

description for EndDer([y − 1)).
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Proposition 7.2.2. Over Λ = Z[G(p, p− 1)],

EndDer([y − 1)) = {nId[y−1) | 0 ≤ n ≤ p− 2} ∼= Z/(p− 1)Z.

Proof. Consider the exact sequence of Λ-modules and homomorphisms

0→ [y − 1)→ Λ→ [Σy)→ 0,

where Σy = 1 + y + · · ·+ yp−2. By Proposition 3.2.2,

EndDer([y − 1)) ∼= Ext1Λ([Σy), [y − 1)).

Let j : Z[Cp−1] ↪→ Λ be the standard inclusion, and let [y − 1)′ be the right

Z[Cp−1]-module generated by (y − 1). By the Eckmann-Shapiro lemma,

Ext1Λ([Σy), [y − 1)) ∼= Ext1Z[Cp−1](j
∗([Σy)), [y − 1)′).

We claim that j∗([Σy)) ∼= Z⊕Z[Cp−1]. Fix the basis {Σy,Σy ·x, . . . ,Σy ·xp−1}

for [Σy). The action of y on the basis gives rise to a representation of j∗([Σy))

of the form  1 0

0 X

 ∈ GLp(Z),

where X is a (p− 1)× (p− 1) matrix with exactly one non-zero element in

each row and column, and every non-zero element is 1. Clearly X represents

a Z[Cp−1]-module which is isomorphic to Z[Cp−1], so j∗([Σy)) ∼= Z⊕ Z[Cp−1]
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as claimed. Therefore

EndDer([y − 1)) ∼= Ext1Λ([Σy), [y − 1))

∼= Ext1Z[Cp−1](j
∗[Σy), [y − 1)′)

∼= Ext1Z[Cp−1](Z⊕ Z[Cp−1], [y − 1)′)

∼= Ext1Z[Cp−1](Z, [y − 1)′)

∼= Z/(p− 1)Z.

Here, the final isomorphism follows from Proposition 3.2.4 and the exis-

tence of the exact sequence

0→ [y − 1)′ → Z[Cp−1]→ Z→ 0.

We can now extend Proposition 7.2.1 to an analogous result over Λ.

Proposition 7.2.3. Over Λ, [y − 1) is full and

S[y−1) : AutDer([y − 1))→ K̃0(Z[Cp−1])

is the zero map.

Proof. Let j : Z[Cp−1] → Λ be the standard inclusion. Fix an r such that

1 ≤ r ≤ p− 2 and gcd(r, p− 1) = 1. By Proposition 7.2.1 a commutative

diagram of Z[Cp−1] modules and homomorphisms with exacts rows of the

form

0 [y − 1)′ Z[Cp−1] Z 0

0 [y − 1)′ Z[Cp−1] Z 0,

(1+y+···+yr−1) ∼ Id
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exists. By applying j∗ to the above diagram, we construct a second com-

mutative diagram with exact rows, this time made up of Λ-modules and

homomorphisms,

0 [y − 1) Λ [Σy) 0

0 [y − 1) Λ [Σy) 0,

(1+y+···+yr−1) ∼ Id

where Σy = 1 + y + · · ·+ yp−2. By Proposition 7.2.2,

AutDer([y − 1)) = {nId[y−1) | gcd(n, p− 1) = 1, 1 ≤ n ≤ p− 2},

and (1 + y + · · ·+ yr−1) = r ∈ EndDer([y − 1)) by the same argument used

over Z[Cp−1]. This leads to our result.

We have shown that both R(2) and [y− 1) are full Λ-modules. In order

to extend these results to R(2)⊕ [y − 1), we require a lemma.

Lemma 7.2.4. Let A,B be full Λ-modules. If A,B satisfy the following

properties:

• HomDer(A,B) = 0;

• HomDer(B,A) = 0;

• SB : AutDer(B)→ K̃0(Λ) is the zero mapping.

Then A⊕B is full.

Proof. Let f be an element of Ker(SA⊕B), then

f =

f1 : A→ A f2 : B → A

f3 : A→ B f4 : B → B

 =

f1 0

0 f4

 ∈ AutDer(A⊕B),
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So f1 ∈ AutDer(A) and f4 ∈ AutDer(B). Now, SA⊕B(f) = SA(f1) + SB(f4)

by Proposition 2.3.1, by our hypothesis, SB = 0 and so SA⊕B(f) = SA(f1).

We assumed that f ∈ Ker(SA⊕B) and so SA(f1) = 0, but A is full and so

f1 ∈ Im(vA) = Ker(SA). Finally, f4 ∈ AutDer(B), but SB = 0 and B is full,

therefore f 4 ∈ Ker(SB) = Im(vB). Concluding, because f1 ∈ Im(vA) and

f 4 ∈ Im(vB), f ∈ Im(vA⊕B), completing the proof.

By Lemma 7.1.1 and Proposition 7.2.3, HomDer([y − 1), R(2)) = 0

and S[y−1) = 0. To utilise the above lemma to show that R(2)⊕ [y−1) is full,

it remains only to show that HomDer(R(2), [y − 1)) = 0, we instead prove

the following, stronger result:

Proposition. HomDer(Tp−1, [y − 1)) = 0.

