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a b s t r a c t

Factor structures or interactive effects are convenient devices to incorporate latent
variables in panel data models. We consider fixed effect estimation of nonlinear panel
single-index models with factor structures in the unobservables, which include logit,
probit, ordered probit and Poisson specifications. We establish that fixed effect estima-
tors of model parameters and average partial effects have normal distributions when the
two dimensions of the panel grow large, but might suffer from incidental parameter bias.
We also show how models with factor structures can be applied to capture important
features of network data such as reciprocity, degree heterogeneity, homophily in latent
variables, and clustering. We illustrate this applicability with an empirical example to
the estimation of a gravity equation of international trade between countries using a
Poisson model with multiple factors.
©2020 TheAuthors. Published by Elsevier B.V. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Factor structures or interactive effects are convenient devices to incorporate latent variables in panel data models. They
re commonly used to capture aggregate shocks that might have heterogeneous impacts on the agents in macroeconomic
odels, and multidimensional individual heterogeneity that might have time varying effects in microeconomic models.
ore generally, the inclusion of these structures serves to account for dependences along the cross-section and time series
imensions in a parsimonious fashion. While methods for linear factor models are well-established, there are very few
tudies that develop methods for nonlinear factor models. (We provide a literature review at the end of this section.)
onlinear models are commonly used when the outcome variable is discrete or has a limited support. In this paper we
ntroduce factor structures in single-index nonlinear specifications such as the logit, probit, ordered probit and Poisson
odels.
The model that we consider is semiparametric. It includes an outcome, strictly exogenous covariates, and a fixed

umber of factors and factor loadings. The parametric part is the distribution of the outcome conditional on the covariates,
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factors and loadings, which is specified up to a finite dimensional parameter. The nonparametric part is the distribution
of the factors and loadings conditional on the covariates. In other words, our model is of the ‘‘fixed effects’’ type because
we do not impose any restriction on the relationship between the observed covariates and the unobserved factors and
loadings. This flexibility allows us to capture features of economic behavior more realistically, but poses important
challenges to estimation and inference. The objects of interest are the model parameter and average partial effects
(APEs), which are averages of functions of the data, parameter, factors and loadings. The APEs measure the effect of
covariates on moments of the outcome conditional on the covariates, factors and loadings. We consider a fixed effects
estimation approach that treats the factors and loadings as parameters to be estimated. As it is well-known in the
panel data literature, the resulting estimators generally suffer from the incidental parameter problem coming from the
high-dimensionality of the estimated parameter (Neyman and Scott, 1948).

We derive asymptotic theory for our estimators of the model parameter and APEs under sequences where the two
dimensions of the panel pass to infinity with the sample size. Even establishing consistency is complicated in our
setting because the dimension of the estimated parameters increases with the sample size. We develop a new proof
of consistency that relies on concavity of the log-likelihood function on a single-index that captures the dependence
on covariates, parameter, factors and loadings. However, unlike Fernández-Val and Weidner (2016), we need to deal
with the complication that our log-likelihood function is not concave in all the estimated parameters because the factors
and loadings enter multiplicatively in the index. We also establish that our estimators are normally distributed in large
samples, but might have biases of the same order as their standard deviations. For example, we find that the estimator of
the model parameter is asymptotically unbiased in the Poisson model, but is biased in logit and probit models. Following
the recent panel data literature, we develop analytical and split-sample corrections for the case where the estimator has
asymptotic bias. One specific feature of our estimator is that the bias depends on the number of factors. In particular, we
show that the bias grows proportionally with the number of factors in examples.

We discuss implementation details of our methods including the computation of the estimator and selection of the
number of factors. Thus, we propose an EM-type algorithm based on Chen (2014) and a concrete proposal to estimate
the number of factors based on the eigenvalue ratio test of Ahn and Horenstein (2013). The estimator of the number
of factors requires to specify an upper bound for the number of factors, but does not rely on any arbitrary choice of
penalty function or other tuning parameter. We do not provide asymptotic theory for this estimator, but show that it
performs well in numerical simulations. Formally deriving the theory is rather challenging, because it requires to study
the asymptotic properties of the initial fixed effects estimators of the parameters and factor structure obtained from a
specification with too many factors, which is a difficult problem even in linear panel factor model (Moon and Weidner
2015). We leave this analysis to future research.

We also introduce factor structures as practical tools to model network data. We show how the inclusion of latent
factors is useful to incorporate important features of the network such as reciprocity, degree heterogeneity, homophily
on latent variables, and clustering (Snijders, 2011; Graham, 2015). We focus on directed networks with unweighted and
weighted outcomes. These cover binary response models for network formation where the outcome is an indicator for
the existence of a link between sender and receiver, and count data models for network flows where the outcome is a
measure of the volume of flow between sender and receiver. As we shall discuss, our factor model provides a parsimonious
reduced-form specification that captures the important network features mentioned above. The statistical treatment of
the network factor model is identical to the panel factor model after noticing that a network is isomorphic to a panel
after labeling the senders as individuals and the receivers as time periods.

We illustrate the use of the factor structure in network data with an application to gravity equations of trade between
countries. We estimate a Poisson model where the outcome is the volume of trade and the covariates include typical
gravity variables such as the distance between the countries or whether the country pair belongs to a currency union
or a free trade area. The unobserved factors and loadings serve to account for scale and multilateral resistance effects,
unobserved partnerships, presence of multinational firms, and differences in natural resources or industrial composition.
We find that accounting for these multiple unobserved factors changes the effects of the gravity variables, making all of
them to have the expected signs while keeping most of them to be statistically significant.

Literature review. This paper contributes to the econometric panel data and network data literatures. Regarding the panel
data literature, our statistical analysis relies on the recent developments in fixed effects methods. We refer to Fernández-
Val and Weidner (2018) for a recent review on fixed effects estimation of nonlinear panel models with additive individual
and time effects, and to Bai and Wang (2016) for a recent review on fixed effects estimation of linear factor or interactive
effects panel models. Since the first draft of this paper appeared in Chen et al. (2014), Ando and Bai (2016) and Boneva
and Linton (2017) have considered special cases of nonlinear factor models. Boneva and Linton (2017) analyzed a probit
model using the common correlated random effects approach of Pesaran (2006), and Ando and Bai (2016) a logit model
using a Bayesian approach with data augmentation. Our analysis is different in the modeling assumptions and estimation
method.1 The most closely related work is Wang (2018). This paper derives the asymptotic distribution of the estimators
of the factors and loadings in non-linear single index models without covariates. By contrast, we focus on covariate
coefficients and average partial effects and treat the factors and loadings as nuisance parameters. Accordingly, we view
our results as complementary to the results in Wang (2018).

1 We refer to Ando and Bai (2016) and Boneva and Linton (2017) for more detailed comparisons with our analysis.
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In terms of the network literature, our paper is related to the recent work on the application of panel fixed
ffects methods to network data including Fernández-Val and Weidner (2016), Cruz-Gonzalez et al. (2017), Graham
2017), Dzemski (2018), Yan (2018) and Yan et al. (2019). These papers account for degree heterogeneity by including
dditive unobserved sender and receiver effects. Additive effects, however, do not capture other network features such as
omophily in latent factors and clustering. Graham (2016) considered a binary response model of network formation with
ll these features plus state dependence, for the case where the network is observed at multiple time periods. Compared
o Graham (2016), our method can capture all these features, except for state dependence, applies to ordered and count
utcomes in addition to binary outcomes, and only requires observing the network at one time period. A stream of the
tatistic literature has considered nonlinear factor network models using a random effects approach including Hoff et al.
2002), Hoff (2005), Krivitsky et al. (2009), and Handcock et al. (2007). Unlike the fixed effects approach that we adopt, the
andom effects approach assumes independence between covariates and factors and between covariates and loadings. This
ssumption is regarded as implausible for most economic applications where the loadings reflect unobserved individual
eterogeneity and some of the covariates are individual choice variables. There is also a recent econometric literature on
tructural models of strategic network formation where the main focus is on identification. We refer to de Paula (2017)
or an excellent up-to-date review on this topic. The focus of our paper is on estimation and inference.

Finally, there is an extensive literature in international economics on the estimation of the gravity equation in-
luding Harrigan (1994), Eaton and Kortum (2001), Anderson and van Wincoop (2003), Santos Silva and Tenreyro
2006), Helpman et al. (2008), Charbonneau (2012) and Jochmans (2017). We refer to Head and Mayer (2014) for a recent
eview on this literature. These papers estimate models with additive unobserved sender and receiver country effects to
ccount for scale or multilateral resistance effects. Our innovation to this literature is the inclusion of multiple unobserved
actors to account for not only scale effects, but also unobserved partnerships, and homophily induced by differences in
atural resources, industrial composition or other country characteristics.
To sum-up, our paper makes the following contributions. First, we derive asymptotic theory for fixed effects estimators

f model parameters and APEs in a class of nonlinear single-index factor models that include logit, probit, ordered probit
nd Poisson models. Second, we provide bias corrections for fixed effects estimators of model parameters and APEs. Third,
e propose an estimator of the number of factors in nonlinear single-index models with factor structure. Fourth, we bring

n the factor structure to model important features of network data such as reciprocity, degree heterogeneity, homophily
n latent factors and clustering in a reduced form fashion. Fifth, we apply our methods to the estimation of a gravity
quation of trade between countries and confirm the importance of the gravity variables even after conditioning on
ultiple unobserved latent factors.

utline. In Section 2, we introduce the model and estimators. Section 3 discusses the statistical issues in the estimation
nd inference of factor models with a simple example. Section 4 derives asymptotic theory for our estimators. Section 5
rovides implementation details for the estimators of the parameters and number of factors. Section 6 describes the
esults of the empirical application to the gravity equation and a calibrated simulation. The proofs of the main results and
ther technical details are given in Appendix.

. Model and estimators

.1. Model

We observe the data {(Yij, Xij) : (i, j) ∈ D}, where Yij is a scalar outcome variable and Xij is a dx-dimensional vector
of covariates. The subscripts i and j index individuals and time periods in traditional panels, but they might index
different dimensions in other data structures such as network data. In our empirical application, for example, we use
country trade network data where Yij is the volume of trade between country i and country j, and Xij includes gravity
variables such as the distance between country i and country j. Both i and j index countries as exporters and importers
respectively. The set D contains the indexes of the units that are observed. It is a subset of the set of all possible pairs
D0 := {(i, j) : i = 1, . . . , I; j = 1, . . . , J}, where I and J are the dimensions of the dataset. We introduce D to allow
for missing data that are common in panel and network applications. For example, in the trade application I = J and
D = D0 \ {(i, i) : i = 1, . . . , I} because we do not observe trade of a country with itself. We denote the total number of
observations by n, i.e. n = |D|.

We assume that the outcome is generated by

Yij | Xij, β, α, γ ∼ f (· | zij), zij := X ′

ijβ + πij, πij := α′

i γj, (2.1)

where f is a known density function with respect to some dominating measure, β is the dx-dimensional parameter
vector, and αi and γj are R-vectors of unobserved effects. We collect these effects in the I × R matrix α = (α1, . . . , αI )′,
nd the J × R matrix γ = (γ1, . . . , γJ )′, which are further stacked in the R(I + J)-vector φn = (vec(α)′, vec(γ )′)′. We
ake explicit in φn that the number of unobserved effects changes with the sample size because it will have important
ffects on the asymptotic theory. We assume that the dimension of the unobserved effects R is known, and provide a
ractical method to estimate R in Section 5. The effects αi and γj are unobserved factors and factor loadings. In panel data

hey represent individual and time effects that in economic applications capture individual heterogeneity and aggregate
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shocks, respectively. In network data αi and γj represent unobserved characteristics of senders and receivers that affect
the network flow. The model is semiparametric because we do not specify the distribution of the unobserved effects nor
their relationship with the covariates. This flexibility is important for economic applications where some of the covariates
are choice variables with values determined in part by the unobserved effects. The conditional distribution f represents
the parametric part of the model.

The model has a single-index specification because the covariates and unobserved effects enter f through the index
zij = X ′

ijβ + α′

iγj. The parameter β is a quantity of interest because it measures the effect of the covariates on the
distribution of the outcome controlling for the unobserved effects. For example, in network data β can measure homophily
in an observable characteristicW if Xij includes (Wi−Wj)2 as one of its components. The unobserved effects have a factor or
interactive structure because they enter the index zij multiplicatively through πij = α′

i γj. The standard additive structure
α1i + γ1j can be seen as a special case of the factor structure with R = 2, αi = (α1i, 1)′, and γj = (1, γ1j)′. More generally,
in panel data applications the factor structure allows one to incorporate multiple aggregate shocks γt with heterogeneous
effects across agents αi, or multidimensional individual heterogeneity αi with time-varying returns γt . For example, we can
have productivity and monetary shocks with heterogeneous effects across industries, or multiple dimensions of individual
ability and skills with time-varying returns in the labor market.

One of the contributions of the paper is to introduce factor structures to network data. In this case the factor
structure serves to capture important network features in an unspecified or reduced-form fashion. For example, degree
heterogeneity can be captured with the additive structure α1i + γ1j mentioned above, and reciprocity by allowing Yij to
be arbitrarily related to Yji even after conditioning on the covariates and unobserved effects. Another important feature
is homophily in latent factors, in addition to the homophily on observed factors captured by Xij. Assume that there is a
latent factor ξi such that the flow between i and j increases or decreases with the distance between ξi and ξj as measured
by (ξi − ξj)2. This type of homophily can also be captured by a factor structure with R = 3, αi = (ξ 2i , 1,−2ξi)′ and
γj = (1, ξ 2j , ξj). The factor structure can also account for clustering or transitivity of links due to latent factors. Assume
that there is a cluster of individuals such that there are more flows within the cluster. This would be captured by a factor
structure with R = 1, αi = ξiIi and γj = χjIj, where ξi and χj are positive cluster effects on the sender and receiver,
and Ii is an indicator for cluster membership. The factor structure can also account for combinations of these network
features. Indeed, one of its advantages is that the researcher has the flexibility of specifying some features and leaving
other features unspecified. For example, in the trade application we use a specification that includes additive effects
to account explicitly for degree heterogeneity and multiple interactive effects to account for the possibility of having
homophily in latent factors and clustering without explicitly modeling any of them.

We consider three running examples throughout the analysis:

Example 1 (Linear Model). Let Yij be a continuous outcome. We can model the conditional distribution of Yij using the
Gaussian linear model

f (y | zij) = ϕ(zij/σ )/σ , y ∈ R,

where ϕ is the density function of the standard normal and σ is a positive scale parameter.

Example 2 (Binary Response Model). Let Yij be a binary outcome and F be a cumulative distribution function of the standard
normal or logistic distribution. We can model the conditional distribution of Yij using the probit or logit model

f (y | zij) = F (zij)y[1 − F (zij)]1−y, y ∈ {0, 1}.

