Psychosocial factors and hypertension prevalence among Ghanaians in Ghana and Ghanaian migrants in Europe: The RODAM study

Raphael Baffour Awuah1, Ama de-Graft Aikins1,2, F Nii-Amoo Dodoo1,3, Karlijn AC Meeks4, Eric JAJ Beune4, Kerstin Klipstein-Grobusch5, Juliet Addo6, Liam Smeeth6, Silver K Bahendeka7 and Charles Agyemang4

Abstract
Despite progress made to prevent and control hypertension, its prevalence has persisted in many countries. This study examined the associations between psychosocial factors and hypertension among Ghanaian non-migrants and migrants. Data were drawn from the Research on Obesity and Diabetes among African Migrants (RODAM) project. Findings show that among migrant women, those who experienced periods of stress at home/work had higher odds of hypertension. Among non-migrants, women with depression symptoms were more likely to be hypertensive. Furthermore, there was a positive association between negative life events and hypertension among non-migrant men. The findings highlight the importance of psychosocial factors in addressing hypertension prevalence in Ghanaian populations.

Keywords
depression symptoms, hypertension, Ghanaian migrants in Europe, Ghanaians in Ghana, negative life events, stress

Introduction
Hypertension is an important global public health problem mainly because of its high frequency and its associated risk of cardiovascular diseases (CVDs) (Seedat et al., 2018). About 4 out of 10 adults aged 25 years and over have been diagnosed with hypertension globally (WHO, 2011). Furthermore, global estimates show that hypertension is responsible for approximately 45 per cent of deaths due to heart disease and 50 per cent of deaths due to stroke (WHO, 2013).

The prevalence of hypertension is higher in low- and middle-income countries (LMICs) compared to high-income countries (40% compared to 35%) (WHO, 2013). In addition, LMICs, particularly those in sub-Saharan Africa (SSA), are confronted with a daunting challenge of addressing the burden of hypertension mainly due to weak health systems and the number of people living with the condition who are undiagnosed, untreated and uncontrolled (Ataklte et al., 2015). In SSA, hypertension has been identified as a leading risk of death among adults, increasing by 67 per cent between 1990 and 2010 (Campbell et al., 2015).

In Ghana, a review of studies on hypertension showed that the prevalence of hypertension ranged between 25 per cent and 48 per cent, with higher rates observed in urban populations compared to rural populations (Addo et al., 2017). In Ghana, a review of studies on hypertension showed that the prevalence of hypertension ranged between 25 per cent and 48 per cent, with higher rates observed in urban populations compared to rural populations (Addo et al., 2017).
migrant population) and Ghanaian migrants in Europe. Tension prevalence among Ghanaians living in Ghana (non-depression symptoms and negative life events – and hyperciation between psychosocial factors – specifically, stress, home country (Adepoju, 2008; Humphries et al., 2009). Particularly, a study that assessed variations in hypertension prevalence, awareness, treatment and control among Ghanaian migrants showed that the prevalence of hypertension was higher among Ghanaian migrants compared to Ghanaian non-migrants or the host population (Agyemang et al., 2018).

Despite efforts to prevent, treat and effectively control hypertension, its prevalence has persisted or increased in many LMICs and in African populations in high-income countries. Advancement in hypertension research overtime has led to the recognition of factors such as low physical activity levels, smoking, over consumption of alcohol and unhealthy diets as major drivers of hypertension prevalence. However, these factors alone do not fully explain the increase in prevalence of hypertension. It has been suggested that psychosocial factors such as stress, depression (symptoms), negative life events and anxiety contribute to the prevalence of hypertension (Neylon et al., 2013). This association may be true for many LMICs as well as African (including Ghanaian) migrant populations.

A psychosocial factor is a measurement that associates psychological events to the social environment (Nilsson, 2010). This may lead to psychological and biological changes that may increases one’s risk of diseases (Okereke and Manson, 2017). Ongoing exposure to stressors that may eventually lead to chronic or acute stress or depression is linked to sustained blood pressure (BP) elevations (Guimont et al., 2006; Heard et al., 2011; Markovitz et al., 2004). However, there is a paucity of evidence of this association among Ghanaian populations at home and those residing outside the country. Particularly, migrant populations face peculiar challenges which threaten or compromise their physical and mental well-being compared to non-migrants (Pikhart and Pikhartova, 2015), mainly because migrants are often confronted with a number of challenges especially as they learn and adjust to the norms and values of the host culture (Kuo, 2014). In addition, migrants are burdened with the pressure of remitting to family and close associates in their home country (Adepoju, 2008; Humphries et al., 2009).

