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“Nothing in life is to be feared, it is only to be understood.

Now is the time to understand more, so that we may fear less.”

Marie Skłodowska Curie (1867-1934)





Abstract

A ortic dissection (AD) is a severe vascular condition in which an intra-

mural tear results in blood flowing within the aortic wall. The opti-

mal treatment of type-B dissections - those involving the arch and descending

aorta - is still debated; when uncomplicated, they are commonly managed

medically, but up to 50% of the cases will develop complications requiring in-

vasive intervention. Patient-specific computational fluid dynamics (CFD) can

provide insight into the pathology and aid clinical decisions by reproducing

in detail the intra-aortic haemodynamics; however, oversimplified modelling

assumptions and high computational cost compromise the accuracy of simula-

tion predictions and impede clinical translation. Moreover, the requirement of

working with noisy and oftentimes minimal clinical datasets complicates the

implementation of personalised models.

In the present thesis, methods to overcome the aforementioned limita-

tions and facilitate the clinical translation of CFD tools are presented and

tested on type-B AD cases. A novel approach for patient-specific models of

complex ADs informed by commonly available clinical datasets (including CT-

scans and Doppler ultrasonography) is proposed. The approach includes an

innovative way to account for arterial compliance in rigid-wall simulations us-

ing a lumped capacitor and a parameter estimation strategy for Windkessel

boundary conditions. The approach was tested on three case-studies, and the

results were successfully compared against invasive intra-aortic pressure mea-

surements. A new and efficient moving boundary method (MBM) - tunable
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with non-invasive displacement data - is then proposed to capture wall motion

in CFD simulations, necessary in certain AD settings for accurate haemody-

namic predictions. The MBM was first applied and validated on a case-study

previously investigated with a full fluid-structure interaction technique, and

then employed in a patient-specific compliant model of a type-B AD informed

by multi-modal imaging data. Extensive comparison between in silico and in

vivo data demonstrated the reliability of the model predictions.
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C ardiovascular disease (CVD) is the most common cause of mortality in

Europe and accounts for about 45% of all deaths. Among CVD, aortic

dissection (AD) is the most catastrophic cardiovascular emergency affecting

the aorta, and is still associated with considerable morbidity and mortality.

Uncomplicated type-B ADs are commonly managed medically, but up to 50%

of the cases will develop complications requiring invasive intervention, therefore

a pre-emptive endovascular repair could benefit a sub-group of patients.

Computational fluid dynamics (CFD) can enhance the understanding of

the disease and aid the clinical-decision making process by providing infor-

mation on the patient-specific haemodynamics with a level of detail that is

currently impossible to achieve with imaging alone. In the present research,

methods to address the limitations of patient-specific CFD models and facili-

tate their clinical translation are developed and tested on several case-studies

of AD. First, a method that enables the implementation of CFD models of

complex ADs using datasets commonly available in a clinical setting is devel-

oped. The use of data that are already regularly acquired for AD monitoring

prevents the need to acquire additional data only for modelling purposes, and

hence reduces the costs related to the clinical translation of the computational

tools. Second, a novel moving boundary method (MBM) to account for wall

motion in AD CFD models is developed, which results in faster and more ef-

ficient computations and is considerably easier to implement when compared

to traditional fluid-structure interaction techniques. The parameters of the
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models implemented with the MBM can be tuned to achieve patient-specific

displacements using non-invasive data obtainable, for example, via magnetic

resonance imaging. Accounting for wall motion in type-B AD simulations al-

lows the accurate computation of clinically important variables, such as the

pressure in the false lumen, which would not be correctly predicted by rigid-

wall models in certain clinical scenarios.

All the models implemented are characterised by state-of-the-art dynamic

boundary conditions capable of replicating the physiological envelope sur-

rounding the dissected aorta and simulate haemodynamic conditions other

than the one acquired as part of the original dataset, such as post-intervention

haemodynamic scenarios. The results obtained from the simulations provided,

via more than just one example, concrete evidence that it is becoming possi-

ble to use CFD a) to enhance clinical understanding and treatment, and b)

to calculate important biomarkers that are impossible to measure via current

imaging techniques. The approaches presented in this work are not limited to

AD modelling and can be used for other cardiovascular applications. For in-

stance, the MBM developed herein has been already successfully employed for

the study of the influence of vessel wall deformation and compliance mismatch

on neointimal hyperplasia progression in peripheral bypass grafts.

The research undertaken in this thesis represents a significant advance of

the state-of-the-art in cardiovascular computational modelling and constitutes

a step towards the translation of such tools into the clinical practice. Simu-

lation models have the potential to greatly impact patient healthcare in the

near future and they are a cornerstone of precision medicine, a new medical

paradigm that envisions the customisation of patient treatments, moving the

target from the average patient to the individual one. In this context, compu-

tational models can be used to tailor the treatments on a ‘virtual’ surrogate,

before they are performed on the ‘real’ patient, making sure to find the optimal

solution for the specific patient.
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Chapter 1

Introduction

T his chapter provides an overview of the motivation and background of

the work, followed by an introduction to the relevant aspects of the

physiology of the aorta and the pathology of aortic dissection (AD). Current

modelling approaches for cardiovascular computational �uid dynamics (CFD),

and more speci�cally for AD, are reviewed and a number of outstanding issues

that will be addressed in this research identi�ed.