Example 3 (Count Response Model). Let Yij be a count or non-negative integer-valued outcome, and ψ(·; λ) be the
probability mass function of a Poisson random variable with parameter λ > 0. We can model the conditional distribution
of Yij using the Poisson model

f (y | zij) = ψ(y; exp[zij]), y ∈ {0, 1, 2, . . . .}.

2.2. Average partial effects

In addition to the model parameter β , we might be interested in average partial effects (APEs). These effects are
averages of the data, parameters and unobserved effects. They measure the effect of the covariates on moments of the
distribution of the outcome conditional on the covariates and unobserved effects. The leading case is the conditional
expectation,

E[Yij | Xij, αi, γj, β] =

∫
yf (y | X ′

ijβ + πij)dy,

where the partial effects are differences or derivatives of this expression with respect to the components of Xij. We denote
generically the partial effects by ∆(Y , X , β, α′γ ) = ∆ (β, α′γ ), where the restriction that they depend on α and γ
ij ij i j ij i j i j
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hrough πij is natural given the model for the conditional density of Yij. We allow the partial effect to depend on Yij to
cover scale and other parameters not included in the single-index. The APE is

δ = E

⎡⎣1
n

∑
(i,j)∈D

∆ij(β, α′

iγj)

⎤⎦ . (2.2)

Example 1 (Linear Model). The variance σ 2 in the linear model can be expressed as an APE with

∆ij(β, α′

iγj) = (Yij − X ′

ijβ − α′

iγj)
2. (2.3)

Example 2 (Binary Response Model). If Xij,k, the kth element of Xij, is binary, its partial effect on the conditional probability
of Yij is

∆ij(β, α′

iγj) = F (βk + X ′

ij,−kβ−k + α′

iγj) − F (X ′

ij,−kβ−k + α′

iγj), (2.4)

here βk is the kth element of β , and Xij,−k and β−k include all elements of Xij and β except for the kth element. If Xij,k
is continuous and F is differentiable, the partial effect of Xij,k on the conditional probability of Yij is

∆ij(β, α′

iγj) = βk∂F (X ′

ijβ + α′

iγj), ∂F (u) := ∂F (u)/∂u. (2.5)

Example 3 (Count Response Model). If Xij,k, the kth element of Xij, is binary, its partial effect on the conditional probability
of Yij in the Poisson model is

∆ij(β, α′

iγj) = exp(βk + X ′

ij,−kβ−k + α′

iγj) − exp(X ′

ij,−kβ−k + α′

iγj), (2.6)

where βk is the kth element of β , and Xij,−k and β−k include all elements of Xij and β except for the kth element. If Xij,k
is continuous, the partial effect of Xij,k on the conditional expectation of Yij is

∆ij(β, α′

iγj) = βk exp(X ′

ijβ + α′

iγj). (2.7)

2.3. Fixed effects estimator

We adopt a fixed effects approach and treat the unobserved effects φn as a vector of nuisance parameters to be
estimated. Let

L(β, φn) :=

∑
(i,j)∈D

log f (Yij | X ′

ijβ + πij)

be the conditional log-likelihood function of the data constructed from the parametric part of the model. The fixed effects
estimator is

(̂β, φ̂n) ∈ argmax
(β,φn)∈Rdx+R(I+J)

L(β, φn). (2.8)

This problem has a unique solution with probability one for β under the assumption that z ↦→ log f (· | z) is concave,
provided that there is no colinearity in the covariates. This assumption holds for all the cases that we consider including
logit, probit, ordered probit and Poisson models. The solution for φn is only unique up to normalization — see Remark 1.
Obtaining the solution to (2.8) can be computationally challenging because the objective function is not concave in the
parameter φn and the high-dimensionality of the parameter space. In Section 5 we provide an iterative method based
on Chen (2014) to obtain the estimates. This method performs well in simulations.

Let φ̂n = (vec(̂α)′, vec(γ̂ )′)′, where α̂ and γ̂ correspond to the components α and γ such that α̂ = (̂α1, . . . , α̂I )′ and
γ = (γ̂1, . . . , γ̂J )′. Plugging the estimator of (β, φn) in (2.2) yields the estimator of the APE,

δ̂ =
1
n

∑
(i,j)∈D

∆ij (̂β, α̂′

i γ̂j). (2.9)

In Section 4, we show that β̂ and δ̂ are consistent and normally distributed in large samples, but might have incidental
parameter bias because the dimension of the nuisance parameter φn grows with the sample size (Neyman and Scott,
1948).

Remark 1 (Normalization). As in linear factor models, the solution to the problem (2.8) for φn = (vec(α)′, vec(γ )′)′ is
nly unique up to normalization because the log-likelihood function is invariant under the transformation α ↦→ αA′ and
↦→ γA−1 for any non-singular R×R matrix A. The estimators β̂ and δ̂ are invariant to the normalization used to eliminate

his indeterminancy. Moreover, we can always reparametrize the model in (2.1) with respect to φn in a way that the true
alue of φ satisfies the adopted normalization. This invariance allows us to choose different normalizations for different
n
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Table 1
Asymptotic and Exact Bias of σ̂ 2 .
Bias I = 10 I = 25 I = 50

J = 10 J = 10 J = 25 J = 10 J = 25 J = 50

R = 1

Asymptotic −.19 −.14 −.08 −.12 −.06 −.04
Exact −.20 −.14 −.08 −.12 −.06 −.04

R = 2

Asymptotic −.36 −.26 −.15 −.23 −.12 −.08
Exact −.39 −.27 −.16 −.24 −.12 −.08

R = 3

Asymptotic −.51 −.38 −.23 −.34 −.17 −.12
Exact −.55 −.40 −.23 −.35 −.18 −.12

Notes: Results obtained by 50,000 simulations.
Design: Yij | φn ∼ N (α′

iγt , σ
2), αi ∼ N(0, IR), γj ∼ N(0, IR), σ 2

= 1.

purposes. For example, we use a standard normalization for linear factor models in the computation of the estimators,
whereas we employ another normalization to derive the asymptotic distributions of the estimators in Appendix. We refer
to Robertson and Sarafidis (2015) for a discussion on the effect of the normalization in the context of linear factor models.

3. A simple motivating example

We illustrate the statistical issues that arise in the estimation of factor models with a simple example. This example
is analytically tractable and might be of practical interest as it provides an estimator of the variance of a random variable
in network and panel data allowing for flexible patterns of dependence. The analysis in this section is mainly heuristic
leaving technical details such as the derivation of the orders of some remainder terms in the asymptotic expansions for
Section 4.

Consider a version of Example 1 without covariates where Yij | φn ∼ N (α′

iγj, σ
2). Assume that the observations Yij are

independent over i and j, and that there is no missing data, i.e. D = D0. The quantity of interest is the scale parameter
σ 2, which can be treated as an APE. This is a linear factor model where φ̂n can be obtained using the principal component
algorithm of Bai (2009). Then, the plug-in estimator of σ 2 is

σ̂ 2
=

1
IJ

I∑
i=1

J∑
j=1

(
Yij − α̂′

i γ̂j
)2
. (3.1)

To analyze the properties of σ̂ 2, it is useful to consider an asymptotic expansion of α̂′

i γ̂j around α
′

iγj as I, J → ∞. This
ields

α̂′

i γ̂j = α′

iγj + (̂αi − αi)′γj + α′

i (γ̂j − γj) + (̂αi − αi)′(γ̂j − γj)
≈ α′

iγj + (̂αi − αi)′γj + α′

i (γ̂j − γj),

here ≈ means equal up to terms of lower order. Plugging this expansion in (3.1) shows that σ̂ 2 behaves asymptotically
as a sample variance with R(I + J) estimated fixed effects corresponding to the α̂i’s and γ̂t ’s. Then, standard degrees of
freedom calculations give

E[σ̂ 2
] ≈

(I − R)(J − R)
IJ

σ 2
≈ σ 2

−
R(I + J)

IJ
σ 2, (3.2)

hich shows that σ̂ 2 has an incidental parameter bias that grows proportionally to the number of factors R. The order
f the bias corresponds to the number of estimated parameters, R(I + J), divided by the number of observations, IJ , as
redicted by the general formula in Fernández-Val and Weidner (2018) for fixed effects estimators. We show in numerical
xamples that this expression produces a very accurate approximation to the bias even for small sample sizes.
We carry out 50,000 simulations with σ 2

= 1, and αi and γj drawn independently from multivariate normal
istributions with mean zero and covariance function IR, the identity matrix of order R. Table 1 compares the bias of
2 with the asymptotic approximation (3.2) in datasets with I, J ∈ {10, 25, 50}, and R ∈ {1, 2, 3}. We only report the
esults for J ≤ I since all the expressions are symmetric in I and J . Comparing the two rows in each panel of the table,
we find that the asymptotic bias provides a very accurate approximation to the finite-sample bias of the estimator for all
the sample sizes and numbers of factors.

The bias of σ̂ 2 can be removed using analytical and split-sample methods. Thus, an analytical bias corrected estimator
can be formed as

σ̃ 2
ABC =

IJ
σ̂ 2.
(I − R)(J − R)
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Table 2
Bias, SD, RMSE and coverage probabilities.

Bias SD RMSE Cover Bias SD RMSE Cover

I = 10, J = 10 I = 25, J = 10

σ̂ 2
−0.55 0.09 0.56 0.00 −0.40 0.07 0.41 0.00

σ̃ 2
ABC −0.08 0.19 0.20 0.75 −0.02 0.11 0.11 0.85

σ̃ 2
SBC −0.09 0.20 0.22 0.71 −0.03 0.12 0.13 0.81

I = 25, J = 25 I = 50, J = 10

σ̂ 2
−0.23 0.05 0.24 0.01 −0.35 0.05 0.35 0.00

σ̃ 2
ABC −0.01 0.06 0.06 0.91 −0.01 0.08 0.08 0.88

σ̃ 2
SBC −0.02 0.07 0.07 0.85 −0.01 0.08 0.08 0.85

I = 50, J = 25 I = 50, J = 50

σ̂ 2
−0.18 0.04 0.18 0.00 −0.12 0.03 0.12 0.01

σ̃ 2
ABC −0.00 0.04 0.04 0.92 −0.00 0.03 0.03 0.93

σ̃ 2
SBC −0.01 0.05 0.05 0.88 −0.00 0.03 0.03 0.92

Notes: 50,000 simulations. Nominal level is 0.95.
Design: Yij | φn ∼ N (α′

iγt , σ
2), σ 2

= 1, αi ∼ N(0, IR), γj ∼ N(0, IR), R = 3

split-sample bias corrected estimator can be formed as

σ̃ 2
SBC = 3σ̂ 2

− σ̄ 2
I,J/2 − σ̄ 2

I/2,J ,

here σ̄ 2
I,J/2 is the average of the estimators in the half-panels {(i, j) : i = 1, . . . , I; j = 1, . . . , ⌈J/2⌉} and {(i, j) : i =

, . . . , I; j = ⌊J/2 + 1⌋, . . . , J}, and σ̄ 2
I/2,J is the average of the estimators in the half-panels {(i, j) : i = 1, . . . , ⌈I/2⌉; j =

, . . . , J} and {(i, j) : i = ⌊I/2 + 1⌋, . . . , I; j = 1, . . . , J}, where ⌈·⌉ and ⌊·⌋ are the ceil and floor functions. As in nonlinear
anel data, we expect these corrections to remove most of the bias of the estimator without increasing dispersion.
oreover, constructing confidence intervals around the corrected estimators should help bring coverage probabilities
lose to their nominal levels. We confirm these predictions in a numerical simulation.
Table 2 reports the bias, standard deviation and RMSE of the uncorrected and bias corrected estimators, together with

overage probabilities of 95% confidence interval constructed around them. The results are based on 50,000 simulations
f datasets generated as in Table 1 with I, J ∈ {10, 25, 50}, and R = 3. The confidence intervals around the estimator
2

∈ {σ̂ 2, σ̃ 2
ABC, σ̃

2
SBC} are constructed as σ̃ 2(1 ± 1.96

√
2/(IJ)), where we use that the asymptotic variance of all the

stimators is 2σ 4/(IJ). We find that the corrections offer huge improvements in terms of bias reduction and coverage
f the confidence intervals. The corrections increase the dispersion for small sample sizes, but always reduce the RMSE.
n this case the analytical correction slightly outperforms the split-sample correction.

. Asymptotic theory

We derive the asymptotic distribution of the estimators of the model parameter and APEs under sequences where I and
J grow with the sample size at the same rate. We focus on these sequences because they are the only ones that deliver a
non-degenerate limit distribution. Moreover, they are very natural choices for network data where I = J . Throughout this
section, all the stochastic statements are conditional on the realization of the unobserved effects φn and should therefore
be qualified with almost surely. We shall omit this qualifier to lighten the notation.

4.1. Model parameter

We consider single-index models with strictly exogenous covariates and unobserved effects that enter the density of
the outcome through zij = X ′

ijβ + πij, where πij = α′

iγj. These models cover the linear, probit and Poisson specifications
of Examples 1–3. We focus on strictly exogenous covariates because for some data structures of interest such as network
data there is no natural ordering of the observations. The results can be extended to predetermined covariates when one
of the dimensions is time, see the earlier version of the paper (Chen et al., 2014). Let

ℓij(zij) := log f (Yij | Xij, β, αi, γj) (4.1)

be the conditional log-likelihood coming from the parametric part of the model. We denote the derivatives of z ↦→ ℓij(z)
by ∂zqℓij(z) := ∂qℓij(z)/∂zq, q = 1, 2, . . .. Let β0, α0

i , γ
0
j , and π

0
ij = α0′

i γ
0
j denote the values of β , αi, γj, and πij that generated

he data. We drop the argument zij when the derivatives are evaluated at the true value of the index z0ij := X ′

ijβ
0
+ π0

ij ,
.e., ∂ qℓ := ∂ qℓ (z0). Let X = {X : (i, j) ∈ D}, α0

= (α0, . . . , α0)′, and γ 0
= (γ 0, . . . , γ 0)′.
z ij z ij ij ij 1 I 1 J
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We make the following assumptions:

ssumption 1 (Nonlinear Factor Model). Let ε > 0 and let B0
ε be a bounded subset of R that contains an ε-neighborhood

of z0ij for all i, j, I, J .

(i) Model: Yij is distributed as

Yij | X, β0, α0, γ 0
∼ exp[ℓij(X ′

ijβ
0
+ π0

ij )],

and conditional on (X, β0, α0, γ 0), either (a) Yij is independent across (i, j) ∈ D or (b) (Yij, Yji) is independent across
observations (i, j) ∈ D with i ≤ j. The number of factors R is known.