The main objective of this study was to assess the association between psychosocial factors – specifically, stress, depression symptoms and negative life events – and hypertension prevalence among Ghanaians living in Ghana (non-migrant population) and Ghanaian migrants in Europe.

Methods

Data source

Data were drawn from the Research on Obesity and Diabetes among African Migrants (RODAM) study. The RODAM study was a multi-centre research study with partners from Ghana and three European countries (Netherlands, United Kingdom and Germany), conducted between 2012 and 2015. A main feature of the RODAM project was that highly standardized protocols of quantitative and qualitative assessments were applied for participant recruitment and topic-related investigations at all the study locations. Additional details of the RODAM methodology have been published previously (Agyemang et al., 2014).

Study design and recruitment

The RODAM study was cross-sectional in design involving participants living in Ghana and Europe. In Ghana, participants were recruited from urban and rural areas of the Ashanti region (hereafter referred to as urban Ghana and rural Ghana). Urban areas of the region where data were collected included Kumasi and Obuasi, and the rural communities included Denyase and Akwaaduo. In Europe, participants were recruited from Ghanaian dominated communities in Amsterdam, London and Berlin. The Ghanaian migrant population in Europe was comparable in ethnic composition to the Ghanaian population recruited in Ghana.

Inclusion and exclusion criteria

Individuals between the ages of 25–70 years, and of Ghanaian heritage living in rural and urban Ghana, and the three cities in Europe were eligible to respond to a questionnaire and attend a physical examination process. Individuals who did not give an informed consent and pregnant women were excluded.

Data collection

Individuals who agreed to participate in the study were scheduled for an interview which was administered by trained field personnel or self-administered. The interview provided information on demographic and socio-economic characteristics, psychosocial vulnerabilities and health status. Respondents who completed the questionnaire were invited for a physical examination in a local research clinic or a health centre where BP measurements as well as weight and height measurements were taken.

Measurements

Outcome variable

Participants had their BP measured three times with a validated semi-automated monitoring device (Microlife Watch BP home) with the appropriate cuff used. Participants were seated in a chair with a suitable support to enable the arm rest. The mean of the last two readings was used to determine the BP status of an individual. Hypertension was
defined as a systolic BP of ≥ 140 mmHg and/or a diastolic BP of ≥ 90 mmHg and/or receiving anti-hypertensive medications (World Health Organization, International Society of Hypertension Writing Group, 2003).

Explanatory variables

Stress at home and/or work, depression symptoms and negative life events were used as the measures of psychosocial factors. Stress at home and/or work was assessed with the stress scale used in the INTERHEART study (Rosengren et al., 2004). Respondents were asked how often they felt irritable, anxious or had sleeping difficulties as a result of conditions at home or work. In this study, stress at home/work was categorized as ‘no’ (never experienced stress at home and/or work) or ‘yes’ (experienced periods of stress at home and/or work).

To assess depression symptoms, the nine-item Patient Health Questionnaire (PHQ-9) (Kroenke et al., 2001) was used. The PHQ-9 is a tool used for diagnosing depression or assessing the level or severity of depression symptoms. A sum score of the nine-item scale was computed, ranging from 0 to 27. This was categorized as ‘no depressive symptoms’ (sum score from 0 to 4) and ‘presence of depressive symptoms’, representing mild, moderate and severe depressive symptoms (sum score from 5 to 27). These categories were combined due to the small number of cases in each of them.

To assess negative life events, an adapted version of the ‘List of Threatening Experiences’ (LTE) measure was used (Ikram et al., 2015; Lewis et al., 2006). This enabled for an assessment of the presence of major negative life events that could cause acute stress to an individual. Respondents were asked whether they had experienced unpleasant events such as the experience of serious illness, injury or death of a close family member, abrupt end of a steady relationship or the experience of a major financial crisis. Responses were categorized as ‘no’ (no negative life event experienced) or ‘yes’ (experienced one or more negative life event(s))

Covariates

Covariates assessed in this study were age, level of formal education completed (no/primary education, lower secondary, higher secondary or tertiary), employment status (not working or has a paid job), physical activity (low, moderate or high), body mass index (BMI), family history of CVD and length of stay (for migrants only). These covariates have been shown to be associated with hypertension in previous studies (Ibekwe, 2015; Pilakkadavath and Shaffi, 2016; Wu et al., 2018).

