ON THE GROWTH OF EIGENFUNCTION AVERAGES:
MICROLOCALIZATION AND GEOMETRY

YAIZA CANZANI AND JEFFREY GALKOWSKI

ABSTRACT. Let (M, g) be a smooth, compact Riemannian manifold and {¢n} an
L?-normalized sequence of Laplace eigenfunctions, fh2Ag¢h = ¢n. Given a smooth
submanifold H C M of codimension k > 1, we find conditions on the pair ({¢n}, H)
for which

ﬂ +
] thdaH’:o(h =), h—ot.
H
One such condition is that the set of conormal directions to H that are recurrent has
measure 0. In particular, we show that the upper bound holds for any H if (M, g)
is surface with Anosov geodesic flow or a manifold of constant negative curvature.

The results are obtained by characterizing the behavior of the defect measures of
eigenfunctions with maximal averages.

1. INTRODUCTION

On a compact Riemannian manifold (M, g) of dimension n we consider sequences
of normalized Laplace eigenfunctions {¢,} with eigenvalue A = h=2, i.e. solving

(=h*Ag =), =0,  lgnllz2an = 1.
We study the average oscillatory behavior of ¢, when restricted to a submanifold

H C M. In particular, our goal is to understand conditions on the pair ({¢p}, H)
under which

/ pndoy = o(h%k), (1.1)
H

as h — 07, where o is the volume measure on H induced by the Riemannian metric,
and k is the codimension of H.
We note that the bound

‘/HgbhdUH’ — o' (1.2)

holds for any pair ({¢n}, H) [Zel92, Corollary 3.3], and is sharp in general. Therefore,
we seek conditions under which the average is sub-maximal. Observe also that if
k = n, then is a pointwise estimate agreeing with the standard L® bounds
of [Avab0, Lev52l [Hor68]
Inlle = O(h™").
As explained below, by considering the case k = n, we include bounds on L* norms
in our results. Integrals of the form , where H is a curve, have a long history.
[Goo83, [Hej82] study the case in which H is a periodic geodesic in a compact hyperbolic
manifold, and prove the bound in that case. The work [Zel92] in fact shows
1
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that (|1.1) holds for a density one subsequence of eigenvalues. Moreover, one can
give explicit polynomial improvements on the error term in for a density one
subsequence of eigenfunctions [JZ16].

These estimates, however, are not generally satisfied for the full sequence of eigen-
functions and the question of when all eigenfunctions satisfy has been studied
recently for the case of curves in surfaces [CS15) [SXZ17, Wym17b, Wym17a] and for
submanifolds [Wym17¢c]. Finally, given a hypersurface, the question of which eigen-
functions satisfy was studied in [CGTI18]. We address both of these questions,
strengthening the results concerning which eigenfunctions can have maximal averages
on a given submanifold H, and giving weaker conditions on the submanifold H that
guarantee for all eigenfunctions.

We improve and extend nearly all existing results regarding averages of eigenfunc-
tions over submanifolds. We recover all conditions in the papers [CS15, [SXZ17,
Wyml17b, Wymli7a, Wyml7d, [GTI8 |Gall7, [CGTI8, Bér77, [SZ16a, [SZ16b] which
guarantee that the improved bound holds. As far as the authors are aware, these
papers contain all previously known conditions ensuring improved averages. Moreover,
we give strictly weaker conditions guaranteeing when k < n; we replace the condi-
tion that the set of loop directions has measure zero from [Wym17c] with the condition
that the set of recurrent directions has measure zero. This allows us to prove that un-
der conditions on (M, g) including those studied in [Goo83l [Hej82, (CS15, [SXZ17],
the improved bound holds unconditionally with respect to the submanifold H.
These improvements are possible because the main estimate, Theorem [6], gives explicit
bounds on averages over submanifolds H which depend only on the microlocalization
of a sequence of eigenfunctions in the conormal directions to H. This gives a new
proof of from [Zel92] with explicit control over the constant C' for high energies.
In fact, we characterize those defect measures which may support maximal averages.
The estimate requires no assumptions on the geometry of H or M and is purely local.
It is only with this bound in place that we use dynamical arguments to draw conclu-
sions about the pairs ((M,g), H) supporting eigenfunctions with maximal averages.
We note, however, that this paper does not obtain logarithmically improved averages
as in [Bér77, SXZ17, Wym17a].