(ii) Asymptotics: we consider limits of sequences where In/Jn → κ2, 0 < κ < ∞, as n = |D| → ∞. We shall drop the
indexing by n from In and Jn in the following.

(iii) Smoothness and moments: z ↦→ ℓij(z) is four times continuously differentiable over B0
ε a.s. and

maxi,j E[|∂zqℓij(z0ij )|
8+ν

], q ≤ 4, are uniformly bounded over I, J for some ν > 0. In addition, Xij is bounded uniformly
over i, j, I, J .

(iv) Concavity: for all I, J , the function z ↦→ ℓij(z) is strictly concave over z ∈ R a.s. Furthermore, there exist positive
constants bmin and bmax such that for all z ∈ B0

ε , bmin ≤ −∂z2ℓij(z) ≤ bmax a.s. uniformly over i, j, I, J .
(v) Strong factors: I−1∑I

i=1 α
0
i α

0 ′

i →P Σ1 > 0, and J−1∑
j γ

0
j γ

0 ′

j →P Σ2 > 0.
(vi) Generalized non-collinearity: for any matrix A, define the coprojection matrix asMA := I−A(A′A)†A′, where I denotes

the identity matrix of appropriate size and the superscript † denotes the Moore–Penrose generalized inverse. Let
α0

:= (α0
1, . . . , α

0
I )

′ and Xk be a I × J matrix with elements Xij,k, i = 1, . . . , I , j = 1, . . . , J . The dx × dx matrix D(γ )
with elements

Dk1k2 (γ ) = (IJ)−1Tr(Mα0Xk1MγX′

k2 ), k1, k2 ∈ {1, . . . , dx},

satisfies D(γ ) > c > 0 for all γ ∈ RJ×R, wpa1.
(vii) Missing data: there is a finite number of missing observations for every i and j, that is, maxi(J−|{(i′, j′) ∈ D : i′ = i}|)

≤ C and maxj(I − |{(i′, j′) ∈ D : j′ = j}|) ≤ C for some constant C < ∞ that is independent of the sample size.

The two cases considered in Assumption 1(i) are designed for different data structures. Case (b) is more suitable
or network data because it allows for reciprocity between the observations (i, j) and (j, i), whereas case (a) is more
uitable for panel data where there is no special relationship between these observations. Assumption 1(i) also imposes
hat the number of factors is known. We provide a practical method to choose the number of factors in Section 5. We
lso recommend checking the sensitivity to this number by reporting the maximum value of the average log-likelihood
nd the parameter estimates for multiple values of R. We provide an example in the empirical application of Section 6.
ssumption 1(i)–(iii) are similar to Fernández-Val and Weidner (2016), so we do not discuss them further here. The
oncavity condition in Assumption 1(iv) holds for the logit, probit, ordered probit and Poisson models. The strong factor
nd generalized noncollinearity conditions in Assumption 1(v)–(vi) were previously imposed in Bai (2009) and Moon and
eidner (2015, 2017) for linear models with interactive effects. Generalized noncollinearity rules out covariates that do
ot display variation in the two dimensions of the dataset. Boneva and Linton (2017) and Ando and Bai (2016) impose
ery similar conditions to Assumption 1, so we refer to these papers for further discussion.
We introduce more notation that is convenient to simplify the expressions in the asymptotic distribution. Let Ξij be

dx-dimensional vector defined by the following population weighted least squares projection for each component of
(∂z2ℓijXij),

Ξij,k = α∗ ′

i,kγ
0
j + α0 ′

i γ
∗

j,k,
(
α∗

i,k, γ
∗

j,k

)
∈ argmin

αi,k,γj,k

∑
i,j

E(−∂z2ℓij)
(
E(∂z2ℓijXij,k)
E(∂z2ℓij)

− α′

i,kγ
0
j − α0 ′

i γj,k

)2

.

Also define the residual of the projection

X̃ij := Xij −Ξij.

Finally, let E := plimI,J→∞, Di := {j : (i, j) ∈ D} and Dj := {i : (i, j) ∈ D}.
The following theorem establishes the asymptotic distribution of β̂ defined in (2.8).

Theorem 1 (Asymptotic Distribution of β̂). Suppose that Assumption 1 holds, that the following limits exist

B∞ = −E

⎧⎪⎨⎪⎩1
I

∑
(i,j)∈D

γ 0 ′

j

⎡⎣∑
h∈D

γ 0
h γ

0′
h E

(
∂z2ℓih

)⎤⎦−1

γ 0
j E

(
∂zℓij∂z2ℓijX̃ij +

1
2
∂z3ℓijX̃ij

)⎫⎪⎬⎪⎭ ,

i
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D∞ = −E
⎪⎨⎪⎩1

J

∑
(i,j)∈D

α0 ′

i

⎡⎣∑
h∈Dj

α0
hα

0′
h E

(
∂z2ℓhj

)⎤⎦−1

α0
i E

(
∂zℓij∂z2ℓijX̃ij +

1
2
∂z3ℓijX̃ij

)⎫⎪⎬⎪⎭ ,

W∞ = −E

⎡⎣1
n

∑
(i,j)∈D

E
(
∂z2ℓijX̃ijX̃ ′

ij

)⎤⎦ ,
Σ∞ = E

⎡⎣1
n

∑
(i,j)∈D

E
{(
∂zℓijX̃ij + ∂zℓjiX̃ji

)
∂zℓijX̃ ′

ij

}⎤⎦ ,
nd that W∞ > 0. Then,

√
n
(
β̂ − β0

−
I
n
W

−1
∞

B∞ −
J
n
W

−1
∞

D∞

)
→d N (0, W

−1
∞
Σ∞W

−1
∞

).

Remark 2 (Panel Data). In case (a) of Assumption 1(i), the asymptotic variance of β̂ simplifies to

W
−1
∞
Σ∞W

−1
∞

= −W
−1
∞
,

y the fact that the scores ∂zℓijX̃ij and ∂zℓjiX̃ji are uncorrelated and the information equality.

Theorem 1 shows that β̂ is consistent and normally distributed, but can have bias of the same order as its standard
deviation. The scaling factors in the expressions for B∞ and D∞ are such that those expressions are of order one, for
example, we can express B∞ equivalently as

−E

⎧⎪⎨⎪⎩1
I

I∑
i=1

1
|Di|

∑
j∈Di

γ 0 ′

j

⎡⎣ 1
|Di|

∑
h∈Di

γ 0
h γ

0′
h E

(
∂z2ℓih

)⎤⎦−1

γ 0
j E

(
∂zℓij∂z2ℓijX̃ij +

1
2
∂z3ℓijX̃ij

)⎫⎪⎬⎪⎭ ,
here all sums explicitly appear as part of a sample average. We verify the presence of bias in our running examples.

xample 1 (Linear Model). In this case

ℓij(z) = −
1
2
log(2πσ 2) −

(Yij − zij)2

2σ 2 ,

o that ∂zℓij = (Yij − z0ij )/σ
2, ∂z2ℓij = −1/σ 2, and ∂z3ℓij = 0. Substituting these values in the expressions of the bias of

Theorem 1 yields B∞ = D∞ = 0, which agrees with the result in Bai (2009) of no asymptotic bias for β in homoskedastic
linear models with interactive effects and strictly exogenous covariates.

Example 2 (Binary Response Model). In this case

ℓij(z) = Yij log F (z) + (1 − Yij) log[1 − F (z)],

so that ∂zℓij = Hij(Yij − Fij), ∂z2ℓij = −Hij∂Fij + ∂Hij(Yij − Fij), and ∂z3ℓij = −Hij∂
2Fij − 2∂Hij∂Fij + ∂2Hij(Yij − Fij), where

Hij = ∂Fij/[Fij(1 − Fij)], and ∂ jGij := ∂ jG(Z)|Z=z0ij
for any function G and j = 0, 1, 2. Substituting these values in the

expressions of the bias of Theorem 1 for the probit model yields

B∞ = E

⎧⎪⎨⎪⎩ 1
2 I

∑
(i,j)∈D

γ 0 ′

j

⎡⎣∑
h∈Di

γ 0
h γ

0′
h E

(
∂z2ℓih

)⎤⎦−1

γ 0
j E

(
∂z2ℓijX̃ijX̃ ′

ij

)⎫⎪⎬⎪⎭β0,

D∞ = E

⎧⎪⎨⎪⎩ 1
2 J

∑
(i,j)∈D

α0 ′

i

⎡⎣∑
h∈Dj

α0
hα

0′
h E

(
∂z2ℓhj

)⎤⎦−1

α0
i E

(
∂z2ℓijX̃ijX̃ ′

ij

)⎫⎪⎬⎪⎭β0.
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The asymptotic bias is therefore a positive definite matrix weighted average of the true parameter value as in the case of
the probit model with additive individual and time effects in Fernández-Val and Weidner (2016). The bias grows linearly
with the number of factors because

∑
j∈Di

γ 0 ′

j

⎡⎣∑
h∈Di

γ 0
h γ

0′
h

⎤⎦−1

γ 0
j =

∑
i∈Dj

α0 ′

i

⎡⎣∑
h∈Dj

α0
hα

0′
h

⎤⎦−1

α0
i = R, (4.2)

and E
(
∂z2ℓij

)
and E

(
∂z2ℓijX̃ijX̃ ′

ij

)
are bounded uniformly in i, j.

Example 3 (Count Response Model). In this case

ℓij(z) = zYij − exp(z) − log Yij!,

where the symbol ! denotes the factorial function, so that ∂zℓij = Yij − λij and ∂z2ℓij = ∂z3ℓij = −λij, where λij = exp(z0ij ).
Substituting these values in the expressions of the bias of Theorem 1 yields

B∞ = D∞ = 0,

which generalizes the result in Fernández-Val and Weidner (2016) of no asymptotic bias in the Poisson model with strictly
exogenous covariates and additive individual and time effects to the Poisson model with strictly exogenous covariates and
factor structure.

4.2. Average partial effects

We use additional assumptions to derive the asymptotic distribution of the estimator of the APEs. They involve
smoothness conditions on the partial effect function (β, π ) ↦→ ∆ij(β, π ) needed to obtain the limit distribution of δ̂
rom the limit distribution of (̂β, φ̂n) via delta method. For a vector of nonnegative integer numbers v = (v1, . . . , vdx ), let
∂βv := ∂ |v|/∂β

v1
1 · · · ∂β

vdx
dx and |v| = v1 + · · · + vdx .

Assumption 2 (Partial Effects). Let ϵ > 0, and let B0
ε be a subset of Rdx+1 that contains an ε-neighborhood of (β0, π0

ij ) for
all i, j, I, J .

(i) Model: for all i, j, I, J , the partial effects depend on αi and γj through πij = α′

iγj:

∆(Yij, Xij, β, αi, γj) = ∆ij(β, πij),

where (β, π ) ↦→ ∆ij(β, π ) is a known real-valued function. The realizations of the partial effects are denoted by
∆ij := ∆ij(β0, π0

ij ).
(ii) Smoothness and moments: The function (β, π ) ↦→ ∆ij(β, π ) is four times continuously differentiable over B0

ε a.s.,
and maxi,j E[|∂βvπqℓij(β0, z0ij )|

8+ν
], |v| + q ≤ 4, are uniformly bounded over I, J for some ν > 0.

It is convenient again to introduce notation to simplify the expressions in the asymptotic distribution. Let Ψij be the
weighted least squares population projection

Ψij = α∗ ′

i γ
0
j + α0 ′

i γ
∗

j ,
(
α∗

i , γ
∗

j

)
∈ argmin

αi,γj

∑
i,j

E(−∂z2ℓij)
(
E(∂π∆ij)
E(∂z2ℓij)

− α′

iγ
0
j − α0 ′

i γj

)2

.

We denote the partial derivatives of (β, π ) ↦→ ∆ij(β, π ) by ∂β∆ij(β, π ) := ∂∆ij(β, π )/∂β , ∂ββ ′∆ij(β, π ) := ∂2∆ij(β, π )/
∂β∂β ′), ∂πq∆ij(β, π ) := ∂q∆ij(β, π )/∂π q, q = 1, 2, 3, . . .. We drop the arguments β and π when the derivatives are
valuated at the true values β0 and π0

ij , e.g. ∂πq∆ij := ∂πq∆ij(β0, π0
ij ). We also define Dπ∆ij := ∂π∆ij − ∂z2ℓijΨij and

π2∆ij := ∂π2∆ij − ∂z3ℓijΨij.
We are now ready to present the asymptotic distribution of δ̂ defined in (2.9).

heorem 2 (Asymptotic Distribution of δ̂). Suppose that the assumptions of Theorem 1 and Assumption 2 hold, and that the
ollowing limits exist:

(Dβ∆)
∞

= E

⎡⎣1
n

∑
(i,j)∈D

E(∂β∆ij −Ξij∂π∆ij)

⎤⎦′

,

B
δ

∞
= −E

⎧⎪⎨⎪⎩1
I

∑
(i,j)∈D

γ 0 ′

j

⎡⎣∑
h∈D

γ 0
h γ

0′
h E

(
∂z2ℓih

)⎤⎦−1

γ 0
j E

[
∂zℓij Dπ∆ij +

1
2
Dπ2∆ij

]⎫⎪⎬⎪⎭ ,

i
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D
δ

∞
= −E

⎪⎨⎪⎩1
J

∑
(i,j)∈D

α0 ′

i

⎡⎣∑
h∈Dj

α0
hα

0′
h E

(
∂z2ℓhj

)⎤⎦−1

α0
i E

[
∂zℓij Dπ∆ij +

1
2
Dπ2∆ij

]⎫⎪⎬⎪⎭ ,
V
δ

∞
= −E

⎧⎨⎩1
n

∑
(i,j)∈D

E
(
ΓijΓ

′

ij + ΓjiΓ
′

ij

)⎫⎬⎭ ,
here Γij = (Dβ∆)

∞
W

−1
∞
∂zℓijX̃ij − Ψij∂zℓij. Then,

√
n
[̂
δ − δ0 −

I
n
(Dβ∆)

∞
W

−1
∞

B∞ −
J
n
(Dβ∆)

∞
W

−1
∞

D∞ −
I
n
B
δ

∞
−

J
n
D
δ

∞

]
→d N (0, V

δ

∞
).

Remark 3 (Panel Data). In case (a) of Assumption 1(i), the term involving the cross products ΓjiΓ
′

ij drops out from the

asymptotic variance V
δ

∞
.