Proof. Recall the exact sequence

0→ Tp−1 → Λ→ Z[Cp−1]→ 0,

from [7]. By applying Proposition 3.2.2 to the above exact sequence with

N = [y − 1), we see that

HomDer(Tp−1, [y − 1)) ∼= Ext1Λ(Z[Cp−1], [y − 1)).

Let j : Z[Cp−1] ↪→ Λ be the standard inclusion mapping. If [y − 1)′ is the

right Z[Cp−1]-module generated by (y − 1), then j∗([y − 1)′) = [y − 1), and

j∗(Z[Cp−1]) = Z[Cp−1]. Therefore, by the Eckmann-Shapiro lemma
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HomDer(Tp−1, [y − 1)) ∼= Ext1Λ(Z[Cp−1], [y − 1))

∼= Ext1Z[Cp−1](Z[Cp−1], [y − 1)′)

= 0.

Collecting our results:

Theorem 7.2.5. R(2)⊕ [y − 1) is full over Λ = Z[G(p, p− 1)].
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8 The condition M(7)

In this chapter, we will begin by defining a condition M(p) over Z[G(p, p−1)]

where p is an odd prime, which we will use to give a practical sufficient

condition for the D(2)-property to hold over Z[G(p, p − 1)]. We will then

prove a theorem which significantly shortens the calculations necessary to

show that the condition M(p) holds. We will close the chapter by proving

that the condition M(7) holds, which in turn leads to one of our main results,

namely that D(2)-property holds for the group G(7, 6).

8.1 The condition M(p)

Let Λ = Z[G(p, p − 1)] where p is an odd prime, we define the condition

M(p) on Λ as follows:

M(p) : The third syzygy of Z over Λ = Z[G(p, p − 1)] is the stable

module [R(2)⊕ [y − 1)].

Basic considerations relating to the rank of R(2)⊕ [y−1) as a Z-module

show that if M(p) is satisfied, then R(2) ⊕ [y − 1) is in fact a minimal

representative for Ω
G(p,p−1)
3 (Z). Therefore, if M(p) is satisfied, our results

relating to R(2)⊕ [y − 1) in §7 mean that all three conditions in Theorem

5.5.1 are satisfied, we have shown:

Theorem 8.1.1. Let Λ = Z[G(p, p−1)], if Λ satisfies M(p), then G(p, p−1)

satisfies the D(2)-property.

It has already been shown [12] that M(5) is satisfied, this leads to one

of our main theorems.
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Theorem 8.1.2. G(5, 4) satisfies the D(2)-property

The remainder of this thesis will be devoted to showing that M(7) is

satisfied.

8.2 A theorem relating to the condition M(p)

In this section, we take p to be an odd prime and let Λ = Z[G(p, p− 1)]. We

wish to study Ext1Λ(Z[Cp−1], R(n̂)) by expressing its elements as pushouts of

elements of Ext1Λ(Z[Cp−1],
⊕p−1

i=1 R(i)). Recall the exact sequence,

Ψ = (0→
p−1⊕
i=1

R(i)
j−→ Λ→ Z[Cp−1]→ 0),

from [7]. Applying Proposition 3.2.2 to Ψ with N = R(n̂), we find that

HomDer(

p−1⊕
i=1

R(i), R(n̂)) ∼= Ext1Λ(Z[Cp−1], R(n̂)),

via the map

δ∗ : HomDer(

p−1⊕
i=1

R(i), R(n̂))→ Ext1Λ(Z[Cp−1], R(n̂)),

f 7→ f∗(Ψ).

Given our discussion in §6.3, we can explicitly describe the additive

groupsHomΛ(
⊕p−1

i=1 R(i), R(n̂)) andHomDer(
⊕p−1

i=1 R(i), R(n̂)) in matrix form:

Let f ∈ HomΛ(
⊕p−1

i=1 R(i), R(n̂)), we can think of f as a (p−2)×(p−1)
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matrix such that:

(f)i,j ∈

HomΛ(R(j), R(i)), if i ≤ n− 1

HomΛ(R(j), R(i+ 1)), if i ≥ n.

This is equivalent to

(f)i,j ∈



Z, if i ≤ n− 1 and j ≥ i

pZ, if i ≤ n− 1 and i ≥ j + 1

Z, if i ≥ n and j ≥ i+ 1

pZ, if i ≥ n and i+ 1 ≥ j + 1.

The representative of f ∈ HomDer(
⊕p−1

i=1 R(i), R(n̂)), f can then be ex-

pressed as a (p− 2)× (p− 1) matrix such that

(f)i,j ∈


Z/pZ, if i = j and i ≤ n− 1

Z/pZ, if i+ 1 = j and i ≥ n

{0}, otherwise.

Note that the standard projection map

HomΛ(

p−1⊕
i=1

R(i), R(n̂))→ HomDer(

p−1⊕
i=1

R(i), R(n̂))

takes the obvious form when considered in matrix form.