Data analyses

Characteristics of the study sample were expressed as counts and percentages for categorical variables or means and standard deviations for continuous variables. Logistic regression models were ran to assess the association between psychosocial factors (stress, depression symptoms and negative life events) and hypertension, with adjustment for covariates.

Analyses of the associations between psychosocial factors and hypertension were assessed for both Ghanaians populations (non-migrants and migrants). Stepwise adjustments were made for the covariates. A p-value of <0.05 was considered statistically significant. Results are presented as odds ratios (ORs) with corresponding 95% confidence intervals (CIs) and denotations for p-values that were significant. All data were analysed using SPSS version 23.

Ethical approval and consent to participate

Review and approval of the study protocol including procedures that were implemented for data collection, storage and protection were sought from the respective ethics committees in Ghana, Netherlands, England and Germany. Written informed consent was obtained from each participant prior to enrolment in the study.

Results

Characteristics of the study participants

Table 1 shows the characteristics of the respondents for the non-migrant and migrant populations. Approximately 68 per cent and 58 per cent of respondents in the non-migrant and migrant populations, respectively, were women. In both populations, the mean age was 47 years (±11.9) among men and 46 years (±11.3) among women. About two-thirds of the respondents had obtained lower secondary education in both populations. The non-migrant population had a lower proportion of respondents who had completed tertiary education (approximately 9% of men and 2% of women). In addition, the non-migrant population had a higher proportion of respondents who had a paid job (86% for both men and women).

A majority of the respondents (over 90%) reported that they were non-smokers. More than half of the male respondents in both populations were in the high physical activity category (62% and 53% of the male non-migrant and migrant populations, respectively). On the other hand, barely half of the female respondents were in the high physical activity category (47% and 46% of the female non-migrant and migrant populations, respectively). In addition, more than three-quarters of all respondents reported no family history of CVD.

More than two-thirds of the non-migrant population reported experiencing periods of stress at home/work compared to about a half in the migrant population. Furthermore, in the non-migrant population, approximately 25 per cent of
men and 32 per cent of women had depression symptoms. On the other hand, depression symptoms were observed among 21 per cent of men and 25 per cent of women in the migrant population. Also, more than 60 per cent of respondents in both populations had experienced negative life events (see Table 1).

Hypertension prevalence by psychosocial factors

The prevalence of hypertension was 35 per cent among non-migrant men and 59.5 per cent among migrant men. Among migrant women, the prevalence of hypertension was higher than that observed among non-migrant women (54.5% and 35.3%, respectively) (Table 1). In the non-migrant population, the prevalence of hypertension among women with depression symptoms was significantly higher compared to those with no depression symptoms (41.4% compared to 32.4%, p-value = 0.001). This finding was not observed among non-migrant men (see Table 2).

In the migrant population, the prevalence of hypertension among women who experienced negative life events was rather lower than those who did not experience negative life events (32.6% compared to 37.8%, p-value = 0.042). This finding was not observed among migrant men (Table 2).