Theorem 2 shows that δ̂ is consistent and normally distributed, but can have bias of the same order as its standard
eviation. The first two terms of the bias come from the bias of β̂ . They drop out when either β̂ does not have bias or the
PE is estimated from a bias corrected estimator of β . We verify the presence of bias in two of the running examples.

xample 1 (Linear Model). In this case B∞ = D∞ = 0 and

∆ij(β, π ) = (Yij − X ′

ijβ − π )2,

so that ∂z∆ij = −2(Yij − X ′

ijβ
0
−π0

ij ) and ∂z2∆ij = 2. Substituting these values in the expressions of the bias of Theorem 2
yields

B
δ

∞
= D

δ

∞
= −Rσ 2,

here we use (4.2). This result formalizes the analysis in Section 3

xample 2 (Binary Response Model). Let ∆ij(β, π ) be as defined in either (2.4) or (2.5). Using the notation previously
ntroduced for this example, the expressions of B

δ

∞
and D

δ

∞
in Theorem 2 yield

B
δ

∞
= E

⎧⎪⎨⎪⎩ 1
2 I

∑
(i,j)∈D

γ 0 ′

j

⎡⎣∑
h∈Di

γ 0
h γ

0′
h E

(
∂z2ℓih

)⎤⎦−1

γ 0
j E

(
∂π2∆ij − ΨijHij∂

2Fij
)⎫⎪⎬⎪⎭ ,

D
δ

∞
= E

⎧⎪⎨⎪⎩ 1
2 J

∑
(i,j)∈D

α0 ′

i

⎡⎣∑
h∈Dj

α0
hα

0′
h E

(
∂z2ℓhj

)⎤⎦−1

α0
i E

(
∂π2∆ij − ΨijHij∂

2Fij
)⎫⎪⎬⎪⎭ .

As for the model parameter, these bias terms grow linearly with the number of factors R.

Example 3 (Count Response Model). Let ∆ij(β, π ) be as defined in either (2.6) or (2.7). In this case B∞ = D∞ = 0, and
∂z∆ij = ∂z2∆ij = ∆ij. Substituting these values in the expressions of the bias of Theorem 2 yields

B
δ

∞
= D

δ

∞
= 0,

hich generalizes the result in Fernández-Val and Weidner (2016) of no asymptotic bias for the estimators of the APEs in
he Poisson model with strictly exogenous covariates and additive individual and time effects to the Poisson model with
trictly exogenous covariates and factor structure.

.3. Bias correction and inference

Theorems 1 and 2 establish that the estimators of the model parameter and APEs have a bias of the same order as
heir standard deviations in some models. In this section, we describe how to apply recent developments in nonlinear
anel data to correct the bias from the estimators. To simplify the notation we assume that there is no missing data.2
e consider a generic estimator θ̂ of the parameter θ , which may correspond to the model parameter or an APE. In this
otation, Theorems 1 and 2 show that θ̂ can have a bias B∞ = E[B(β0, φ0

n )] with structure

B(β, φn) =
B(β, φn)

J
+

D(β, φn)
I

.

2 We refer to Fernández-Val and Weidner (2018) for a discussion on how to modify the corrections to deal with missing data.
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The intuition behind this structure is that there are J observations that are informative to estimate each αi and I
observations that are informative to estimate each γj.

An analytical correction based on Hahn and Newey (2004) and Fernández-Val and Weidner (2016) can be formed as

θ̃ABC = θ̂ − B̂, B̂ = B(̂β, φ̂n).

A split-sample correction based on Dhaene and Jochmans (2015) and Fernández-Val and Weidner (2016) can be formed
as

θ̃SBC = 3̂θ − θ̄I,J/2 − θ̄I/2,J ,

where θ̄I,J/2 is the average of the estimators in the half-panels {(i, j) : i = 1, . . . , I; j = 1, . . . , ⌈J/2⌉} and {(i, j) : i =

1, . . . , I; j = ⌊J/2 + 1⌋, . . . , J}, and θ̄I/2,J is the average of the estimators in the half-panels {(i, j) : i = 1, . . . , ⌈I/2⌉; j =

1, . . . , J} and {(i, j) : i = ⌊I/2 + 1⌋, . . . , I; j = 1, . . . , J}, where ⌈·⌉ and ⌊·⌋ are the ceil and floor functions. For network
data where I = J and the two dimensions of the data index the same entities, Cruz-Gonzalez et al. (2017) proposed the
leave-one-out correction

θ̃NBC = I θ̂ − (I − 1)θ̄I−1, θ̄I−1 = I−1
I∑

i=1

θ̂−i,

where θ̂−i is the estimator in the subpanel {(k, j) : k = 1, . . . , I; j = 1, . . . , I, k ̸= i, j ̸= i}, that is, the original panel
leaving out the observations corresponding to the entity i as either sender or receiver.

The discussion of bias correction so far is applicable very generally to network and panel models with two-way fixed
effects. We now specialize it to our nonlinear models with interactive fixed effects. For the analytic bias correction and
for variance estimation we require consistent estimators for the quantities B∞, D∞, W∞, and Σ∞ defined in Theorem 1.
et B̂, D̂, Ŵ and Σ̂ be the corresponding sample analogs, obtained by simply dropping expectations and plugging in the
ixed effect estimators for the true value of the parameters. For example,

Ŵ = −
1
n

∑
(i,j)∈D

∂z2 ℓ̂ij
(
Xij − Ξ̂ij

) (
Xij − Ξ̂ij

)′
,

here ∂z2 ℓ̂ij = ∂z2ℓij
(
X ′

ijβ̂ + α̂′

i γ̂j
)
, and Ξ̂ij is the dx-vector with elements Ξ̂it,k = α# ′

i,k γ̂j + α̂
′

iγ
#
t,k, with α# ′

i,k and γ #
t,k obtained

as the solution to(
α#
k , γ

#
k

)
∈ argmin

αi,k,γt,k

∑
i,j

(−∂z2 ℓ̂ij)
(
∂z2 ℓ̂ijXij,k

∂z2 ℓ̂ij
− α′

i,kγ̂j − α̂′

iγt,k

)2

.

Once those sample analogs are constructed, then the analytic bias correction of β̂ reads

β̃ABC = β̂ −
I
n
Ŵ−1̂B −

J
n
Ŵ−1D̂.

Analogously, we can construct sample analogs for B
δ

∞
, D

δ

∞
, (Dβ∆)

∞
, defined in Theorem 2, in order to construct δ̃ABC. Also,

et V̂ δ be the sample analog of V
δ

∞
.

heorem 3 (Asymptotic Distribution of β̃ABC and δ̃ABC). Under the conditions of Theorem 1,
√
n
(̃
βABC − β0)

→d N (0, W
−1
∞
Σ∞W

−1
∞

),ˆ →P W∞ and Σ̂ →P Σ∞. If, in addition, the conditions of Theorem 2 hold, then
√
n
(̃
δABC − δ0

)
→d N (0, V

δ

∞
),

and V̂ δ →P V
δ

∞
.

Theorem 3 shows that analytic bias correction can be used to obtain estimators of β0 and δ0 that are asymptotically
unbiased. It also shows that the simple plug-in estimators of the asymptotic variances are consistent, thus allowing to
perform asymptotically valid hypothesis tests and to construct asymptotically valid confidence intervals for β0 and δ0.

Showing that the Jackknife corrected estimators β̃JBC and δ̃JBC have the same asymptotic distribution as β̃ABC and
ABC requires an additional homogeneity assumption, which guarantees that the unconditional distribution of the data
s stationary across i and j. This assumption ensures that the terms B and D in the bias expansion of θ̂ are the same as in
he bias expansions of the half-panel estimates θ̄I,J/2 and θ̄I/2,J , so that forming the Jackknife linear combination θ̃SBC indeed
ancels those bias terms. In other words, the data distribution should not systematically differ across the subsamples used
or the Jackknife correction (Dhaene and Jochmans, 2015; Fernández-Val and Weidner, 2016).

The derivation of the asymptotic distribution of the leave-one-out correction θ̃NBC furthermore requires a third-order
ias expansion (i.e., up to terms of order 1/I2), because in the expression of θ̃NBC the estimators θ̂ and θ̄I−1 are multiplied
y the factors I and (I − 1) that grow with the sample size. We have not worked out those higher-order expansion here,
ut we refer to Sun and Dhaene (2017) for an example of higher-order expansions in nonlinear panel models.
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. Implementation details

.1. Computation of the estimator

We apply the following EM-type algorithm based on Chen (2014) to find the solution to the program (2.8):

lgorithm 1 (Likelihood Maximization). (i) Initialization: provide the initial values β (0), α(0) and γ (0) for β , α and γ (e.g.,
et all these initial values equal to zero). (ii) Iteration k ≥ 1: given β (k−1), α(k−1) and γ (k−1), (a) compute the I × J matrix
(k) with elements

µ
(k)
ij = z(k)ij −

∂zℓij(z
(k)
ij )

∂z2ℓij(z
(k)
ij )
, z(k)ij = X ′

ijβ
(k−1)

+ α
(k−1)′
i γ

(k−1)
j ;

(b) update α and γ : solve the principal components program

(α(k), γ (k)) ∈ argmin
vec(a)∈RI×R,vec(g)∈RJ×R

Tr(µ(k)
− a′g)(µ(k)

− a′g)′;

and (c) update β:

β (k)
=

[
X̃ (k)′ X̃ (k)

]−1
X̃ (k)′vec(µ̃(k)),

where µ̃(k)
= Mα(k)µ

(k)Mγ (k) , X̃ (k) is an IJ × dx matrix with typical column X̃ (k)
c = vec(Mα(k)XcMγ (k) ), Mα(k) :=

I − α(k)(α(k)′α(k))†α(k)′ , Mγ (k) := I − γ (k)(γ (k)′γ (k))†γ (k)′ and Xc is an I × J matrix with elements Xij,c . (iii) Convergence:
repeat step (ii) until ∥β (k)

− β (k−1)
∥∞ ≤ ϵ, where ϵ is a tolerance parameter (e.g., ϵ = 10−5).

Chen (2014) analyzed the convergence guarantees for this algorithm. She showed that the algorithm converges to a
local maximum of the log-likelihood. Since the log-likelihood can have multiple local maxima, we recommend to run the
algorithm for several initial values and choose the solution that yields the highest value of the log-likelihood.

Remark 4 (Additive Effects). Separate additive effects in both dimensions can be treated as one known factor of ones with
unknown loading and one known loading of ones with unknown factor. They can therefore be included by imposing the
constraints that the second column of α(k) and the first column of γ (k) are equal to vectors of ones in part (b) of step (ii).
Other known factors with unknown loadings or known loadings with unknown factors can be incorporated similarly by
imposing constraints in part (b) of step (ii).

5.2. Estimating the number of factors

The problem of estimating the number of factors R has been extensively discussed for linear factor models without
covariates, see for example, Bai and Ng (2002), Hallin and Liska (2007), Onatski (2010), Alessi et al. (2010) and Ahn
and Horenstein (2013). These methods can be extended to linear models with covariates, provided that an appropriate
preliminary estimator β̃ of the regression parameters β is available that does not require knowing R. In this case the
existing methods are applied to the residuals Yij −X ′

ijβ̃ . If there exists an upper bound for the number of factors, Rmax ≥ R,
then the preliminary estimator β̃ is given by the least squares estimator with Rmax factors, see Moon and Weidner (2015).
These methods can also be extended to the nonlinear factor models that we consider. For example, the various information
criteria in Bai and Ng (2002) are all based on minimizing the sum of squared residuals plus a penalty function, and can
be adapted to the likelihood problem in the spirit of classic model selection criteria (AIC, BIC, etc.), see Ando and Bai
(2016) for an example of this approach.3 It is less obvious, however, how to extend the eigenvalue ratio (ER) test of Ahn
and Horenstein (2013) to nonlinear models. This method is attractive because it does not depend on somewhat arbitrary
functional form assumptions or tuning parameters. It only requires to specify Rmax, but there is no penalty function or
any other tuning parameter. Assuming that there exists an upper bound Rmax > R, we propose adapting this method to
nonlinear factor single-index models using the following algorithm:

Algorithm 2 (Estimation of R). (1) Obtain preliminary estimates β̃ , α̃ and γ̃ using Algorithm 1 with R = Rmax. (2)
Compute preliminary estimates of the factor structure as the I × J matrix π̃ with elements π̃ij := α̃′

i γ̃j. By construction,
rank(π̃ ) ≤ Rmax. (3) Apply the eigenvalue ratio criterion of Ahn and Horenstein (2013) to π̃ in order to estimate R, that is,

R̂ = max
r∈{1,...,Rmax−1}

EV(r), EV(r) =
λr
(
π̃ π̃ ′

)
λr+1 (π̃ π̃ ′)

,

where λr
(
π̃ π̃ ′

)
denotes the r ’th largest eigenvalue of π̃ π̃ ′.

3 Kneip et al. (2012) proposed an alternative estimator of the number of factors in linear models specially adapted to i.i.d. errors.
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Table 3
Simulation results for R̂2 in Poisson model.
I = J Rmax E[̂R2] Pr(̂R2 = R2) E[̂R2] Pr(̂R2 = R2) E[̂R2] Pr(̂R2 = R2)

R2 = 1 R2 = 2 R2 = 3

50
4 1.05 0.96 1.94 0.84 2.80 0.88
5 1.16 0.88 1.92 0.71 2.84 0.67
6 1.34 0.75 1.90 0.57 2.83 0.50

75
4 1.01 0.99 1.99 0.96 2.78 0.83
5 1.01 0.99 1.97 0.91 2.99 0.83
6 1.03 0.97 1.93 0.83 3.11 0.72

100
4 1.06 0.96 2.01 0.98 2.98 0.99
5 1.13 0.92 2.06 0.95 3.00 0.99
6 1.28 0.87 2.11 0.92 3.01 0.98

150
4 1.01 0.99 2.01 0.97 2.99 0.99
5 1.04 0.98 2.09 0.90 2.98 0.96
6 1.09 0.96 2.15 0.91 2.99 0.94

Notes: 1000 simulations. The design includes one covariate and additive effects.

Remark 5 (Additive Effects). When the specification includes factors with known loadings and/or loadings with known
actors, π̃ij is the estimator of the part of the factor structure that does not contain known factors and known loadings
and Rmax refers to the number of factors in this part.

This algorithm can be seen as a natural generalization of the Ahn and Horenstein (2013) to single-index models. Indeed,
if we applied it to the linear model Yij = X ′

ijβ + α′

i γj + εij, with log f (Yij | X ′

ijβ + α′

iγj) replaced by −(Yij − X ′

ijβ − α′

i γj)
2,

then

λr
(
π̃ π̃ ′

)
= λr

[(
Yij − X ′

ijβ̃
) (

Yij − X ′

ijβ̃
)′]
,

which corresponds to the eigenvalue ratio criterion of Ahn and Horenstein (2013) applied to the residuals Yij − X ′

ijβ̃ .
Based on this coverage of the linear model, we conjecture that R̂ is a consistent estimator of R under suitable conditions.
To formalize this argument, a key step is to establish the consistency of the preliminary estimator β̃ , extending the results
of Moon and Weidner (2015) from linear to nonlinear models, and the properties of the estimator of the factor structure
π . The main technical challenge is to characterize π̃ , which is not even available for the linear model with covariates and
R > R0. We leave this analysis to future research. In the rest of the section we show that the method performs well in
numerical simulations.