Consider an f ∈ HomΛ(
⊕p−1

i=1 R(i), R(n̂)) in matrix form, we define an

additive group homomorphism

k : HomΛ(

p−1⊕
i=1

R(i), R(n̂))→ (Z, pZ)p−2,
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by

f 7→ (f1,1 + pZ, f2,2 + pZ, . . . , fn−1,n−1 + pZ, fn,n+1 + pZ, . . . , fp−2,p−1 + pZ).

Note that k descends to an isomorphism in the derived module category i.e.

k(f) = k(f ′) if and only if f = f ′. Therefore k(f) = k(f ′) if and only

if δ∗(f) = δ∗(f
′). It is now clear that for each Φ ∈ Ext1Λ(Z[Cp−1], R(n̂)),

there exists an f ∈ HomΛ(
⊕p−1

i=1 R(i), R(n̂)) such that Φ = δ∗(f), moreover

δ∗(f) = δ∗(f
′) if and only if k(f) = k(f ′), we therefore classify Ext1Λ(Z[Cp−1], R(k̂))

by the k-invariants of f , which we define to be

f1,1 + pZ, f2,2 + pZ, . . . , fn−1,n−1 + pZ, fn,n+1 + pZ, . . . , fp−2,p−1 + pZ.

We aim to show that if there exists a short exact sequence

S = (0→ R(n̂)→ K → Z[Cp−1]→ 0),

with all non-zero k-invariants, then there exists an imbedding i : R(n) ↪→ Λ

such that K ∼= Λ/i(R(n)).

We begin by defining the set U(x1,x2,...,xn−1,xn+1,xn+2,...xp−1) as follows:

{u ∈ Tp−1(Z, p)∗ |u has (y1, y2, . . . , yn−1, ?, yn+1, . . . , yp−1) on the diagonal

and yi ≡ xi(modp) for all i},

where ? can represent any integer.

Lemma. For any (p− 2)-tuple of integers (c1, . . . cn−1, cn+1, . . . , cp−1) which

are not in pZ, the set U(c1,...cn−1,cn+1,...,cp−1) is non-empty.
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Proof. By Bézout’s lemma, U(c1,1,1,... ), U(1,c2,1,...,1), . . . U(1,1,...,1,cp−1) are all non-

empty. By taking the product of an element from each of these sets, we

construct an element of U(c1,...ck−1,ck+1,...,cp−1), completing the proof.

Fix a (p−2)-tuple of integers (d1, d2, . . . , dn−1, dn+1, . . . , dp−1) which are

not in pZ. We will find an f ∈ HomΛ(
⊕p−1

i=1 R(i), R(n̂)) such that

k(f) = (d1 + pZ, d2 + pZ, . . . , dn−1 + pZ, dn+1 + pZ, . . . , dp−1 + pZ),

and δ∗(f) takes the form

δ∗(f) = (0→ R(n̂)→ Λ/R(n)→ Z[Cp−1]→ 0.

By the lemma, U(d1,d2,...,dn−1,dn+1,...,dp−1) is non-empty, and so contains an ele-

ment u, we can therefore push out Ψ along u to give the following.

E = (0
⊕p−1

i=1 R(i) Λ Z[Cp−1] 0)

u∗(E) = (0
⊕p−1

i=1 R(i) Λ Z[Cp−1] 0),

j

u Id

i

where the central mapping is an isomorphism by the Five lemma. Define

h ∈ HomΛ(
⊕p−1

i=1 R(i), R(n̂)) to be the (p− 2)× (p− 1) matrix described by

(h)i,j =


1, i = j and i ≤ n− 1

1, i+ 1 = j and n ≥ k

0, otherwise.

We can simply think of h as the mapping

h : R(n̂)⊕R(n)→ R(n̂)

(n̂, n) 7→ n̂.
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By Proposition 2.3.3, if i :
⊕p−1

i=1 R(i) ↪→ Λ is an injection, then an

isomorphism lim−→(h, i) ∼= Λ/i(R(n)) exists. This leads to the conclusion that

lim−→(h ◦ u, j) ∼= Λ/i(R(n)). But

k(h ◦ u) = (d1 + pZ, d2 + pZ, . . . , dn−1 + pZ, dn+1 + pZ, . . . , dp−1 + pZ).

Therefore, if we define f = h ◦ u, then

k(f) = (d1 + pZ, d2 + pZ, . . . , dn−1 + pZ, dn+1 + pZ, . . . , dp−1 + pZ),

and

δ∗(f) = 0→ R(k̂)→ Λ/i(R(n))→ Z[Cp−1]→ 0.

Concluding:

Theorem 8.2.1. For every extension

O → R(n̂)→ K → Z[Cp−1]→ 0,

with all non-zero k-invariants, there exists an imbedding i : R(n) → Λ such

that K ∼= Λ/i(R(n)).