Table 1. Characteristics of the study participants stratified by migrant status and sex.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Male Non-migrants (n = 657)</th>
<th>Male Migrants (n = 1041)</th>
<th>Female Non-migrants (n = 1364)</th>
<th>Female Migrants (n = 1425)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>47.4 (± 13.2)</td>
<td>47.4 (± 10.6)</td>
<td>46.3 (± 12.5)</td>
<td>45.6 (± 10.0)</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No or primary education</td>
<td>211 (32.1)</td>
<td>138 (13.3)</td>
<td>795 (58.3)</td>
<td>393 (27.6)</td>
</tr>
<tr>
<td>Lower secondary</td>
<td>263 (40.0)</td>
<td>414 (39.8)</td>
<td>446 (32.7)</td>
<td>520 (36.5)</td>
</tr>
<tr>
<td>Higher secondary</td>
<td>125 (19.0)</td>
<td>272 (26.1)</td>
<td>94 (6.9)</td>
<td>335 (23.5)</td>
</tr>
<tr>
<td>Tertiary</td>
<td>58 (8.8)</td>
<td>217 (20.8)</td>
<td>29 (2.1)</td>
<td>177 (12.4)</td>
</tr>
<tr>
<td>Employment status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not working</td>
<td>91 (13.9)</td>
<td>254 (24.4)</td>
<td>193 (14.1)</td>
<td>530 (37.2)</td>
</tr>
<tr>
<td>Has a paid job</td>
<td>566 (86.1)</td>
<td>787 (75.6)</td>
<td>1171 (85.9)</td>
<td>895 (62.8)</td>
</tr>
<tr>
<td>Currently smoking</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>632 (96.2)</td>
<td>959 (92.2)</td>
<td>1363 (99.9)</td>
<td>1401 (98.4)</td>
</tr>
<tr>
<td>Yes</td>
<td>25 (3.8)</td>
<td>82 (7.8)</td>
<td>1 (0.1)</td>
<td>24 (1.6)</td>
</tr>
<tr>
<td>Physical activity (PA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low PA</td>
<td>125 (19.0)</td>
<td>283 (27.2)</td>
<td>483 (35.4)</td>
<td>430 (30.2)</td>
</tr>
<tr>
<td>Moderate PA</td>
<td>122 (18.6)</td>
<td>208 (20.0)</td>
<td>239 (17.5)</td>
<td>344 (24.1)</td>
</tr>
<tr>
<td>High PA</td>
<td>410 (62.4)</td>
<td>550 (52.8)</td>
<td>642 (47.1)</td>
<td>651 (45.7)</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>22.8 (± 3.8)</td>
<td>27.1 (± 3.9)</td>
<td>26.5 (± 5.5)</td>
<td>30.2 (± 5.1)</td>
</tr>
<tr>
<td>Family history CVD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>33 (5.0)</td>
<td>55 (5.3)</td>
<td>84 (6.2)</td>
<td>83 (5.8)</td>
</tr>
<tr>
<td>No</td>
<td>574 (87.4)</td>
<td>814 (78.2)</td>
<td>1164 (85.3)</td>
<td>1170 (82.1)</td>
</tr>
<tr>
<td>Unsure</td>
<td>50 (7.6)</td>
<td>172 (16.5)</td>
<td>116 (8.5)</td>
<td>172 (12.1)</td>
</tr>
<tr>
<td>Length of stay in years (migrants only)</td>
<td>18.2 (± 9.9)</td>
<td>17.6 (± 9.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stress at home/work</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>200 (30.4)</td>
<td>516 (49.6)</td>
<td>371 (27.2)</td>
<td>687 (48.2)</td>
</tr>
<tr>
<td>Yes</td>
<td>457 (69.6)</td>
<td>525 (50.4)</td>
<td>993 (72.8)</td>
<td>738 (51.8)</td>
</tr>
<tr>
<td>Depressive symptoms (DS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No DS</td>
<td>491 (74.7)</td>
<td>821 (78.9)</td>
<td>929 (68.1)</td>
<td>1070 (75.1)</td>
</tr>
<tr>
<td>Presence of DS</td>
<td>166 (25.3)</td>
<td>220 (21.1)</td>
<td>435 (31.9)</td>
<td>355 (24.9)</td>
</tr>
<tr>
<td>Negative life events</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>199 (30.3)</td>
<td>396 (38.0)</td>
<td>487 (35.7)</td>
<td>563 (39.5)</td>
</tr>
<tr>
<td>Yes</td>
<td>458 (69.7)</td>
<td>645 (62.0)</td>
<td>877 (64.3)</td>
<td>862 (60.5)</td>
</tr>
<tr>
<td>Hypertension</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>427 (65.0)</td>
<td>422 (40.5)</td>
<td>883 (64.7)</td>
<td>648 (45.5)</td>
</tr>
<tr>
<td>Yes</td>
<td>230 (35.0)</td>
<td>619 (59.5)</td>
<td>481 (35.3)</td>
<td>777 (54.5)</td>
</tr>
</tbody>
</table>

BMI: body mass index; CVD: cardiovascular disease; SD: standard deviation.
Associations between psychosocial factors and hypertension

Stress at home/work. In the Ghanaian migrant population, a statistically significant association was found between stress at home/work and hypertension among women. In the age adjusted model, women who experienced stress at home/work had higher odds of hypertension compared to those who did not. This association remained after further adjustments for other covariates (AOR = 1.29, 95% CI: 1.01–1.66). No associations were found between stress at home/work and hypertension among migrant men and in the non-migrant population (Table 3).

Depression symptoms. In the non-migrant population, women with depression symptoms were more likely to be hypertensive compared to those with no depression symptoms (Table 3). The association remained statistically significant after adjustment for the covariates (AOR = 1.36, 95% CI: 1.04–1.76). No associations were found between depression symptoms and hypertension among non-migrant men and in the migrant population.