To show how R̂ performs in small samples, we generate samples from the Poisson model of Example 3 with additive
effects where zij = Xijβ + α1i + γ1j + α′

2iγ2j, Xij ∼ N(1, 1/3), β = 0, α1i ∼ U(0, 1), γ1i ∼ U(0, 1), α2i is an R2-dimensional
standard normal vector with independent components, γ2i is an R2-dimensional standard normal vector with independent
components, and Xij, α1i′ , γ1j′ , α2i′′ and γ2j′′ are mutually independent for all i, i′, i′′ = 1, . . . , I and j, j′, j′′ = 1, . . . , J . We
generate 1000 datasets with I = J ∈ {50, 75, 100, 150} and R2 ∈ {1, 2, 3}, and apply Algorithm 2 with Rmax ∈ {4, 5, 6}.
Table 3 reports the average of R̂2 across simulations and the proportion of simulations where R̂2 = R2. Here, we find
that R̂2 has little bias and often yields the true R2, specially for the larger sample sizes with I ≥ 75. Interestingly, the
performance of R̂2 improves as Rmax gets closer to R2. Given this sensitivity, we recommend computing R̂2 for several
values of Rmax.

6. Application to gravity equation

6.1. Gravity equation with multiple latent factors

The gravity equation is a fundamental empirical relationship in international economics. We estimate a gravity
equation of trade between countries using data from Helpman et al. (2008) on bilateral trade flows and other trade-
related variables for 157 countries in 1986.4 The dataset contains a network of trade data where both i and j index
countries as senders (exporters) and receivers (importers), such that I = J = 157. The outcome Yij is the volume of
trade in thousands of constant 2000 US dollars from country i to country j, and the covariates Xij include determinants of
bilateral trade flows such as the logarithm of the distance in kilometers between country i’s capital and country j’s capital
and indicators for common colonial ties, currency union, regional free trade area (FTA), border, legal system, language,
and religion. Table 4 reports descriptive statistics of the variables used in the analysis. There are 157 × 156 = 24,492
observations corresponding to different pairs of countries. The observations with i = j are missing because we do not
observe trade flows from a country to itself. The trade variable in the first row is an indicator of positive volume of trade.
There are no trade flows for 55% of the country pairs.

4 The original dataset includes 158 countries. We exclude Congo because it did not export to any other country in 1986.
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Table 4
Descriptive statistics.
Source: Helpman et al. (2008).

Mean Std. Dev.

Trade 0.45 0.50
Trade Volume 84,542 1,082,219
Log Distance 4.18 0.78
Legal 0.37 0.48
Language 0.29 0.45
Religion 0.17 0.25
Border 0.02 0.13
Currency 0.01 0.09
FTA 0.01 0.08
Colony 0.01 0.10

Country Pairs 24,492

Table 5
Parameters of gravity equation.

R2 = 0 R2 = 1 R2 = 2 R2 = 3a R2 = 4 R2 = 5 R2 = 6

Log Distance −0.64 −0.63 −0.71 −0.69 −0.77 −0.90 −1.01
(0.05) (0.05) (0.05) (0.06) (0.07) (0.09) (0.21)
[0.07] [0.05] [0.06] [0.06] [0.08] [0.09] [0.22]

Border 0.71 0.41 0.32 0.36 0.38 0.36 0.27
(0.12) (0.06) (0.05) (0.05) (0.06) (0.12) (0.11)
[0.16] [0.07] [0.06] [0.06] [0.06] [0.12] [0.11]

Legal 0.30 0.14 0.26 0.22 0.13 0.16 0.27
(0.04) (0.04) (0.04) (0.04) (0.04) (0.06) (0.11)
[0.06] [0.04] [0.04] [0.04] [0.04] [0.06] [0.11]

Language −0.17 −0.19 −0.02 0.03 −0.09 −0.03 0.09
(0.07) (0.07) (0.06) (0.06) (0.07) (0.11) (0.22)
[0.10] [0.07] [0.06] [0.06] [0.08] [0.12] [0.21]

Colony 0.36 0.58 0.39 0.45 0.63 0.61 0.55
(0.08) (0.11) (0.09) (0.09) (0.12) (0.28) (0.46)
[0.12] [0.14] [0.12] [0.12] [0.14] [0.28] [0.46]

Currency 0.60 0.29 1.37 1.38 0.65 0.63 0.77
(0.27) (0.31) (0.39) (0.33) (1.08) (1.93) (2.05)
[0.30] [0.38] [0.41] [0.36] [1.16] [1.92] [2.13]

FTA 0.25 0.15 0.17 0.13 0.25 0.31 0.26
(0.07) (0.06) (0.06) (0.06) (0.09) (0.14) (0.25)
[0.09] [0.07] [0.07] [0.07] [0.09] [0.14] [0.26]

Religion −0.25 0.18 0.24 0.34 0.44 0.30 0.35
(0.12) (0.11) (0.14) (0.13) (0.13) (0.27) (0.34)
[0.13] [0.11] [0.13] [0.13] [0.13] [0.26] [0.34]

Log-likelihood −0.44 0.31 0.67 0.84 0.96 1.04 1.11

Notes: All the columns include importer and exporter additive effects.
Standard errors in parenthesis. Standard errors robust to reciprocity in brackets.
Log-likelihood is multiplied by 100.
aNumber of factors selected with Rmax = 5.

We estimate a Poisson model with the following specification of the intensity

E[Yij | Xij, α1i, γ1j, α2i, γ2j] = exp(X ′

ijβ + α1i + γ1j + α′

2iγ2j),

here α2i and γ2i are R2-dimensional vectors of factors and factor loadings. This model is a special case of Example 3
ith αi = (α1i, 1, α′

2i)
′, γj = (1, γ1j, γ ′

2j)
′, and R = 2 + R2. We explicitly include additive importer and exporter effects to

ccount for scale and multilateral resistance effects following Eaton and Kortum (2001) and Anderson and van Wincoop
2003). Moreover, we also include interactive country effects to capture possible clustering and homophily induced by
atent factors such as country trade partnerships, presence of multinationals or immigrant communities, or differences in
atural resources or industrial composition.
Table 5 reports the estimates and standard errors of the parameter β .5 We consider specifications with different

number of interactive effects, R2, in addition to the additive effects. The last row of the table reports the maximum value of

5 We do not report estimates of APEs because in the specification of the Poisson model that we use the parameters can be interpreted as
lasticities.
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Table 6
Results of calibrated simulations.
I Bias SD RMSE SE/SD p;95 Bias SD RMSE SE/SD p;95

R2 = 1 R2 = R∗

2

50 6.08 14.90 16.08 1.13 96 6.67 16.99 18.24 1.06 95
75 4.93 8.04 9.42 1.15 95 6.62 8.79 11.00 1.12 93
100 1.38 6.09 6.24 1.14 97 3.88 6.45 7.52 1.12 94
157 0.59 3.51 3.56 1.15 97 1.82 3.88 4.27 1.07 95

R2 = 2 R2 = 3

50 6.76 15.71 17.09 1.12 97 8.61 16.63 18.71 1.11 95
75 5.97 8.70 10.55 1.11 94 6.68 9.37 11.50 1.07 91
100 3.27 6.37 7.16 1.12 95 4.81 6.80 8.33 1.08 93
157 2.24 3.61 4.24 1.14 94 1.99 3.89 4.37 1.08 94

Notes: 1000 simulations calibrated to trade data with additive effects and 1 factor.
R2 = R∗

2 estimates the number of factors with Rmax = 4.

the average log-likelihood, L(̂β, φ̂n)/n. We report two sets of standard errors corresponding to the dependence structures
of cases (a) and (b) of Assumption 1(i). The standard errors in brackets account for possible reciprocity in the data. In
this case, the method of Section 5 selects R2 = 3 factors when Rmax = 4 and Rmax = 5. We take R2 = 3 as our preferred
specification, but we also note that, relative to the standard errors, the estimates are not very sensitive to the R2 in the
range of values that we consider. One possible concern with the use of the Poisson model in the trade application is the
excess zeros, i.e. the high probability of zero trade.6 In this case, however, it does not seem to be a problem because the
estimated model with R2 = 3 predicts a probability of zero trade of 0.61, which is higher than the observed probability
of 0.55.

We find that the sign of most of the effects is robust to the inclusion of latent factors. The only exceptions are the
effects of common religion and language, which in the specification with only additive effects have counterintuitive
negative signs that turn positive in our preferred specification. Comparing across columns, we observe that the model
without factors seems to exaggerate the role of common border, whereas it downplays the effect of distance and colonial
links. For example, increasing by 10% the distance reduces by 6.9% the volume of trade and sharing border increases
it by 36% according to our preferred specification with R2 = 3, whereas the same effects are 6% and 71% according
to the specification with R2 = 0. Except for language, all the coefficients are individually significant at the 5% level.
Overall, increasing the number of factors makes the estimates less precise due to the loss of degrees of freedom. This
observation showcases a trade-off in estimation between efficiency and robustness to richer dependence structures in the
unobservables. Finally, accounting for reciprocity slightly increases the standard errors, but does not change the statistical
significance of the estimates.

6.2. Calibrated Monte Carlo simulation

We evaluate the finite-sample properties of our estimation and inference methods in a Monte Carlo simulation that
mimics the trade application. The design is calibrated to the Poisson model with additive importer and exporter country
effects and one factor. We analyze the performance of the estimator of β in terms of bias, dispersion and inference
accuracy. To speed up computation, we include only one covariate: the log distance. More specifically, we generate Yij from
a Poisson distribution with intensity exp(Xijβ̂ + α̂1i + γ̂1j + α̂2iγ̂2j) independently across i and j, where Xij takes the values
of log-distance in the trade dataset, and β̂ and {̂α1i, α̂2i, γ̂1i, γ̂2i}

157
j=1, are equal to the estimates of the parameter, importer

effects, exporter effects, factors and factor loadings. We repeat this procedure in 1000 simulations for four different sample
sizes: I = 50, I = 75, I = 100 and I = 157 (full sample in the application). For each sample size and simulation, we draw a
random sample of I countries both as importers and exporters without replacement, so that the number of observations
is I × (I − 1). For each simulated sample, we reestimate the model parameter and standard errors, and construct 95%
confidence interval for the model parameter.

Table 6 reports the bias (Bias), standard deviation (SD), and root mean squared error (RMSE) of the estimator of the
parameter β , together with the ratio of average standard error to the simulation standard deviation (SE/SD), and the
empirical coverage in percentage of a confidence interval with 95% nominal value (p;95). We estimate models with four
different numbers of factors in addition to the additive effects, R2 ∈ {1, 2, 3, R∗

2}, where R∗

2 is the number of factors selected
by the method of Section 5 with Rmax = 4, which can vary across simulations. The results for the bias, SD and RMSE are
reported in percentage of the true parameter value. We find that the bias is smaller than the standard deviation for every
sample size. When we use the true number of factors R2 = 1, the confidence intervals cover the parameter in more
than 95% of the simulations. The excess coverage is due to the overestimation of the dispersion of the estimators by the
standard errors. Selecting the number of factors does not introduce bias, but increases the dispersion of the estimator of

6 We thank an anonymous referee for raising this issue.
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he parameter. The additional variability yields slight undercoverage of the confidence intervals for small sample sizes.
n the other hand, adding unnecessary factors to the specification increases the bias and dispersion of the estimator, but
he confidence intervals continue having good coverage properties. This robustness to the inclusion of too many factors is
onsistent with the theoretical results of Moon and Weidner (2015) for linear factor models. Overall, the simulations show
hat the asymptotic theory of Section 4 provides a good approximation to the finite-sample behavior of the estimator.

ppendix. Proofs

.1. Notation and normalization

Remember the log-likelihood defined in the main text, and also define the rescaled version,

L(β, φ) :=

∑
(i,j)∈D

log f (Yij | X ′

ijβ + πij), L∗(β, φ) := n−1/2 L(β, φ).

or the true value of the fixed effect parameters φ0
= (vec(α)0′, vec(γ 0)′)′ we impose the normalization

∑I
i=1 α

0
i α

0′
i =∑J

j=1 γ
0
j γ

0′
j , and define the restricted parameter set

Φ :=

⎧⎨⎩φ ∈ Rdφ :

I∑
i=1

α0
i α

′

i =

J∑
j=1

γj γ
0′
j

⎫⎬⎭ ,
here dv := dim v for any vector v. Notice that φ0

∈ Φ . The maximum likelihood estimator that imposes the
ormalization φ ∈ Φ reads

(̂β, φ̂) = argmax
(β,φ)∈Rdβ×Φ

L(β, φ). (A.1)

Imposing φ̂ ∈ Φ is an infeasible normalization, because the true value of the parameters appears in the definition of Φ .
owever, all our final asymptotic results are on the estimators β̂ and δ̂, which are invariant to the chosen normalization
or φ̂, that is, those results on β̂ and δ̂ also hold unchanged for any other normalization, and imposing φ̂ ∈ Φ is simply
matter of convenience for the following proofs. There is always a need for a normalization choice when estimating the

actor loadings and factors in interactive fixed effect models, because the model only depends on the product α′

iγj, which
s unchanged under the transformation

αi ↦→ A′αi γj ↦→ A−1γj, (A.2)

or some invertible R × R matrix A. Notice that in the definition of Φ there are R2 normalization constraints, which is
xactly enough to uniquely determine the R2 continuous degrees of freedom of the matrix A. In addition, there is still
discrete sign change possible (αi ↦→ −αi and γj ↦→ −γj), and we assume in the following that this discrete choice is
pecified somehow (e.g. by imposing α11 > 0) to make the estimator φ̂ unique. The details of this final discrete choice do
ot matter, as long as the same sign normalization is imposed on φ̂ and φ0.
Our normalization constraints in the definition of Φ are linear in φ. It is this linearity which makes this particular

ormalization attractive for our purposes. In particular, instead of imposing this normalization directly we can also impose
t via a quadratic penalty function by defining the penalized objective function

L(β, φ) = n−1/2
[
L(β, φ) −

b
2
φ′ V V ′ φ

]
, (A.3)

here b > 0 is some constant, and V is a dφ × R2 matrix, which depends on α0 and γ 0, and is implicitly defined by

V ′ φ = vec

⎡⎣ I∑
i=1

α0
i α

′

i −

J∑
j=1

γjγ
0 ′

j

⎤⎦ .
hus, the above penalty term can also be expressed as

φ′ V V ′ φ =


I∑

i=1

α0
i α

′

i −

J∑
j=1

γjγ
0 ′

j


2

F

,

here ∥.∥F denotes the Frobenius norm. The constrained estimator in (A.1) can then equivalently be obtained by solving
he unconstrained problem

(̂β, φ̂) = argmax
d +d

L(β, φ),

(β,φ)∈R β φ
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and we also define

φ̂(β) = argmax
φ∈R

dφ

L(β, φ), φ̂(β) = (vec(̂α(β))′, vec(γ̂ (β))′)′.