This theorem is useful in showing that the condition M(p) holds, as if we

can show that a surjective homomorphism π : Λ→ R(1) exists with kernel K,

and that K is an extension of Z[Cp−1] by R(2̂) with all non-zero k-invariants,

then K ∼= Λ/R(2). Given that the Kernel of the augmentation map ε : Λ→ Z

is isomorphic to R(1)⊕ [y − 1) [7], the isomorphism K ∼= Λ/R(2) then leads

to the conclusion that Ω
G(p,p−1)
3 (Z) = [R(2)⊕ [y − 1)]. This is the scheme of

proof which was used in [12] to show that the condition M(5) holds. We will

use this scheme later in this chapter to show that the condition M(7) holds.
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8.3 T6(Z, 7)

For the remainder of this thesis, we will work towards a proof that the con-

dition M(7) holds. Fix the presentation

G(7, 6) =< x, y | y6 = 1, x7 = 1, yx = x3y >,

for the group G(7, 6). Let Λ be the integral group ring of G(7, 6). In this

section, by studying the representation λ : G(7, 6) → T6(Z, 7)∗ described in

§6.2, we will find characteristic equations for each of the rows of T6(Z, 7). We

will then use these characteristic equations to find representations for each

of the rows of T6(Z, 7). For brevity, we abbreviate T6(Z, 7) to T6.

As in §6.2, we take ζ to be a primitive 7th root of unity, we define the

mapping θ : Z(ζ)→ Z(ζ) to be the obvious extension from the map defined

by ζ 7→ ζ3. We then define a right action of G(7, 6) on Z(ζ) by,

Z(ζ)×G(7, 6)→ Z(ζ),

z · (xrys) = θ−s(z · ζ−r).

Now, as Z(ζ) ∼=Z Z6 with Z-basis given by

{(ζ − 1)5, (ζ − 1)4, (ζ − 1)3, (ζ − 1)2, (ζ − 1)1, 1},

the above action defines a group representation λ : G(7, 6) → GL6(Z). In

fact, as discussed in §6.2, λ is a group homomorphism λ : G(7, 6)→ T6 which

extends to a ring isomorphism λ̃∗ : C6(Z(ζ), θ)
∼−→ T6(Z, 7). One can calculate

λ(x−1) and λ(y−1) by hand, giving the following result:

95



λ(x−1) =



−6 1 0 0 0 0

−21 1 1 0 0 0

−35 0 1 1 0 0

−35 0 0 1 1 0

−21 0 0 0 1 1

−7 0 0 0 0 1


,

λ(y−1) =



5 −5 3 −1 0 0

35 −31 18 −6 0 0

105 −84 48 −17 1 0

175 −126 70 −26 3 0

161 −105 56 −21 3 0

70 −42 21 −7 0 1


.

The Λ-action on T6 is given by

t · x = t · λ(x−1),

and

t · y = t · λ(y−1).

Let v1 = (20, −10, 4, −1, 0, 0) ∈ T6. One can easily check that

v1 · y = −v1 · (1 + x). Now, [v1) is a right Λ-module with Λ-action given

by the representation λ. Also, since v1 ∈ R(1), [v1) ⊂ R(1), but R(1) is

generated by (1, 0, 0, 0, 0, 0) and
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(20, −10, 4, −1, 0, 0)



−1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−21 0 0 0 0 0

0 0 0 0 0 0


= (1, 0, 0, 0, 0, 0),

therefore [v1) = R(1). We deduce that a six-dimensional Λ-lattice M is

isomorphic to R(1) if and only if the following conditions are satisfied:

• M(Σ): m · (1 + x+ x2 + · · ·+ x6) = 0 for each m ∈M ;

• M(1): M has a generator v1 such that v1 · y = −v1 · (1 + x).

Similarly, if we define v2 = (7, −1, 0, 0, 0, 0) ∈ T6, then it is easily

checked that v2 · y = v2 · (1 + x)2 and [v2) = R(2). We deduce that a six-

dimensional Λ-lattice M is isomorphic to R(2) if and only if the following

conditions are satisfied:

• M(Σ): m · (1 + x+ x2 + · · ·+ x6) = 0 for each m ∈M ;

• M(2): M has a generator v2 such that v2 · y = v2 · (1 + x)2.

Similarly, if we define v3 = (21, −7, 1, 1, −1, 0), then v3 · y = −v3 and

[v3) = R(3). We deduce that a six-dimensional Λ-lattice M is isomorphic to

R(3) if and only if the following conditions are satisfied:

• M(Σ): m · (1 + x+ x2 + · · ·+ x6) = 0 for each m ∈M ;
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• M(3): M has a generator v3 such that v3 · y = −v3.

Similarly, if we define v4 = (0, 0, 0, 1, −2, 2), then v4 · y = v4 · (1 + x) and

[v4) = R(4). We deduce that a six-dimensional Λ-lattice M is isomorphic to

R(4) if and only if the following conditions are satisfied:

• M(Σ): m · (1 + x+ x2 + · · ·+ x6) = 0 for each m ∈M ;

• M(4): M has a generator v4 such that v4 · y = v4 · (1 + x).

Similarly, if we define v5 = (77, −49, 28, −14, 6, −2), then one can easily

check that v5 · y = −v5 · (1 + x)2 and [v5) = R(5). We deduce that a six-

dimensional Λ-lattice M is isomorphic to R(5) if and only if the following

conditions are satisfied:

• M(Σ): m · (1 + x+ x2 + · · ·+ x6) = 0 for each m ∈M ;

• M(5): M has a generator v5 such that v5 · y = −v5 · (1 + x)2.