Negative life events. A statistically significant association was found between negative life events and hypertension among non-migrant men. In the fully adjusted model (model 3), non-migrant men who reported experiencing negative life events had higher odds of hypertension compared to those who reported no negative life events (AOR = 1.51, 1.01–2.27). There was no statistically significant association between negative life events and hypertension among non-migrant women and in the migrant population (Table 3).

Discussion

Key findings

Findings from the study show that there was a statistically significant association between stress at home/work and hypertension among female non-migrants. In addition, the findings show that the experience of negative life events was associated with a higher likelihood of hypertension among non-migrant Ghanaian men only.
Interpretation of key findings

Among Ghanaian migrant women, the association between stress and hypertension corroborates the finding of a similar study which showed that women evidenced greater odds of hypertension if they had experienced stress at work or home (Hu et al., 2015). Particularly for Ghanaian migrant women, inequalities at the domestic, social and economic levels may be important sources of stress. It has been suggested that female migrants are more susceptible to such stressors as they have to cope with these inequalities in addition to coping with discrimination, legal restrictions and structural barriers to healthcare in the host country (Heard et al., 2011; Irfaeya et al., 2008).

In such environments, female migrants may experience intense periods of irritability and anxiety, which may increase the risk of hypertension and other functional disorders (Irfaeya et al., 2008). Also, it is plausible that Ghanaian female migrants may not be able to better cope with the extra social and financial obligations to their relations back in Ghana, and this may increase the risk of stress (Beune et al., 2006).

These plausible explanations may also hold for migrant men; however, it is likely that female migrants (relative to male migrants) have a higher vulnerability to stressors at home and/or work, which consequently leads to hypertension or other undesired health outcomes. Previous studies of physiological markers of emotional responses to stress have shown that women have a lower BP response than men (Allen et al., 1993).

Also, it is worth pointing out that in a previous study among Ghanaian and African–Surinamese migrants, stress was perceived by participants as an important contributor to hypertension (Beune et al., 2006). Although this study among Ghanaian and African–Surinamese migrants did not assess associations, it suggests that Ghanaian migrants recognize that stress could potentially lead to hypertension.

The finding in this study that non-migrant women with depression symptoms had higher odds of hypertension corroborates the assertion that depression is associated with, and increases the risk of, hypertension (Meng et al., 2012). In a recent similar study involving non-migrant women, depression was associated with an increase in the odds of hypertension after adjusting for age (Jackson et al., 2016).

It is important to point out that the evidence of this association in other studies has been inconclusive (Levenstein et al., 2001; Shinn et al., 2001).

Table 3. Associations of psychosocial factors with hypertension prevalence in non-migrants and migrants, stratified by sex.

<table>
<thead>
<tr>
<th></th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model 1 OR (95% CI)</td>
<td>Model 2 OR (95% CI)</td>
</tr>
<tr>
<td>Non-migrants (Ghanaians in Ghana)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stress at home/work</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No (ref.)</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Yes</td>
<td>1.04 (0.73–1.48)</td>
<td>1.02 (0.69–1.50)</td>
</tr>
<tr>
<td>Depressive symptoms (DSs)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No DS (ref.)</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Presence of DS</td>
<td>1.42 (0.98–2.05)</td>
<td>1.41 (0.94–2.11)</td>
</tr>
<tr>
<td>Negative life events</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No (ref.)</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Yes</td>
<td>1.26 (0.89–1.80)</td>
<td>1.44 (0.97–2.14)</td>
</tr>
<tr>
<td>Migrants (Ghanaians in Europe)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stress at home/work</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No (ref.)</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Yes</td>
<td>1.12 (0.84–1.49)</td>
<td>1.15 (0.85–1.53)</td>
</tr>
<tr>
<td>Depressive symptoms (DS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No DS (ref.)</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Presence of DS</td>
<td>1.17 (0.83–1.66)</td>
<td>1.09 (0.76–1.57)</td>
</tr>
<tr>
<td>Negative life events</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No (ref.)</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Yes</td>
<td>1.14 (0.87–1.51)</td>
<td>1.11 (0.83–1.47)</td>
</tr>
</tbody>
</table>

CI: confidence interval; OR: odds ratio; ref.: reference category; BMI: body mass index; CVD: cardiovascular disease.