Recall that all compact, negatively curved Riemannian surfaces have Anosov geo-
desic flow [Ano67]. One consequence of the results in this paper is the following.

Theorem 1. Suppose (M, g) is a compact, Riemannian surface with Anosov geodesic
flow and v : [a,b] = M is a smooth curve segment with |'| > 0. Then

b
/ on(v(s))ds = o(1)  and / ho,én((s))ds = o(1)

as h — 0% for every sequence {¢n} of Laplace eigenfunctions. Here 8, denotes the
derivative in the normal direction to the curve.

In order to state our more general results we introduce some geometric notation.
Let H C M be a closed smooth submanifold of codimension k. We denote by N*H the
conormal bundle to H and we write SN*H for the unit conormal bundle of H, where
the metric is induced from that in N*H C T*M. We write o, for the measure

on SN*H induced by the Sasaki metric on TM (see e.g. [Ebe73al]). In particular, if



(2',2") are Fermi coordinates in a tubular neighborhood of H, where H is identified
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An element of Ry

FIGURE 1. The figure shows a recurrent point in SN*H in red together
with its geodesic shown as the dashed line. The intersections of the
geodesic with SN*H are shown in gray and black arrows.

with {(2/,2") : 2" = 0}, we have

where 2 = (2/,0) € H, ¢ € SN}H, and S*~! is the k — 1 dimensional sphere. We
say that H is a closed embedded submanifold of codimension k if H is a manifold of
dimension n — k, possibly with boundary, that is embedded in M and is closed as a

Ounens (2',¢") = o (2')dVolge-1(£"),

subset of M.

Let Gt(p) : T*M — T*M denote the geodesic flow and Ty : SN*H — RU {oo} with

Tu(p) :==inf{t >0: G'(p) € SN*H},

be the first return time. Define the loop set

and first return map 7 : Ly — SN*H by 1(p) = GTH)(p). Next, consider the infinite

Lpg:={peSN'H : Ty(p) < oo}

loop sets

L2 = ﬂ n*(Ly) and L™= m (L),
k>0 k>0

and the recurrent set

where

Ry =RLENRy

R =3pely*:pe () Um0
N>0k>N

In dynamical systems, the sets

are known respectively as the w and « limit sets of the point p. The recurrent set
consists of the p € SN*H such that p lies in its own « and w limit sets and should be
thought of as the property that the geodesic through p is asymptotically closed as its

N U7  and ARSER)

N>0k>N N>0k>N

length tends to infinity (see Figure .
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In what follows we write my : SN*H — H for the canonical projection map onto H,
and dimy,e(B) for the Minkowski box dimension of a set B.

Theorem 2. Let (M, g) be a smooth, compact Riemannian manifold of dimension n.
Let H C M be a closed embedded submanifold of codimension k, and A C H be a
subset with boundary A satisfying dimpex(0A) < n —k — % Suppose

Ry N7yt (A)) = 0.

Tgpops (

Then

/ dndoy = o(h'2)
A
as h — 0T for every sequence {¢n} of Laplace eigenfunctions.

Theorem [2 improves on the work of Wyman [Wym17¢], replacing the measure of
the loop set L, by that of the recurrent set Rpy. Taking H to be a single point (i.e.
k = n) also recovers the results of [STZ11]; see Remark

When H is a hypersurface, i.e. k=1, we can also study the oscillatory behavior of
the normal derivative hd, ¢y along H.