Finally, if we define v6 = (7, −7, 7, −7, 7, −6), then v6 · y = v6 and

[v6) = R(6). We deduce that a six-dimensional Λ-lattice M is isomorphic to

R(6) if and only if the following conditions are satisfied:

• M(Σ): m · (1 + x+ x2 + · · ·+ x6) = 0 for each m ∈M ;

• M(6): M has a generator v6 such that v6 · y = v6.

Using the above characteristic equations, we can find representations

θk : Z[G(7, 6)]→ T6 for each row R(k) of T6. We give these explicitly now:
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θ1(x−1) =



0 0 0 0 0 −1

1 0 0 0 0 −1

0 1 0 0 0 −1

0 0 1 0 0 −1

0 0 0 1 0 −1

0 0 0 0 1 −1


, θ1(y−1) =



−1 1 0 0 0 0

−1 1 0 −1 1 0

0 1 0 −1 1 0

0 1 −1 0 1 0

0 1 −1 0 1 −1

0 0 0 0 1 −1


,

θ2(x−1) =



0 0 0 0 0 −1

1 0 0 0 0 −1

0 1 0 0 0 −1

0 0 1 0 0 −1

0 0 0 1 0 −1

0 0 0 0 1 −1


, θ2(y−1) =



1 −1 0 0 1 −1

2 −2 0 1 0 −1

1 −2 0 2 −1 −1

0 −2 1 1 −1 −1

0 −2 2 0 −1 0

0 −1 1 0 −1 1


,

θ3(x−1) =



0 0 0 0 0 −1

1 0 0 0 0 −1

0 1 0 0 0 −1

0 0 1 0 0 −1

0 0 0 1 0 −1

0 0 0 0 1 −1


, θ3(y−1) =



−1 0 0 0 1 0

0 0 0 −1 1 0

0 0 0 0 1 0

0 0 −1 0 1 0

0 0 0 0 1 −1

0 −1 0 0 1 0


,
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θ4(x−1) =



0 0 0 0 0 −1

1 0 0 0 0 −1

0 1 0 0 0 −1

0 0 1 0 0 −1

0 0 0 1 0 −1

0 0 0 0 1 −1


, θ4(y−1) =



1 −1 0 0 0 0

1 −1 0 1 −1 0

0 −1 0 1 −1 0

0 −1 1 0 −1 0

0 −1 1 0 −1 1

0 0 0 0 −1 1


,

θ5(x−1) =



0 0 0 0 0 −1

1 0 0 0 0 −1

0 1 0 0 0 −1

0 0 1 0 0 −1

0 0 0 1 0 −1

0 0 0 0 1 −1


, θ5(y−1) =



−1 1 0 0 −1 1

−2 2 0 −1 0 1

−1 2 0 −2 1 1

0 2 −1 −1 1 1

0 2 −2 0 1 0

0 1 −1 0 1 −1


,

θ6(x−1) =



0 0 0 0 0 −1

1 0 0 0 0 −1

0 1 0 0 0 −1

0 0 1 0 0 −1

0 0 0 1 0 −1

0 0 0 0 1 −1


, θ6(y−1) =



1 0 0 0 −1 0

0 0 0 1 −1 0

0 0 0 0 −1 0

0 0 1 0 −1 0

0 0 0 0 −1 1

0 1 0 0 −1 0


.
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8.4 The mapping π∗ : Λ→ [π)

In this section, we define an element π ∈ Λ and show that [π) ∼= R(1) using

the characteristic equations from the §8.3. We then go on to find the kernel

of the map π∗ : Λ→ [π) defined by α 7→ π · α.

We begin by defining

π = (x− 1)((2 + x2 + x5)y + (−1 + x2 + 2x3 + 2x4 + x5)y2 + y3)(1− y3).

Let v = π(1 + x2), Clearly [v) ⊂ [π), but

v(1 + x)(1 + x4) = π(1 + x2)(1 + x)(1 + x4)

= π(1 + x+ x2 + · · ·+ x7)

= π

and so [v) = [π). One can check easily that v · y = −v · (1 + x), and so since

[π) is clearly a 6-dimensional Λ-lattice, we have shown the following:

Proposition. The right Λ-module [π) is isomorphic to R(1).

We therefore have an explicit description of a surjection π∗ : Λ→ R(1),

we define K = Ker(π∗). We now proceed to find a Z-basis for K which

includes a Z-basis for R(1, 3, 4, 5, 6). This will be followed by a proof that

K/R(1, 3, 4, 5, 6) ∼= Z[C6], and so K is described by an extension of the type

mentioned in §8.2. Utilising the identity (1 − y3)(1 + y3) = 0, we see that

[y3+1)∩[x−1) ⊂ K. We now define a Z-basis {e(i)}1≤i≤18 for [y3+1)∩[x−1):
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• e(i) = (y3 + 1)(x− 1)xi−1, 1 ≤ i ≤ 6;

• e(i) = (y4 + y)(x− 1)xi−7, 7 ≤ i ≤ 12;

• e(i) = (y5 + y2)(x− 1)xi−13, 13 ≤ i ≤ 18.