Finally, we introduce the index sets I := {1, . . . , I} and J := {1, . . . , J}.

A.2. Consistency

Lemma 1. Let Assumption 1 be satisfied. Then, ∥β̂ − β0
∥ = OP (I−3/8) and

1
√
n

α̂(β)γ̂ (β)′ − α0γ 0′

F = OP (I−3/8

+ ∥β − β0
∥),

1
√
I
∥φ̂(β) − φ0

∥ = OP (I−3/8
+ ∥β − β0

∥),

uniformly over β in a ϵ-neighborhood around β0, for some ϵ > 0.

Proof of Lemma 1. For all z1, z2 ∈ B0
ε a second order Taylor expansion of ℓij(z1) around z2 gives

ℓij(z1) − ℓij(z2) = [∂zℓij(z1)](z1 − z2) −
1
2 [∂z2ℓij(z̃)] (z1 − z2)2

≥ [∂zℓij(z1)](z1 − z2) +
bmin

2
(z1 − z2)2

=
bmin

2

(
z1 − z2 +

1
bmin

[∂zℓij(z1)]
)2

−
1

2bmin
[∂zℓij(z1)]2, (A.4)

where z̃ ∈ [min(z1, z2),max(z1, z2)]. Let eij := ∂zℓij/bmin. Using (A.4) we find that

0 ≥
1

√
IJ

[
L(β0, φ0) − L(̂β, φ̂)

]
=

1
IJ

∑
i,j∈D

[
ℓij(z0ij ) − ℓij (̂zij)

]
≥

bmin

2 IJ

∑
i,j∈D

[
(z0ij − ẑij + eij)2 − e2ij

]
=

bmin

2 IJ

I∑
i=1

J∑
j=1

[
(z0ij − ẑij + eij)2 − e2ij

]
+ OP

(
IJ − n
IJ

)

=
bmin

2 IJ

I∑
i=1

J∑
j=1

{[
X ′

ij (̂β − β0) + α̂ ′

i γ̂j − α0 ′

i γ
0
j − eij

]2
− e2ij

}
+ OP

(
1
IJ

)
.

Note that the penalty term of the objective function does not enter here, because it is zero when evaluated both at the
estimator and at the true values of the parameters. Let e be the I × J matrix with entries eij. Let Xk be the I × J matrix
with entries Xk,ij, k = 1, . . . , dβ . Let β · X =

∑
k βkXk. In matrix notation, the above inequality reads

1
IJ
Tr(e′e) ≥

1
IJ
Tr
[(

(̂β − β0) · X + α̂γ̂ ′
− α0γ 0′

− e
) (

(̂β − β0) · X + α̂γ̂ ′
− α0γ 0′

− e
)′]

+ OP

(
1
IJ

)
.

Analogous to the consistency proof for linear regression models with interactive fixed effects in Bai (2009) and Moon and
Weidner (2017) we can conclude that

1
IJ
Tr(e′e) ≥

1
IJ
Tr
[
Mα0

(
(̂β − β0) · X − e

)
Mγ̂

(
(̂β − β0) · X − e

)′]
+ OP

(
1
IJ

)
=

1
IJ

[
Tr(e′e) + Tr

[
Mα0

(
(̂β − β0) · X

)
Mγ̂

(
(̂β − β0) · X

)′]
+ 2Tr

[(
(̂β − β0) · X

)′
e
]

+ OP (∥e∥2) + OP (∥β̂ − β0
∥∥e∥max

k
∥Xk∥)

]
+ OP

(
1
IJ

)
, (A.5)

here we used that e.g.⏐⏐Tr (X ′

kPα0e
)⏐⏐ ≤ rank

(
X ′

kPα0e
) X ′

kPα0e
 ≤ ∥Xk∥∥e∥,⏐⏐Tr (e′Pα0e

)⏐⏐ ≤ rank
(
e′Pα0e

) e′Pα0e
 ≤ ∥e∥2.

Lemma D.6 in Fernández-Val and Weidner (2016) shows that under Assumption 1, ∥∂zℓ∥ = OP (I5/8), where ∂zℓ is the I× J
matrix with entries ∂zℓij. We thus also have ∥e∥ = OP (I5/8). We furthermore have ∥Xk∥

2
≤ ∥Xk∥

2
F =

∑
ij X

2
k,ij = OP (IJ), so

that ∥Xk∥ = OP (
√
IJ). Hence, ∥Xk∥∥e∥ = OP (I13/8), ∥e∥2

= OP (I5/4), and

Tr
(
X ′

ke
)

=
1

bmin

∑
Xij∂zℓij = OP (

√
IJ).
ij
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pplying these results and the generalized collinearity assumption to (A.5) gives

0 ≥ c∥β̂ − β0
∥ + OP (I−3/8

∥β̂ − β0
∥) + OP (I−3/4).

his implies that ∥β̂ − β0
∥ = OP (I−3/8).

Define eij(β) = ∂zℓij(X ′

ijβ + α0
i γ

0 ′

j )/bmin. Analogous to the above argument we find from L(β, φ̂(β)) ≥ L(β, φ0) that

0 ≥

√
IJ
[
L(β, φ0) − L(β, φ̂(β))

]
=

∑
i,j

[
ℓij(X ′

ijβ + α0
i γ

0 ′

j ) − ℓij(X ′

ijβ + α̂i(β)γ̂ ′

j (β))
]

=
bmin

2

∑
i,j

{[̂
αi(β)γ̂ ′

j (β) − α0
i γ

0 ′

j − eij(β)
]2

− [eij(β)]2
}
.

his implies that

Tr(e(β)′e(β)) ≥ Tr
[(̂
α(β)γ̂ (β)′ − α0γ 0′

− e(β)
) (̂
α(β)γ̂ (β)′ − α0γ 0′

− e(β)
)′]

= Tr(e(β)′e(β)) + Tr
[(̂
α(β)γ̂ (β)′ − α0γ 0′) (̂α(β)γ̂ (β)′ − α0γ 0′)′]  

=∥α̂(β)γ̂ (β)′−α0γ 0′∥
2
F

+OP
(α̂(β)γ̂ (β)′ − α0γ 0′


F ∥e(β)∥

)
.

ince α̂(β)γ̂ (β)′−α0γ 0′ is at most of rank 2R, 1
√
2R

α̂(β)γ̂ (β)′ − α0γ 0′

F ≤

α̂(β)γ̂ (β)′ − α0γ 0′
 ≤

α̂(β)γ̂ (β)′ − α0γ 0′

F ,

i.e. the Frobenius and the spectral norm are equivalent. Since eij(β) = eij + [X ′

ij(β − β0)]∂z2ℓij(X
′

ijβ̃ + α0
i γ

0 ′

j )/bmin, where
˜ lies between β and β0, we have ∥e(β)∥ ≤ ∥e∥ + OP (

√
IJ∥β − β0

∥). We thus find

0 ≥
1
IJ

α̂(β)γ̂ (β)′ − α0γ 0′
2
F + OP

[
(I−3/8

+ ∥β − β0
∥)
α̂(β)γ̂ (β)′ − α0γ 0′


F /
√
IJ
]
.

rom this we conclude that
1

√
IJ

α̂(β)γ̂ (β)′ − α0γ 0′

F = OP (I−3/8

+ ∥β − β0
∥). (A.6)

ext, using our normalization φ0
∈ Φ and φ̂ ∈ Φ ,

α0′ [̂α(β)γ̂ (β)′ − α0γ 0′] γ 0
=
[
α0′α̂(β)

]2
−
[
α0′α0]2 ,

nd therefore
[
1
I
α0′α̂(β)

]2
−

[
1
I
α0′α0

]2
F

=
1
I2
α0′ [̂α(β)γ̂ (β)′ − α0γ 0′] γ 0


F ≤

1
I2
α0


F

α̂(β)γ̂ (β)′ − α0γ 0′

F

γ 0


=
1
I2

O(I1/2)
√
IJ OP (I−3/8

+ ∥β − β0
∥)O(J1/2) = OP (I−3/8

+ ∥β − β0
∥).

Using the strong-factor assumption I−1α0′α0
→P Σ1 > 0 we thus have[

I−1α0′α̂(β)
]−1

=
[
I−1α0′α0]−1

+ OP (I−3/8
+ ∥β − β0

∥). (A.7)

Again by the normalization φ̂ ∈ Φ we also have[̂
α(β)γ̂ (β)′ − α0γ 0′] γ 0

= α̂(β)α0′α̂(β) − α0α0′α0,

nd therefore

α̂(β) = α0 [I−1α0′α0] [I−1α0′α̂(β)
]−1

+ I−1 [̂α(β)γ̂ (β)′ − α0γ 0′] γ 0 [I−1α0′α̂(β)
]−1

.

pplying (A.6) and (A.7) thus gives

I−1/2
α̂(β) − α0


F ≤ I−1/2

α0

F

IR −
[
I−1α0′α0] [I−1α0′α̂(β)

]−1

F

+ I−3/2
α̂(β)γ̂ (β)′ − α0γ 0′


F

γ 0

F

[I−1α0′α̂(β)
]−1

F

= I−1/2O(I1/2)OP (I−3/8
+ ∥β − β0

∥) + I−3/2
√
IJ OP (I−3/8

+ ∥β − β0
∥)O(J1/2)O(1)

= OP (I−3/8
+ ∥β − β0

∥).

nalogously we conclude that J−1/2
∥γ̂ (β)−γ 0

∥ = OP (I−3/8
+∥β−β0

∥), and therefore 1
√
I
∥φ̂(β)−φ0

∥ = OP (I−3/8
+∥β−

β0
∥). ■
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A.3. Inverse expected incidental parameter hessian

We define the expected incidental parameter Hessian for the log-likelihood with and without the penalty term as

H := E[−∂φφ′L] = H∗
+

b
√
n
VV ′, H∗

:= E[−∂φφ′L∗
].

ur definition of L∗(β, φ) = n−1/2 L(β, φ) includes the factor n−1/2, which makes sure that the eigenvalues of H∗ remain
of order one asymptotically as I, J → ∞ at the same rate. Similarly, the factor 1/

√
n in the second term of H makes

sure that the eigenvalues of b
√
n VV ′ remain of order one asymptotically. The Hessian matrix H∗ has R2 zero eigenvalues

corresponding to the R2 flat directions in the log-likelihood described by the transformations (A.2) that leave the likelihood
nchanged. Correspondingly, the matrix VV ′ is exactly of rank R2, making sure that H has no more zero eigenvalues and

is invertible, as formally shown by Lemma 2 below. Those considerations explain why we have chosen the penalty term
b
2φ

′ V V ′ φ and the pre-factor n−1/2 in our definition of L(β, φ) in (A.3).
Let a = vec(α) and c = vec(γ ), so that φ = (a′, c ′)′. Correspondingly we can decompose the Hessian matrix,

H∗
=

(
E[−∂aa′L∗

] E[−∂ac′L∗
]

E[−∂ca′L∗
] E[−∂cc′L∗

]

)
=:

(
H∗

(αα) H∗

(αγ )

[H∗

(αγ )]
′

H∗

(γ γ )

)
.

ere, H∗

(αα) is a block-diagonal IR× IR matrix with R×R diagonal blocks, and H∗

(γ γ ) is a block-diagonal JR× JR matrix with
× R diagonal blocks, that is

H∗

(αα) = diag

⎛⎝⎡⎣ 1
√
n

∑
j∈Di

E(−∂z2ℓij)γ
0
j γ

0′
j

⎤⎦
i∈I

⎞⎠ , H∗

(γ γ ) = diag

⎛⎝⎡⎣ 1
√
n

∑
i∈Dj

E(−∂z2ℓij)α
0
j α

0′
j

⎤⎦
j∈J

⎞⎠ .
or any matrix A with elements Akl, let ∥A∥max = maxk,l |Akl|. Notice that ∥.∥max is not sub-multiplicative, so it is not a
atrix norm.

emma 2. Under Assumption 1,H−1
− diag

(
H∗

(αα),H
∗

(γ γ )

)−1

max

= O
(
n−1/2) .

Proof. We consider the case D = D0 in the following. We decompose

H∗
=

(
H∗

(αα) 0
0 H∗

(γ γ )

)
  

=:D

+

(
0 H∗

(αγ )

[H∗

(αγ )]
′ 0

)
  

=:A∗

,

and let A := A∗
+

b
√
n VV ′. Then, H = D +A. The IR× JR matrix H∗

(αγ ) is composed of I × J blocks of size R× R as follows

H∗

(αγ ) =

[
1

√
n
E(−∂z2ℓij)γ

0
j α

0′
i

]
i∈I,j∈J

,

and similarly we have blocks for the (I + J)R × (I + J)R matrix VV ′

VV ′
=

⎛⎝ [
α0
i α

0′
i∗
]
i,i∗∈I

[
−γ 0

j α
0′
i

]
i∈I,j∈J[

−α0
i γ

0′
j

]
j∈J,i∈I

[
γ 0
j γ

0′
j∗

]
j,j∗∈J

⎞⎠ =:

( [
VV ′

]
(αα)

[
VV ′

]
(αγ )[

VV ′
]
(γα)

[
VV ′

]
(γ γ )

)
.