1.1 Motivation and Background
Cardiovascular disease (CVD) is the most common cause of mortality in Eu-

rope and it accounts for about 45% of all deaths, equal to more than 4 million

deaths per year (Townsend et al., 2015). Among CVD, AD is still an extremely

severe condition with high mortality rates.

With an incidence of 3-4 cases per 100,000 every year in the United King-

dom and United States, AD is the most common aortic emergency, more fre-

quent than ruptured aneurysms (Thrumurthy et al., 2011). The mortality

rates are still high, with 40% of patients dying on presentation and a further

1% rate of death per hour if untreated (Strayer et al., 2012).

Diagnosis, management and treatment of AD are extremely patient-

speci�c and challenging; in fact, one expert claims that `di�culty in diagnosis,

delayed diagnosis or failure to diagnose are so common as to approach the

norm for this disease, even in the best hands...' (Elefteriades et al., 2007). It
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is estimated that between 15 and 43% of the cases are not diagnosed on initial

presentation (Hansen et al., 2007; Sullivan et al., 2000). This is because the

signs and symptoms of AD can be present in almost any body part and organ,

and each of them can often be associated with other more common conditions.

Classi�cation and medical management of ADs is based on the anatom-

ical location of the dissection: those involving the ascending aorta (Stanford

type-A) are more dangerous and surgery is recommended as soon as possi-

ble if the patient is medically �t (Erbel et al., 2014). On the other hand,

the treatment of dissections a�ecting only the descending and/or distal aorta

(Stanford type-B) is more variable and patient-speci�c. In case of complica-

tions (such as end-organ ischemia, aneurysm formation, periaortic hematoma

or rupture, or uncontrolled hypertension) surgical intervention is the preferred

choice - in general through thoracic endovascular aortic repair (TEVAR) -

whereas uncomplicated type-B dissections are usually managed conservatively

by controlling blood pressure and heart rate (Fattori et al., 2013). However,

the long-term prognosis of medically treated ADs remains poor, with delayed

aortic dilation and late-term complications reported in 25-50% of the cases

within 5 years (Akin et al., 2010). In light of this, a pre-emptive endovascular

treatment of uncomplicated type-B ADs could improve the prognosis of the

disease, but currently there is no consensus amongst vascular surgeons on the

suitability of this approach (Nienaber and Clough, 2015). Despite its potential

bene�ts, endovascular repair does not come without complications; it may be

associated with peri-intervention stroke, aortic rupture and retrograde dissec-

tion, and with stent graft-related complications such as endoleaks. Therefore,

a conservative approach can still be the best choice for many patients (Nien-

aber et al., 2010). However, a subset of patients, especially those developing

an extensive aneurysmal degeneration during the follow-up, hence losing the

chance of endovascular treatment, may bene�t from a preventive intervention

(Van Bogerijen et al., 2014). TEVAR intervention performed during the sub-

acute phase (i.e. 8-30 days from onset) is thought to promote a more rapid
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remodelling of the dissected aorta (Parisi et al., 2015). Therefore, predicting

adverse outcomes in conservatively treated uncomplicated ADs can be partic-

ularly helpful in the clinical management of this condition. Currently, some

anatomical predictors of aortic dissection growth are used to customise the

follow-up and treatment planning; however, haemodynamic information such

as �ow patterns, pressures, velocity and wall shear stress indices can provide a

more comprehensive understanding of the condition, and can have a prognostic

value (Clough et al., 2012).

In this context, patient-speci�c computational modelling, and speci�cally

CFD, has potential bene�t for AD patients and can aid the clinical decision-

making process around the disease.

In the last few years and after decades of research, patient-speci�c cardio-

vascular modelling has started transitioning from academia to clinical appli-

cation. A milestone in this process has been the approval of the CFD-based

software HeartFlowr (Redwood City, California, USA) by the Food and Drug

Administration (FDA) in the United States, and more recently by the National

Institute for Health and Clinical Excellence (NICE) in the United Kingdom

(Rajani et al., 2017). HeartFlowr enables the non-invasive quanti�cation of

the ischaemic risk of a coronary artery stenosis via the computational assess-

ment of the Fractional Flow Reserve (FFR). This software creates a person-

alised CFD model of the coronary arteries using data from a standard com-

puted tomography (CT) scan. It demonstrates how computational modelling

can impact the clinical practice by adding a functional value to traditional

anatomical diagnostic images. In doing so, it reduces invasive and costly

procedures, such as angiography, by better informing the clinical treatment

pathway (Hlatky et al., 2015).