If we define the representation L′ : Λ→ GL6(Z) by

L′(x−1) =



0 0 0 0 0 −1

1 0 0 0 0 −1

0 1 0 0 0 −1

0 0 1 0 0 −1

0 0 0 1 0 −1

0 0 0 0 1 −1


; L′(y−1) =



1 0 0 0 0 0

1 0 −1 1 0 0

1 0 −1 1 0 −1

1 −1 0 1 0 −1

1 −1 0 1 −1 0

0 0 0 1 −1 0


,

standard calculations on the basis {e(i)}1≤i≤18 produce the representation

L : Λ→ GL18(Z) for [y3 + 1) ∩ [x− 1) given by

L(x−1) =


L′(x−1) 0 0

0 L′(x−1) 0

0 0 L′(x−1)

 ;

and

L(y−1) =


0 0 L′(y−1)

L′(y−1) 0 0

0 L′(y−1) 0

 .

In order to show that [y3 + 1) ∩ [x − 1) ∼= R(1, 3, 5), we begin by defining

the following representation θ1,3,5 : Λ → GL18(Z) for R(1, 3, 5) using the

representations found in §8.3:
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θ1,3,5(x−1) =


θ1(x−1) 0 0

0 θ3(x−1) 0

0 0 θ5(x−1)

 ;

and

θ1,3,5(y−1) =


θ1(y−1) 0 0

0 θ3(y−1) 0

0 0 θ5(y−1)

 .

Now, if we define

h =



0 0 −1 1 0 0 0 0 0 1 −1 0 0 1 −1 0 0 0

0 0 −1 0 1 0 0 0 0 1 0 −1 0 1 0 −1 0 0

0 0 −1 0 0 1 0 0 0 1 0 0 0 1 0 0 −1 0

0 0 −1 0 0 0 −1 0 0 1 0 0 0 1 0 0 0 −1

1 0 −1 0 0 0 0 −1 0 1 0 0 0 1 0 0 0 0

0 1 −1 0 0 0 0 0 −1 1 0 0 −1 1 0 0 0 0

0 0 −1 1 0 0 0 −1 0 0 0 0 1 −1 1 −1 1 0

0 0 −1 0 1 0 1 −1 −1 0 0 0 0 0 0 0 0 1

0 0 −1 0 0 1 1 0 −1 −1 0 0 0 −1 1 −1 1 0

0 0 −1 0 0 0 1 0 0 −1 −1 0 1 −1 0 0 0 1

1 0 −1 0 0 0 1 0 0 0 −1 −1 0 0 0 −1 1 0

0 1 −1 0 0 0 1 0 0 0 0 −1 1 −1 1 −1 0 1

0 0 −1 1 0 0 0 0 −1 0 0 1 −1 0 0 1 −1 0

0 0 −1 0 1 0 0 0 −1 −1 0 1 0 −1 0 1 0 −1

0 0 −1 0 0 1 1 0 −1 −1 −1 1 0 0 −1 1 0 0

0 0 −1 0 0 0 1 1 −1 −1 −1 0 −1 0 0 0 0 0

1 0 −1 0 0 0 1 1 0 −1 −1 0 0 −1 0 1 −1 0

0 1 −1 0 0 0 0 1 0 0 −1 0 0 0 −1 1 0 −1
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Then h has determinant 1 and satisfies the following:

• h · θ1,3,5(x−1) · h−1 = L(x−1);

• h · θ1,3,5(y−1) · h−1 = L(y−1).

We deduce that [y3 + 1)∩ [x−1) = [η(1))u [η(3))u [η(5)) where [η(i)) ∼= R(i) and

the elements η(i) are defined as follows:

• η(1) = h(v1) = (y3 + 1)(1 + y + y2)(x5 − x4);

• η(3) = h(v3) = (y3 + 1)(−(x4 − x3) + y(x6 − x) + y2(x5 − x2));

• η(5) = h(v5) = (y3 + 1)(−(x6 − x5) + y((x6 − x5) + (x4 − x3) + (x − 1)) +

y2(−(x4 − x3)− (x− 1)).

Now, as {e(i)}1≤i≤18 ∪ {yi · xj | 0 ≤ i ≤ 2, 0 ≤ j ≤ 6} ∪ {y3, y4, y5} is a basis for

Λ, and {e(i)}1≤i≤18 is a basis for [y3 + 1) ∩ [x− 1), Λ/[y3 + 1) ∩ [x− 1) is torsion

free. From the exact sequence

0→ K/[y3 + 1) ∩ [x− 1)→ Λ/[y3 + 1) ∩ [x− 1)→ R(1)→ 0,

we can now deduce that K/[y3 + 1)∩ [x− 1) is torsion free. We therefore have the

following short exact sequence of Λ-lattices:

0→ [y3 + 1) ∩ [x− 1)→ K → K/[y3 + 1) ∩ [x− 1)→ 0.