Let b∗
:= min{bmin, b}. For symmetric matrices A and B we write A ≥ B if A − B is positive semi-definite. We have

A −
b − b∗

√
n

VV ′
−

b∗

√
n

( [
VV ′

]
(αα) 0

0
[
VV ′

]
(γ γ )

)
=

(
0 H∗

(αγ ) −
b∗

√
n

[
VV ′

]
(αγ )[

H∗

(αγ )

]′
−

b∗

√
n

[
VV ′

]
(γα) 0

)
,

and since V ′V ≥ 0 (implying also
[
VV ′

]
(αα) ≥ 0 and

[
VV ′

]
(γ γ ) ≥ 0) we thus have

A ≥

(
0 H∗

(αγ ) −
b∗

√
n

[
VV ′

]
(αγ )[

H∗

(αγ )

]′
−

b∗

√

[
VV ′

]
0

)
.

n (γα)
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sing this and E[−∂φφ′ℓij] ≥ 0 we obtain

H = D + A

≥ D +

(
0 H∗

(αγ ) −
b∗

√
n

[
VV ′

]
(αγ )[

H∗

(αγ )

]′
−

b∗

√
n

[
VV ′

]
(γα) 0

)
− n−1

I∑
i=1

J∑
j=1

E[−∂φφ′ℓij]
E(−∂z2ℓij) − b∗

E(−∂z2ℓij)  
≥0

= b∗

⎛⎜⎝ diag
([

1
√
n

∑I
i=1 γ

0
i γ

0′
i

]
j∈J

)
0

0
[

1
√
n

∑J
j=1 α

0
j α

0′
j

]
j∈J

⎞⎟⎠
= b∗

(
n−1/2 II ⊗ γ 0′γ 0 0

0 n−1/2 IJ ⊗ α0′α0

)
≥ c I(I+J)R,

pa1, where existence of c > 0 is guaranteed by our strong factor Assumption 1(v). The result of the last display implies
hat

H−1
≤ c−1 I(I+J)R. (A.8)

e have thus obtained a spectral bound for H−1. This turns out to be the key step in the proof. The remainder of the
roof is just a relatively straightforward expansion of H−1. Namely, using H = D + A we find that

H−1
= D−1

− D−1 AD−1
+

[
D−1 HD−1

− 2D−1
+ H−1

]
= D−1

− D−1 AD−1
+ D−1 (H − D

)
H−1 (H − D

)
D−1

= D−1
− D−1 AD−1

+ D−1 AH−1 AD−1

≤ D−1
− D−1 AD−1

+ c−1D−1 A2D−1
,

nd thereforeH−1
− D−1


max

≤

D−1 AD−1

max

+ c−1
D−1 A2D−1


max

.

rom the expressions for D and A above one finds that D is block-diagonal with entries of order one, and
Amax =

O(n−1/2), which implies
A2


max

= O((I + J)n−1) = O(n−1/2). The RHS of the last display is therefore indeed of order

n−1/2. ■

A.4. Local concavity of the objective function

The consistency results for β̂ and φ̂(β) in Lemma 1 provide initial convergence rates, implying that we only need to
consider a shrinking neighborhood around β0 and φ0 for the remaining asymptotic analysis. The following lemma shows
that the objective function L(β, φ) is strictly concave in such a local neighborhood. Later in the proof this strict concavity
will allow us to apply the general expansion results in Fernández-Val and Weidner (2016).

Analogously to the expected incidental parameter Hessian H at the true parameters that was discussed above, we now
ntroduce the following notation for incidental parameter Hessian (without expectations, and not necessarily at the true
arameters),

H(β, φ) := −∂φφ′L(β, φ) =

(
H∗

(αα)(β, φ) H∗

(αγ )(β, φ)
[H∗

(αγ )(β, φ)]
′ H∗

(γ γ )(β, φ)

)
+

b
√
n
VV ′.

Lemma 3. Let Assumption 1 be satisfied, and let rβ = rβ,n = oP (1) and rφ = rφ,n = oP (n1/4). Then, H(β, φ) is positive definite
or all β ∈ B(rβ , β0) and φ ∈ B(rφ, φ0), wpa1, where B(rβ , β0) is an rβ-ball around β0 and B(rφ, φ0) is rφ-ball around φ0,
both under the Euclidian norm. This implies that L(β, φ) is strictly concave in φ ∈ B(rφ, φ0) wpa1, for all β ∈ B(rβ , β0).

Proof. Let ℓij(β, πij) := ℓij(zij), where πij = α′

iγj and zij = X ′

ijβ + α′

iγj. Then,

H∗

(αα)(β, φ) = diag

⎛⎝⎡⎣ 1
√
n

∑
j∈Di

[−∂z2ℓij(β, πij)]γ 0
j γ

0′
j

⎤⎦
i∈I

⎞⎠ ,
H∗

(γ γ )(β, φ) = diag

⎛⎝⎡⎣ 1
√
n

∑
i∈D

[−∂z2ℓij(β, πij)]α0
j α

0′
j

⎤⎦ ⎞⎠ ,

j j∈J
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H∗

(αγ )(β, φ) =

{
1

√
n
[−∂z2ℓij(β, πij)]γ 0

j α
0′
i +

1
√
n
[−∂zℓij(zij)] IR

}
i∈I,j∈J

.

e decompose the Hessian into the contribution from the first and from the second derivative of the log-likelihood,
amely H(β, φ) = H(β, φ) + F (β, φ), where

F (β, φ) =

(
0N×N F(αγ )(β, φ)

[F(αγ )(β, φ)]′ 0T×T

)
, F(αγ )(β, φ) =

{
1

√
n
[−∂zℓij(zij)] IR

}
i∈I,j∈J

.

Notice that H(β, φ) has the same structure as H. Analogously to the bound (A.8) derived in the proof of Lemma 2 we can
thus show that there exists a constant c > 0 such that wpa1 we have, for φ ∈ B(rφ, φ0) and β ∈ B(rβ , β0),

H(β, φ) ≥ c I(I+J)R.

The new terms that need to be accounted for here are the first derivative terms F (β, φ), which are zero in expectation
at the true parameter and therefore did not show up in our discussion of H above. The goal in the following is to show
that ∥F (β, φ)∥ = oP (1), or equivalently ∥F(αγ )(β, φ)∥ = oP (1), within the shrinking neighborhood of the true parameters.
ere, ∥.∥ refers to the spectral norm.
For ease of notation we consider R = 1 in the remainder of this proof. Then, F(αγ )ij(β, φ) = −

1
√
n∂πℓij(β, α

′

iγj). A Taylor
expansion gives

∂πℓij(β, α′

iγj) = ∂πℓij(β0, α0
i γ

0 ′

j ) + (β − β0)′∂βπℓij(β̃ij, π̃ij) + (α′

iγj − α0
i γ

0 ′

j )∂π2ℓij(β̃ij, π̃ij).

The spectral norm of the I × J matrix with entries ∂βkπℓij(β̃ij, π̃ij) is bounded by the Frobenius norm of this matrix,
which is of order

√
n, since we assume uniformly bounded moments for ∂βkπℓij(β̃ij, π̃ij). The spectral norm of the I × J

matrix with entries (α′

iγj − α0
i γ

0 ′

j )∂π2ℓij(β̃ij, π̃ij) is also bounded by the Frobenius norm of this matrix, which equals√∑
ij(α

′

iγj − α0
i γ

0 ′

j )2[∂π2ℓij(β̃ij, π̃ij)]2 and thus bounded by bmax

√∑
ij(α

′

iγj − α0
i γ

0 ′

j )2 = bmax∥αγ
′
−α0γ 0′

∥F . We thus findF(αγ )ij(β, φ) ≤
1

√
n

(
∥∂πℓij∥ + OP (

√
n)∥β − β0

∥ + bmax∥αγ
′
− α0γ 0′

∥F
)

= OP (
1

√
n
I5/8) + OP (rβ ) + OP (rφ/

√
I)

= oP (1),

for φ ∈ B(rφ, φ0) and β ∈ B(rβ , β0), where we also used that ∥αγ ′
− α0γ 0′

∥F = OP (
√
I)∥φ − φ0

∥.
Combining the result in the last display with (A.8) we find that there exists a constant c > 0 such that wpa1 we have,

for φ ∈ B(rφ, φ0) and β ∈ B(rβ , β0),

H(β, φ) ≥ c I(I+J)R.

We have thus shown that L(β, φ) is indeed strictly concave (or that −L(β, φ) is strictly convex) within this shrinking
neighborhood. ■

A.5. Stochastic expansion

Once we have the consistency result of Lemma 1 and the local strict concavity result of Lemma 3, then the derivation
of the stochastic expansion of the fixed effect estimators β̂ and δ̂ does not rely on the specific single index and interactive
fixed effect structure of our model. Some of the conceptual issues indeed become more transparent when ignoring that
structure. Therefore, in this subsection, let ℓij(β, αi, γj) := ℓij(X ′

ijβ + α′

iγj) and ∆ij(β, αi, γj) := ∆ij(β, πij). Remember that
our fixed effect estimators β̂ and γ̂ maximize the objective function

L(β, φ) = n−1/2

⎡⎣ ∑
(i,j)∈D

ℓij(β, αi, γj) +
b
2
φ′VV ′φ

⎤⎦ ,
where φ = [(α′

i )i∈I, (γ
′

j )j∈J]
′. The APE is δ0 = ∆(β0, φ0) =

1
n

∑
(i,j)∈D ∆ij(β0, α0

i , γ
0
j ), and the corresponding plug-in

stimator reads δ̂ = ∆(̂β, φ̂). For partial derivatives of ℓij(β, αi, γj) and ∆(̂β, φ̂) we use superscripts in the following,
xpectations are always conditional on φ and are indicated by a bar, and arguments are omitted when evaluated at the
rue parameters. For example, ℓ

αiαi
ij is the dα × dα expected Hessian matrix of ℓij(β, αi, γj) with respect to αi evaluated

t the true parameters. This is the notation also used in Fernández-Val and Weidner (2018), but here the αi and γj are
ectors of length dα and dγ , respectively. For our interactive fixed effect model we have dα = dγ = R, but this is not
sed in the rest of this subsection. The advantage of this generality is that, for example, the following formulas are also
pplicable to models where in addition to the interactive effects we include separate additive effects in the single index.
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It is convenient to make the log-likelihood information-orthogonal between β and the incidental parameters. This can
e achieved by the transformation7

ℓ∗

ij(β, αi, γj) := ℓij(β, αi + ξ
(α)
i β, γj + ξ

(γ )
j β),

∆∗

ij(β, αi, γj) := ∆ij(β, αi + ξ
(α)
i β, γj + ξ

(γ )
j β),

where the dα × dβ matrices ξ (α)i , and the dγ × dβ matrices ξ (γ )j are solutions to the system of equations∑
j∈Di

[
ℓ
αiβ
ij + ℓ

αiαi
ij ξ

(α)
i + ℓ

α′
iγj

ij ξ
(γ )
j

]
= 0, i = 1, . . . , I,

∑
i∈Dj

[
ℓ
γjβ

ij + ℓ
γjαi
ij ξ

(α)
i + ℓ

γjγj
ij ξ

(γ )
j

]
= 0, j = 1, . . . , J.

Analogously, let the dα-vectors ψ
(α)
i and the dγ -vectors ψ

(γ )
j be solutions to the system of equations∑

j∈Di

[
∆
αi
ij + ℓ

αiαi
ij ψ

(α)
i + ℓ

α′
iγj

ij ψ
(γ )
j

]
= 0, i = 1, . . . , I,

∑
i∈Dj

[
∆
γj
ij + ℓ

γjαi
ij ψ

(α)
i + ℓ

γjγj
ij ψ

(γ )
j

]
= 0, j = 1, . . . , J.

inally, let

W = −
1

√
n

(
Lββ + Lβφ H−1 Lφβ

)
= −

1
√
n
L ∗ββ

=
1
n

∑
(i,j)∈D

ℓ
∗ββ

ij .

The dβ × dβ matrix W∞ defined in Assumption 1 is simply the probability limit of W , that is, W∞ = E W in main text
otation.

heorem 4 (Stochastic Expansion for β̂ and δ̂). Let Assumption 1 be satisfied. We then have
√
n
(̂
β − β0)

= W
−1
∞

U + oP (1),

here the dβ-vector U has elements

Uk :=
1

√
n

∑
(i,j)∈D

⎧⎪⎨⎪⎩ℓ ∗βk
ij − E

⎡⎢⎣(ℓ ∗βkαi
ij

)′

⎛⎝∑
h∈Di

ℓ
αiαi
ih

⎞⎠−1

ℓ
αi
ij

⎤⎥⎦− E

⎡⎢⎣(ℓ ∗βkγj
ij

)′

⎛⎝∑
h∈Dj

ℓ
γjγj
hj

⎞⎠−1

ℓ
γj
ij

⎤⎥⎦
+

1
2
E

⎡⎢⎣(ℓαiij )′
⎛⎝∑

h∈Di

ℓ
αiαi
ih

⎞⎠−1⎛⎝∑
h∈Di

ℓ
∗βkαiαi
ih

⎞⎠⎛⎝∑
h∈Di

ℓ
αiαi
ih

⎞⎠−1

ℓ
αi
ij

⎤⎥⎦
+

1
2
E

⎡⎢⎣(ℓγjij )′

⎛⎝∑
h∈Dj

ℓ
γjγj
hj

⎞⎠−1⎛⎝∑
h∈Dj

ℓ
∗βkγjγj
hj

⎞⎠⎛⎝∑
h∈Dj

ℓ
γjγj
hj

⎞⎠−1

ℓ
γj
ij

⎤⎥⎦
⎫⎪⎬⎪⎭ .

urthermore, if also Assumption 2 holds, then

δ̂ − δ0 =

(
∆

∗β
)′

(̂β − β0) +
1
n

∑
(i,j)∈D

⎧⎪⎨⎪⎩ψ (α)′
i ℓ

∗αi
ij + ψ

(γ )′
j ℓ

∗ γj
ij

− E

⎡⎢⎣(∆αiij + ℓ
αiαi
ij ψ

(α)
i + ℓ

α′
iγj

ij ψ
(γ )
j

)′

⎛⎝∑
h∈Di

ℓ
αiαi
ih

⎞⎠−1

ℓ
αi
ij

⎤⎥⎦
7 This transformation corresponds to the reparameterization α∗

i = αi − ξ
(α)
i β and γ ∗

j = γj − ξ
(γ )
j β . The log-likelihood with respect to these

arameters is ℓ (β, α∗
+ ξ

(α)
β, γ ∗

+ ξ
(γ )
β) =: ℓ∗(β, α∗, γ ∗), which gives our definition of ℓ∗ after renaming (α∗, γ ∗) as (α , γ ) again.
ij i i j j ij i j ij i j i j
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− E

⎡⎢⎣(∆γjij + ℓ
γjαi
ij ψ

(α)
i + ℓ

γjγj
ij ψ

(γ )
j

)′

⎛⎝∑
h∈Dj

ℓ
γjγj
hj

⎞⎠−1

ℓ
γj
ij

⎤⎥⎦

+
1
2
E

⎡⎢⎣(ℓαiij )′
⎛⎝∑

h∈Di

ℓ
αiαi
ih

⎞⎠−1⎛⎝∑
h∈Di

∆
#αiαi
ih

⎞⎠⎛⎝∑
h∈Di

ℓ
αiαi
ih

⎞⎠−1

ℓ
αi
ij

⎤⎥⎦

+
1
2
E

⎡⎢⎣(ℓγjij )′

⎛⎝∑
h∈Dj

ℓ
γjγj
hj

⎞⎠−1⎛⎝∑
h∈Dj

∆
# γjγj
hj

⎞⎠⎛⎝∑
h∈Dj

ℓ
γjγj
hj

⎞⎠−1

ℓ
γj
ij

⎤⎥⎦
⎫⎪⎬⎪⎭+ oP

(
1/

√
n
)
,

where the dα × dα matrices ∆
#αiαi
ij and the dγ × dγ matrices ∆

# γjγj
ij are given by

∆
#αiαi
ij = ∆

αiαi
ij +

dα∑
g=1

ℓ
αiαiαig
ij ψ

(α)
ig +

dγ∑
g=1

ℓ
αiαiγjg
ij ψ

(γ )
jg ,

∆
# γjγj
ij = ∆

γjγj
ij +

dα∑
g=1

ℓ
γjγjαig
ij ψ

(α)
ig +

dγ∑
g=1

ℓ
γjγjγjg
ij ψ

(γ )
jg .