Model 1: Psychosocial factors adjusted for age. Model 2: Psychosocial factors adjusted for age, education and employment status. Model 3: Psychosocial factors adjusted for age, education and employment status, smoking, physical activity, BMI, family history of CVD and length of stay (migrants only).

aDenotes statistical significance at 0.01 level.
bDenotes statistical significance at 0.05 level.
Generally, women tend to be more exposed than men to the factors that lead to depression symptoms or depression itself, which then increases their risk of hypertension (Aranda et al., 2001; Evans and Steptoe, 2002; McDonough and Walters, 2001). In addition, it is also likely that non-migrant women perceive and express stressors that lead to the manifestation of depression differently from men—which may also be the case for migrant women.

A plausible explanation to this study’s finding is that depression and other mental health states or outcomes are usually not detected and treated in Ghanaian non-migrant populations partly due to the overburdened health system and a lack of priority to address mental health issues. A larger proportion of these undiagnosed and untreated cases of depression may be among women which consequently increases their risk of hypertension and other negative health outcomes. On the other hand, Ghanaian migrants often have access to a healthcare system which is able to diagnose and treat depression and other mental health conditions.

There are a number of possible pathways through which depression may contribute to the development of hypertension (Ginty et al., 2013). There is long-standing evidence that the regulation of adrenergic activity often fails in those with depression symptoms (Dwight and Stoudemire, 1997; Ford et al., 1998). The alterations in this adrenergic activity may play a role in sustaining elevated BP over a period of time (Davidson et al., 2000).

In addition, depression symptoms may negatively influence adherence to healthy behaviours and a general recognition of self-care, which may then lead to the development of hypertension. For example, the presence of depression symptoms may lead to a reduction in physical activity, uptake of smoking or the cultivation of unhealthy eating habits which are established risk factors of hypertension. Notwithstanding, it is important to point out that these mechanisms may differ from one setting to another (Davidson et al., 2000).

The study’s findings also showed that among men in the non-migrant population, the experience of one or more negative life events increased the odds of hypertension. Negative life events have been long shown to be associated with hypertension in some studies (Schwartz et al., 2003; Sparrenberger et al., 2008). Nonetheless, the evidence remains inconclusive mainly due to differences in study design (Schwartz et al., 2003). Results of some studies have shown that men employ the use of a problem-focused coping strategy to deal with acute stressors, while women use their social support systems and the emotion-focused coping approach in dealing with acute stressors (Eaton and Bradley, 2008; Watson and Sinha, 2008).

It is possible that non-migrant Ghanaian men are unable to better manage unexpected life events such as the loss of a close family or friend, the loss of a steady employment or major financial crisis. In many Ghanaian societies, men are expected to show bravery in the face of challenging life circumstances, and this may prevent them from utilizing or taking advantage of the social support systems that may be in place. This may lead to elevations in BP during such periods. This association was not observed among men in the migrant population. It is plausible that the Ghanaian migrant population takes advantage of the social support systems that may be present in the host location during such periods.

Strengths and limitations

A strength of this study is its contribution to knowledge on the evidence of the association between common mental health states and hypertension, a major public health burden in many SSA populations. In addition, the use of well-standardized methods across all study locations reduced measurement biases.

A limitation of this study is that it was cross-sectional in nature and therefore causal attributions should be inferred with caution. There is a possibility of reverse association/causation between hypertension and the psychosocial factors assessed in this study. Also, the self-reported nature of the stressors measured could have potentially introduced some level of reporting bias or socially desirable responses.

Conclusion

The present analyses show that stress, depression symptoms and negative life events are associated with hypertension prevalence in Ghanaian populations, although the strength and direction of the associations differ by migration status (migrants and non-migrants) and sex (men and women). The findings suggest that addressing common mental health outcomes, such as stress and depressive symptoms, among Ghanaian populations in Ghana and in Europe may enhance emotional well-being and quality of life, and consequently contribute to reducing the burden of hypertension.

Acknowledgements

The authors are very grateful to the RODAM advisory board members for their valuable support in shaping the methods, to the research assistants, interviewers and other staff of the five research locations who have taken part in gathering the data and, most of all, to the Ghanaian volunteers participating in this project.

Authors’ contributions

RBA, AdGA, FNAD and CA conceptualized the study. RBA analysed the data and wrote the first draft of the article. CA, AdGA, FNAD, KACM, EJAJB, KK-G, JA, LS and SKB made important inputs to subsequent versions of the article. All authors read and approved the final article.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship and/or publication of this article.
Funding
The author(s) disclosed receipt of the following financial support for the research, authorship and/or publication of this article: The RODAM study was funded by the European Commission under the Framework Programme (grant number: 278901). The funders did not play any role in the study design, data collection and analysis or preparation of the article.

References