Using this exact sequence, we can form a basis for K using bases for [y3+1)∩[x−1)

and K/[y3 +1)∩ [x−1). As [y3 +1)∩ [x−1) ∼= R(1, 3, 5), in order to find a basis for

K which contains a basis for R(1, 3, 4, 5, 6), we will find elements η(4), η(6) ∈ K

such that there exists a basis for K/[y3 + 1) ∩ [x − 1) which contains the set

{η(i)Xj | i = 4, 6; j = 0, 1, . . . , 5} and [η(i)) ∼= R(i) for i = 4, 6. Here, we

use capitalisation to represent the image of x in K/[y3 + 1) ∩ [x − 1). We define

η(4), η(6) as follows,
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• η(4) = (x− 1)((1 + x5) + (−x+ x4 + x5)y + (x2 + x3 + x4 + x5)y2 + (x3 +

x5)y3 + (−1− x− 2x2 − x3 − x4)y4 + (−x2 − x3 − x4)y5),

• η(6) = (x− 1)(1 + x5)(1 + y + y2 + y3 + y4 + y5).

Through tedious calculations one can check that π · η(4) = 0 and π · η(6) = 0 and

so η(4), η(6) ∈ K; it is immediately clear that η(6) ·y = η(6), and through another

tedious calculation one can check that η(4)·y = η(4)·(1+x), therefore [η(i)) ∼= R(i)

for i = 4, 6. We will now find a basis for K/[y3 + 1)∩ [x− 1), before transforming

the basis to find a basis which contains {η(i)Xj | i = 4, 6 j = 0, 1, . . . , 5}. We

begin by expressing the mapping

π∗ : Λ/[y3 + 1) ∩ [x− 1)→ [π), α+ [y3 + 1) ∩ [x− 1) 7→ π · α

in matrix form, where we take Λ/[y3 + 1) ∩ [x− 1) to have basis

{ 1, X,X2, X3, X4, X5, X6, Y, Y X, Y X2, Y X3, Y X4, Y X5, Y X6

Y 2, Y 2X,Y 2X2, Y 2X3, Y 2X4, Y 2X5, Y 2X6, Y 3, Y 4, Y 5}.

Here, capitalisation is used to represent the image in Λ/[y3 + 1)∩ [x− 1). We take

[π) to have basis

{π, π · x, π · x2, π · x3, π · x4, π · x5}.

Now, π(1 + x2)y = −π(1 + x2)(1 + x) and so

πy = π(1 + x2)(1 + x)(1 + x4)y

= π(1 + x2)y(1 + x5)(1 + x6)

= −π · (1 + x2)(1 + x)(1 + x5)(1 + x6),

= π(−1 + x2 + 2x3 + 2x4 + x5)
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Using this equality, we can form the following matrix for π∗:

1 0 0 0 0 0 −1 −1 −1 −1 0 1 1 1 2 −1 1 0 −1 1 −2 −1 1 −2

0 1 0 0 0 0 −1 0 −2 −2 −1 1 2 2 0 1 0 1 −1 0 −1 0 0 0

0 0 1 0 0 0 −1 1 −1 −3 −2 0 2 3 1 −1 2 0 0 0 −2 0 −1 −1

0 0 0 1 0 0 −1 2 0 −2 −3 −1 1 3 0 0 0 2 −1 1 −2 0 −2 0

0 0 0 0 1 0 −1 2 1 −1 −2 −2 0 2 0 −1 1 0 1 0 −1 0 −2 0

0 0 0 0 0 1 −1 1 1 0 −1 −1 −1 1 1 −1 0 1 −1 2 −2 0 −1 −1


.

By utilising elementary linear algebra we can now easily find a Z-basis for

K/[y3 + 1) ∩ [x − 1). By expressing {η(i)Xj | i = 4, 6 , j = 0, 1, . . . , 5} in terms

of the basis for Ker(π∗) and utilising the Smith Normal Form, we construct the

following basis for K/[y3 + 1) ∩ [x− 1):

{ η(4)Xi | 0 ≤ i ≤ 6} ∪ {η(6)Xi | 0 ≤ i ≤ 6} ∪ {1 + Y 3,−2−X2 −X5 + Y 2,

2 +X2 +X5 + Y 5,−1 +X2 + 2X3 + 2X4 +X5 + Y 4, 1−X2 − 2X3 − 2X4 −X5 + Y,

1 +X +X2 +X3 +X4 +X5 +X5}.

We therefore have a basis for K which includes bases for [η(i)) for i = 1, 3, 4, 5, 6.

Using basic linear algebra one can calculate the representation ρ : Λ → GL6(Z)

for K/R(1, 3, 4, 5, 6). The result it as follows.

ρ(x−1) =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


; ρ(y−1) =



0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

1 0 0 0 0 0

1 −4 4 5 −5 7

0 −3 3 3 −3 5


.
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Now, if we let

f =



0 1 1 0 0 −1

1 1 0 0 −1 0

0 −1 0 1 1 0

−1 0 1 1 0 0

1 0 0 −1 0 1

2 1 −1 −2 −1 1


.

Then f−1ρ(g)f = σ(g) for each g ∈ Λ, where σ(g) is the regular representation of

the Λ-module Z[C6]. We deduce that K lies in a short exact sequence of the form

0→ R(1, 3, 4, 5, 6)→ K → Z[C6]→ 0.