Proof. # Expansion of β̂ . Our assumptions together with results of Lemmas 1–3 guarantee that the conditions of
Theorem B.1 and Corollary B.2 in Fernández-Val and Weidner (2016) are satisfied, so that by applying that corollary
we have

√
n(̂β − β0) = W

−1
∞

U + oP (1),

where U = U (0)
+ U (1), with

U (0)
= Lβ + Lβφ H−1Lφ = L∗β

=
1

n1/2

∑
(i,j)∈D

ℓ
∗β

ij ,

U (1)
= L̃βφ H−1Lφ − Lβφ H−1 H̃H−1 Lφ +

1
2

dφ∑
g=1

(
Lβφφg + Lβφ H−1Lφφφg

)
[H−1Lφ]gH

−1Lφ

= L̃∗βφ H−1Lφ +
1
2

dφ∑
g=1

L ∗βφφg
[H−1Lφ]g H

−1Lφ .

Here, tilde symbols indicate deviations from expectation, for example, L̃βφ = Lβφ −Lβφ , with Lβφ = ELβφ . Analogous to
the proof of Theorem C.1 in Fernández-Val and Weidner (2016), and also using the above Lemma 2 again, one can then
show that the terms in U (1) only contribute asymptotic bias, namely

L̃∗βφ H−1Lφ = E
[
L̃∗βφ H−1Lφ

]
+ oP (1)

= E
[
L̃∗βα

(
H∗

(αα)

)−1
Lα
]

+ E
[
L̃∗βγ

(
H∗

(γ γ )

)−1
Lγ
]

+ oP (1),

1
2

dφ∑
g=1

L ∗βφφg
[H−1Lφ]g H

−1Lφ = E

⎡⎣1
2

dφ∑
g=1

L ∗βφφg
[H−1Lφ]g H

−1Lφ

⎤⎦+ oP (1)

= E

⎡⎣1
2

Idα∑
g=1

L ∗βααg
[(

H∗

(αα)

)−1
Lα
]
g

(
H∗

(αα)

)−1
Lα

⎤⎦
+ E

⎡⎣1
2

Jdγ∑
g=1

L ∗βγ γg
[(

H∗

(γ γ )

)−1
Lγ
]
g

(
H∗

(γ γ )

)−1
Lγ

⎤⎦+ oP (1).
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n component notation we can now rewrite the above terms as follows (remember that we define the Hessian matrix H
with a negative sign)

Lβ =
1

√
n

∑
(i,j)∈D

ℓ
∗βk
ij ,

E
[
L̃∗βα

(
H∗

(αα)

)−1
Lα
]

= −
1

√
n

∑
(i,j)∈D

E

⎡⎢⎣(ℓ ∗βkαi
ij

)′

⎛⎝∑
h∈Di

ℓ
αiαi
ih

⎞⎠−1

ℓ
αi
ij

⎤⎥⎦ ,
E
[
L̃∗βγ

(
H∗

(γ γ )

)−1
Lγ
]

= −
1

√
n

∑
(i,j)∈D

E

⎡⎢⎣(ℓ ∗βkγj
ij

)′

⎛⎝∑
h∈Dj

ℓ
γjγj
hj

⎞⎠−1

ℓ
γj
ij

⎤⎥⎦ ,
nd

E

⎡⎣1
2

Idα∑
g=1

L ∗βααg
[(

H∗

(αα)

)−1
Lα
]
g

(
H∗

(αα)

)−1
Lα

⎤⎦
=

1
2

1
√
n

∑
(i,j)∈D

E

⎡⎢⎣(ℓαiij )′
⎛⎝∑

h∈Di

ℓ
αiαi
ih

⎞⎠−1⎛⎝∑
h∈Di

ℓ
∗βkαiαi
ih

⎞⎠⎛⎝∑
h∈Di

ℓ
αiαi
ih

⎞⎠−1

ℓ
αi
ij

⎤⎥⎦ ,
E

⎡⎣1
2

Jdγ∑
g=1

L ∗βγ γg
[(

H∗

(γ γ )

)−1
Lγ
]
g

(
H∗

(γ γ )

)−1
Lγ

⎤⎦
=

1
2

1
√
n

∑
(i,j)∈D

E

⎡⎢⎣(ℓγjij )′

⎛⎝∑
h∈Dj

ℓ
γjγj
hj

⎞⎠−1⎛⎝∑
h∈Dj

ℓ
∗βkγjγj
hj

⎞⎠⎛⎝∑
h∈Dj

ℓ
γjγj
hj

⎞⎠−1

ℓ
γj
ij

⎤⎥⎦ .
ombining the above gives the expansion for β̂ − β0 in the theorem.
# Expansion of δ̂. Again, our assumptions and lemmas guarantee that the conditions of Theorem B.4 in Fernández-Val

nd Weidner (2016) are satisfied, so that by applying that theorem we have

δ̂ − δ =

(
∆
β

+ Lβφ H−1
∆
φ
)′

(̂β − β0) + U (0)
∆ + U (1)

∆ + oP
(
1/

√
n
)

=

(
∆

∗β
)′

(̂β − β0) + U (0)
∆ + U (1)

∆ + oP
(
1/

√
n
)
,

here

U (0)
∆ = Lφ ′ H−1

∆
φ
,

U (1)
∆ = Lφ ′ H−1

∆̃φ − Lφ ′ H−1 H̃H−1
∆
φ

+
1
2 Lφ ′H−1

⎡⎣∆φφ +

dφ∑
g=1

Lφφφg
(
H−1

∆
φ
)
g

⎤⎦H−1Lφ .

Again, following the logic in the proof of Theorem C.1 in Fernández-Val and Weidner (2016) one finds that U (1)
∆ only

contributes asymptotic bias, namely

Lφ ′ H−1
∆̃φ − Lφ ′ H−1 H̃H−1

∆
φ

= E
[
Lφ ′ H−1

(
∆̃φ − H̃H−1

∆
φ
)]

+ oP
(
1/

√
n
)

= E
{
Lα ′

(
H∗

(αα)

)−1
[
∆̃α −

(
H̃H−1

∆
φ
)
(α)

]}
+ E

{
Lγ ′

(
H∗

(γ γ )

)−1
[
∆̃γ −

(
H̃H−1

∆
φ
)
(γ )

]}
+ oP

(
1/

√
n
)
,

nd

1
2 Lφ ′H−1

⎡⎣∆φφ +

dφ∑
g=1

Lφφφg
(
H−1

∆
φ
)
g

⎤⎦H−1Lφ

= E

⎧⎨⎩ 1
2 Lφ ′H−1

⎡⎣∆φφ +

dφ∑
Lφφφg

(
H−1

∆
φ
)
g

⎤⎦H−1Lφ

⎫⎬⎭+ oP
(
1/

√
n
)

g=1
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A

P

= E

⎧⎨⎩ 1
2 Lα ′

(
H∗

(αα)

)−1

⎡⎣∆αα +

dφ∑
g=1

Lααφg
(
H−1

∆
φ
)
g

⎤⎦(H∗

(αα)

)−1
Lα
⎬⎭

+ E

⎧⎨⎩ 1
2 Lγ ′

(
H∗

(γ γ )

)−1

⎡⎣∆γ γ +

dφ∑
g=1

Lγ γφg
(
H−1

∆
φ
)
g

⎤⎦(H∗

(γ γ )

)−1
Lγ

⎫⎬⎭+ oP
(
1/

√
n
)
.

In component notation we can now rewrite the above terms as follows (again, remember that we define the Hessian
matrix H with a negative sign)

E
{
Lα ′

(
H∗

(αα)

)−1
[
∆̃α −

(
H̃H−1

∆
φ
)
(α)

]}

= −E

⎡⎢⎣(∆αiij + ℓ
αiαi
ij ψ

(α)
i + ℓ

α′
iγj

ij ψ
(γ )
j

)′

⎛⎝∑
h∈Di

ℓ
αiαi
ih

⎞⎠−1

ℓ
αi
ij

⎤⎥⎦ ,
E
{
Lγ ′

(
H∗

(γ γ )

)−1
[
∆γ −

(
H̃H−1

∆
φ
)
(γ )

]}

= −E

⎡⎢⎣(∆γjij + ℓ
γjαi
ij ψ

(α)
i + ℓ

γjγj
ij ψ

(γ )
j

)′

⎛⎝∑
h∈Dj

ℓ
γjγj
hj

⎞⎠−1

ℓ
γj
ij

⎤⎥⎦ ,

E

⎧⎨⎩ 1
2 Lα ′

(
H∗

(αα)

)−1

⎡⎣∆αα +

dφ∑
g=1

Lααφg
(
H−1

∆
φ
)
g

⎤⎦(H∗

(αα)

)−1
Lα

⎫⎬⎭
=

1
2
E

⎡⎢⎣(ℓαiij )′
⎛⎝∑

h∈Di

ℓ
αiαi
ih

⎞⎠−1⎛⎝∑
h∈Di

∆
#αiαi
ih

⎞⎠⎛⎝∑
h∈Di

ℓ
αiαi
ih

⎞⎠−1

ℓ
αi
ij

⎤⎥⎦ ,
E

⎧⎨⎩ 1
2 Lγ ′

(
H∗

(γ γ )

)−1

⎡⎣∆γ γ +

dφ∑
g=1

Lγ γφg
(
H−1

∆
φ
)
g

⎤⎦(H∗

(γ γ )

)−1
Lγ

⎫⎬⎭
=

1
2
E

⎡⎢⎣(ℓγjij )′

⎛⎝∑
h∈Dj

ℓ
γjγj
hj

⎞⎠−1⎛⎝∑
h∈Dj

∆
# γjγj
hj

⎞⎠⎛⎝∑
h∈Dj

ℓ
γjγj
hj

⎞⎠−1

ℓ
γj
ij

⎤⎥⎦ .
Combining the above gives the expansion for δ̂ − δ0 in the theorem. ■

.6. Proof of main text theorems

roof of Theorem 1. According to Theorem 4 we have
√
n
(̂
β − β0

)
= W

−1
∞

U + oP (1). The first term in U is
1

√
n

∑
(i,j)∈D ℓ

∗β

ij , where in main text notation we have ℓ ∗β

ij = ∂zℓijX̃ij. Assumption 1(i) guarantees that ℓ ∗β

ij has mean
zero (a linear combination of scores evaluated at the true parameters) and is either independent across all (i, j), or only
correlated within pairs (i, j) and (j, i). This term therefore only contributes variance, no bias, to the limiting distribution
of β̂ . Applying the Lindeberg–Levy CLT and the Cramer–Wold device we find

1
√
n

∑
(i,j)∈D

ℓ
∗β

ij →d N
(
0,Σ∞

)
,

where for the fully independent case (a) in Assumption 1(i),8

Σ∞ = plim
I,J→∞

1
n

∑
(i,j)∈D

E
(
ℓ
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ij

)(
ℓ
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ij

)′
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I,J→∞

1
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∗ββ

ij

)
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8 Here, we also used the Bartlett identity E
(
ℓ

∗β
)(
ℓ

∗β
)′

= E
(
−ℓ

∗ββ
)
.
ij ij ij
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T

w

t
a

hus, in case (a) the asymptotic variance of β̂ simplifies to W−1
∞
Σ∞W

−1
∞

= W
−1
∞

. For case (b) of Assumption 1(i) we have

Σ∞ = plim
I,J→∞

1
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∑
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[
E
(
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)(
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)(
ℓ
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)′
]
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∑
(i,j)∈D

E
{(
∂zℓijX̃ij + ∂zℓjiX̃ji

)
∂zℓijX̃ ′

ij

}
,

here we use that ℓ ∗β

ij = ∂zℓijX̃ij. This is the formula for Σ∞ given in Theorem 4, and this formula covers both case (a)
and case (b), because independence across pairs (i, j) ↔ (j, i) are of course a special case of dependence across those pairs.

All the remaining terms in U contribute asymptotic bias but no variance. We consider case (a) of Assumption 1(i) in
he following, but one can easily verify that the additional bias terms stemming from correlation across pairs (i, j) ↔ (j, i)
re asymptotically negligible, so that the same asymptotic bias expressions are obtained in case (b).
Using ℓ ∗βkαi

ij = γ 0
j ∂z2ℓijX̃ij,k and ℓ

αiαi
ih = γ 0

j γ
0′
j ∂z2ℓij and ℓ

αi
ij = γ 0

j ∂zℓij we obtain
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h γ
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)
,

and also using ℓ
∗βkαiαi
ih = γ 0

j γ
0′
j E

(
∂z3ℓijX̃ij,k

)
and the Bartlett identity Eℓαiij

(
ℓ
αi
ij
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= −ℓ

αiαi
ij ,

∑
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,

and therefore
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Analogously we obtain
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Combining the above gives the statement of the theorem. ■

Proof of Theorem 2. Analogous to the proof of Theorem 1 we need to translate the stochastic expansion of δ̂ in Theorem 4
into the notation used in the main text. We have

(
∆

∗β
)′

→P (Dβ∆)
∞

and Ψij = −ψ
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i γ 0

j − ψ
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i , and therefore find
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Analogous to the proof of Theorem 1 one can show for the bias terms that
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and
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Using the above and the expansion in Theorem 4 gives the statement of Theorem 2. ■

Proof of Theorem 3. Under the conditions of Theorem 1, B̂ →P B∞, D̂ →P D∞, Ŵ →P W∞, and Σ̂ →P Σ∞.
If, in addition, the conditions of Theorem 2 hold, then also V̂ δ →P V

δ

∞
, and the sample analogs of B

δ

∞
, D

δ

∞
, (Dβ∆)

∞

re also consistent. These results follow from an identical argument to the proof of Lemma S.1 and Theorem 4.3 in the
upplementary material of Fernández-Val and Weidner (2016), which are based on a repeated application of the weak
aw of large numbers and Slutsky’s theorem.

Once we have established the consistency of the estimators of the bias terms, the asymptotic distributions of the
nalytical corrections β̃ABC and δ̃ABC follow as corollaries of Theorems 1 and 2, respectively. For example,

√
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),

by Slutsky’s theorem. ■
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