Patient-speci�c computational modelling represents a cornerstone of `pre-

cision medicine', also colloquially described as `providing the right treatment

at the right time to the right patient' (Mirnezami et al., 2012). Precision

medicine envisions a paradigm shift in the treatment of patients, moving from
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targeting the `average' patient to bene�tting the `individual' patient. Compu-

tational models can be personalised and used to predict the disease progression

or the outcome of an intervention for any given patient.

Figure 1.1: Patient-speci�c image-based CFD modelling work�ow typically in-
volves the integration of patient's data (i.e. personalised) and external data (i.e.
non-personalised) with a mathematical model solved by a computer. The model
combines the governing equations of the underlying physics with the relative initial
and boundary conditions with a the mathematical representation of the patient's
anatomical geometry. The patient-speci�c geometry is typically derived from var-
ious clinical imaging modalities via a process that involves (1) image acquisition,
(2) image segmentation and reconstruction, and (3) spatial discretisation in small
`elements' (i.e. mesh generation). Patient-speci�c data not used for model imple-
mentation can be used for validation purposes. Figure modi�ed from Gray and
Pathmanathan (2018) with permission.

Figure 1.1 shows the typical work�ow for the implementation of a patient-

speci�c (image-based) CFD model. It typically involves the collection of

patient-speci�c raw data which is processed and integrated in a mathemat-

ical model together with external (i.e. non-personalised) data and parameters.

The mathematical model includes the governing equations of the underlying

physical phenomena and the relative boundary (BCs) and initial conditions as
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well as the numerical representation of the patient's anatomical geometry. The

mathematical model is solved by a computer and the simulation results can

be used for personalised clinical predictions and/or virtual treatments (Gray

and Pathmanathan, 2018).

Due to its patient-speci�c features and clinical management, AD presents

an ideal condition to study using personalised computational modelling. Po-

tential clinical applications are the study of the patho-physiological intra-aortic

haemodynamics informed by non-invasive clinical data in order to guide ther-

apeutic procedures and simulate virtual interventions (Doyle and Norman,

2016). However, AD is one of the most challenging vascular pathologies to

simulate not only due to the complex anatomical geometries, resulting in com-

plex computational scenarios, but also by the potential e�ects arising from the

interaction between the dissected aortic structure and the blood �ow (Morris

et al., 2015).

The modelling approaches used for CFD simulations of AD di�er signif-

icantly across published studies, especially regarding the treatment of BCs,

computational methods and model complexity. Currently there are no pub-

lished CFD-based clinical trials, and the majority of the research consists of

single centre studies and small cohort of patients. There is no established

work�ow for AD simulation, and computational approaches need to be further

developed in order to be translated into clinical applications.

The aim of this research is to tackle some of the outstanding challenges

related to haemodynamic simulation of AD in order to facilitate the clinical

translation of computational tools for the management of the condition with

particular emphasis on type-B AD.

1.2 The anatomy of the aorta
The aorta is the main and largest artery in the body (Figure 1.2); originating

directly from the heart, it delivers oxygenated blood to all parts of the body

through the systemic circulation. It carries, in an average lifetime, about 200
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million litres of blood (Erbel et al., 2014).

Anatomically, the aorta is traditionally divided into sections (Tortora and

Derrickson, 2011). The �rst part (about 5-7 cm) is theascending aorta. It

arises from the left ventricle of the heart, just after the opening of the aortic

valve. At the root of the ascending aorta, three small pockets in the lumen

of the artery form the sinuses of Valsalva, which contain the origin of the left

and right coronary arteries. Coronary arteries are responsible for the oxygen

supply to the heart muscle, the myocardium (Tortora and Derrickson, 2011;

Drake et al., 2019).

After the ascending aorta, the vessel loops over the left pulmonary artery

and the bifurcation of the pulmonary trunk forming the so-calledaortic arch,

which ultimately ends to the left of the trachea. The aortic arch usually has

three branches: theinnominate artery or brachiocephalic trunk(BT), the left

common carotid artery (LCC), and the left subclavian artery(LSA). The BT

splits immediately after into the right common carotid artery (RCC) and in

the right subclavian artery (RSA). The aortic arch ends at the level of the

intervertebral disc between the fourth and �fth thoracic vertebrae, where the

descending aortabegins.

The descending aorta is divided into two sections by the diaphragm: the

thoracic and the abdominal aorta(Tortora and Derrickson, 2011; Drake et al.,

2019). The intercostal, subcostal, and left bronchial arteries arise from the

thoracic aorta, whereas the abdominal aorta gives rise to some important ar-

terial branches before splitting in the left and rightcommon iliac arteries, such

as the visceral arteries (theceliac trunk (CT), the superior mesenteric artery

(SMA) and the inferior mesenteric artery) and the left and right renal arteries

(LRA, RRA) (Tortora and Derrickson, 2011; Drake et al., 2019). The abdom-

inal aorta can be further sub-divided in thesuprarenal (i.e. the portion above

the renal arteries) andinfrarenal (i.e. below the renal arteries) segments.

The aorta is a compliant artery, its wall consisting of three layers: from

the inside to the outside, these aretunica intima, tunica media, and tunica
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