UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Fault-tolerant quantum computing with three-dimensional surface codes

Vasmer, Michael John George; (2019) Fault-tolerant quantum computing with three-dimensional surface codes. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[thumbnail of Thesis-MVasmer-Final.pdf]

Download (3MB) | Preview


Quantum computers are far more error-prone than their classical counterparts. Therefore, to build a quantum computer capable of running large-scale quantum algorithms, we must use the techniques of quantum error correction to ensure that the computer produces the correct output even when its components are unreliable. However, the resource requirements of building such a fault-tolerant quantum computer are currently prohibitive. Here, we examine the utility of using three-dimensional (3D) surface codes in a fault-tolerant quantum computer. This family of topological error-correcting codes is a generalization of the well-known 2D surface code to three spatial dimensions. We show that certain 3D surface codes have a transversal logical non-Clifford gate. In a quantum computing architecture, a non-Clifford gate is required to achieve computational universality. Transversal gates do not entangle qubits in different codes, so they are naturally fault tolerant because they do not spread errors. Next, we consider the problem of decoding 3D surface codes. In a quantum error-correcting code, we cannot observe the qubits directly, so we measure parity-check operators to gain information about the state of the code. Decoding is the problem of estimating what error has occurred given a list of unsatisfied parity checks. We observe that 3D surface codes offer asymmetric protection against bit-flip and phase-flip errors, but in both cases, we find that a threshold error rate exists below which we can suppress logical errors by increasing the size of the code. We use our results about logical gates and decoding to propose two fault-tolerant quantum computing architectures that utilize 3D surface codes. Finally, we compare the resource requirements of our architectures with the requirements of leading quantum computing architectures based on topological codes. We find that one of our architectures may be competitive with the leading architectures, depending on the properties of the physical systems used to build the qubits.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Fault-tolerant quantum computing with three-dimensional surface codes
Event: UCL (University College London)
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Copyright © The Author 2019. Original content in this thesis is licensed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) Licence (https://creativecommons.org/licenses/by/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms.
UCL classification: UCL
UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences
URI: https://discovery.ucl.ac.uk/id/eprint/10087863
Downloads since deposit
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item