By Theorem 8.2.1, to prove thatK ∼= Λ/i(R(2)) for some injective Λ-homomorphism

i : R(2)→ Λ, it is sufficient to show that the above exact sequence has all non-zero

k-invariants. The representation ϕ : Λ→ GL36(Z) of K given by the above exact

sequence after the change of basis defined by f takes the following form:

ϕ(x−1) =



θ1(x−1) 0 0 0 0 C(1)

0 θ3(x−1) 0 0 0 C(3)

0 0 θ4(x−1) 0 0 C(4)

0 0 0 θ5(x−1) 0 C(5)

0 0 0 0 θ6(x−1) C(6)

0 0 0 0 0 I6


;

ϕ(y−1) =



θ1(y−1) 0 0 0 0 D(1)

0 θ3(y−1) 0 0 0 D(3)

0 0 θ4(y−1) 0 0 D(4)

0 0 0 θ5(y−1) 0 D(5)

0 0 0 0 θ6(y−1) D(6)

0 0 0 0 0 σ(y−1)


.
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Now, to check that the k-invariant corresponding to Ext1Λ(Z[C6], R(i)) for

i = 1, 3, 4, 5, 6 is non-zero, we must show that the extension defined by

ϕi(x
−1) =

 θi(x
−1) C(i)

0 I6

 ; ϕi(y
−1) =

 θi(y
−1) D(i)

0 σ(y−1)

 ,

is not congruent to the trivial extension in Ext1Λ(R(i),Z[C6]) for any i. This is

equivalent to showing that there is no matrix ψi ∈ GL12(Z) of the form

ψi =

 I6 Xi

0 I6


such that I6 Xi

0 I6

 θi(x
−1) C(i)

0 I6

 =

 θi(x
−1) 0

0 I6

 I6 Xi

0 I6

 ,

and

 I6 Xi

0 I6

 θi(y
−1) D(i)

0 σ(y−1)

 =

 θi(y
−1) 0

0 σ(y−1)

 I6 Xi

0 I6

 .

This is equivalent to showing that there is no Xi ∈M6×6(Z) such that

C(i) = (θi(x
−1)− I6)Xi (7)

and

D(i) +Xiσ(y−1) = θi(y
−1)Xi (8)

108



In our case, we calculate the C(i) and D(i) to be:

C(1) =



−5 −2 2 5 2 −2

−4 1 2 4 −2 −1

−5 −3 2 4 3 −1

−1 0 1 1 0 0

0 −1 0 −1 1 1

0 −3 −1 0 2 2


; C(3) =



7 3 −2 −8 −1 1

5 −1 −2 −6 3 1

14 4 −6 −14 −4 6

7 −5 −4 −8 7 3

8 4 −3 −7 −3 1

3 3 0 −4 −1 −1


;

C(4) =



0 0 0 0 0 0

0 0 0 0 0 0

1 −2 −1 −1 2 1

2 0 −1 −2 0 1

1 −2 −1 −1 2 1

0 0 0 0 0 0


; C(5) =



−7 0 4 6 1 −4

−4 3 3 3 −3 −2

0 −2 0 −2 2 2

7 −3 −4 −8 3 5

10 −2 −5 −11 3 5

5 −2 −3 −5 2 3


;

C(6) =



2 0 −1 −2 0 1

2 0 −1 −2 0 1

0 0 0 0 0 0

0 0 0 0 0 0

−1 2 1 1 −2 −1

0 0 0 0 0 0


.

D(1) =



1 −1 2 −1 1 −2

1 0 5 −1 0 −5

2 2 6 −2 −2 −6

2 1 5 −2 −1 −5

0 −1 3 0 1 −3

1 −1 0 −1 1 0


; D(3) =



−7 3 4 7 −3 −4

−2 −2 0 2 2 0

−7 −2 −3 7 2 3

−6 −1 −7 6 1 7

−4 −3 −7 4 3 7

−9 −2 −1 9 2 1


;
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D(4) =



0 1 1 0 −1 −1

1 0 1 −1 0 −1

−1 0 1 1 0 −1

1 0 −1 −1 0 1

−1 0 −1 1 0 1

0 −1 −1 0 1 1


; D(5) =



3 2 7 −3 −2 −7

4 3 13 −4 −3 −13

3 4 13 −3 −4 −13

4 2 6 −4 −2 −6

−1 −1 0 1 1 0

1 −3 −4 −1 3 4


;

D(6) =



−1 0 −1 1 0 1

−2 0 −2 2 0 2

0 −1 −3 0 1 3

−3 0 −1 3 0 1

1 0 −1 −1 0 1

−2 1 1 2 −1 −1


.

One can check easily that there are no solutions Xi ∈ M6×6(Z) for equation

(7) for i = 1, 3, 4, 5, 6. We have shown that the kernel K of the map π∗, lies in an

extension of the form

0→ R(1, 3, 4, 5, 6)→ K → Z[Cp−1]→ 0

with all non-zero k-invariants. Therefore, by Theorem 8.2.1, and our discussion

at the end of §8.2, we have shown:

Theorem 8.4.1. Over Λ = Z[G(7, 6)], Ω3(Z) = [R(2)⊕ [y− 1)] i.e. the condition

M(7) holds.

Therefore, by Theorem 8.1.1

Theorem 8.4.2. The D(2)-property holds for G = G(7, 6).
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