Theorem 3. Suppose (M, g, H, A) satisfy the assumptions of Theorem @ with k = 1.
Then for every sequence {¢p} of Laplace eigenfunctions

‘/A ¢ndop

Theorem [2| allows us to derive substantial conclusions about the geometry of sub-
manifolds supporting eigenfunctions with maximal averages. Indeed, if there exists
¢ > 0 and a sequence of eigenfunctions {¢;} for which

/czﬁhdaH‘ > ch'T,
A

+ =o0(1)

/ 1oy dndo
A

as h — 0t.

then,
oo (Rir N (A)) > 0.
Next, we present different geometric conditions on (M, g) which imply oy,.,, (Rz) =
0. We recall that strictly negative sectional curvature implies Anosov geodesic flow.

Also, both Anosov geodesic flow and non-negative sectional curvature imply that
(M, g) has no conjugate points.

Theorem 4. Let (M, g) be a smooth, compact Riemannian manifold of dimension n.
Let H C M be a closed embedded submanifold of codimension k. Suppose one of the
following assumptions holds:

A. (M,g) has no conjugate points and H has codimension k > ”TH
) has no conjugate points and H is a geodesic sphere.

g) has constant negative curvature.

9)

s a surface with Anosov geodesic flow.
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E. (M,g) has Anosov geodesic flow and non-positive curvature, and H is totally
geodesic.

F. (M, g) has Anosov geodesic flow and H is a subset M that lifts to a horosphere.
Then

Osn+pr (Ru) = 0.
In addition, condition implies that oy, (L) = 0.

Combining Theorems [2] and [] gives the following result on the oscillatory behavior
of eigenfunctions when restricted to H.

Corollary 5. Let (M, g) be a manifold of dimension n and let H C M be a closed em-
bedded submanifold of codimension k satisfying one of the assumptions[AHF| in Theorem
. Suppose that A C H satisfies dimpox(0A) <n —k — % Then

/ ondor = o(h'2)
A

as h — 0% for every sequence {¢n} of Laplace eigenfunctions.

We conjecture that the conclusions of Theorem [4] and hence also Corollary [5 hold
in the case that (M, g) is a manifold with Anosov geodesic flow of any dimension.

Conjecture. Let (M,g) be a manifold of dimension n with Anosov geodesic flow and
let H C M be a submanifold of codimension k. Then
Rpy) =0.

Tgngorr (

1.1. Relation with 1> bounds. We note again that taking k = n and H = {z} for
some x € M the estimate in (1.2 reads,

lup ()| < Ch'z". (1.5)

By Remark [1| the constant C' can be chosen independent of z (and indeed, for small h,
depending only on the injectivity radius of (M, g) and dimension of M [Gall7]). Esti-
mates of this form are well known, first appearing in [Ava56, Lev52 [Hor68] (see also
[Zwol2, Chapter 7]), and situations which produce sharp examples for are ex-
tensively studied. Many works [Bér77, IS95, [TZ02] [SZ02], STZ11l [SZ164, [SZ16b] have
studied connections between growth of L norms of eigenfunctions and the global ge-
ometry of the manifold M. More recently |[GT18||Gall7] examine the relation between
defect measures and L* norms.

We continue in the spirit of [GT18, [Gall7, [CGT18|; studying the relation between
between defect measures and averages over submanifolds. Some of our arguments
draw heavily from the ideas in [Gall7] and, in particular, taking & = n in Theorem |§|
(together with Remark recovers |Gall7, Theorem 2|. Hence, we also generalize many
of the results of [SZ02, [STZ11l [SZ16al [SZ16Db] to manifolds of lower codimension. For
example taking £ = n in Theorem [2| gives the main results of [STZ11] (see also [Gall7,
Corollary 1.2]).
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1.2. Semiclassical operators and a quantitative estimate. This section contains
the key analytic theorem for controlling submanifold averages (Theorem @ which, in
particular, has Theorems [2 and [3| as corollaries. We control the oscillatory behavior of
quasimodes of semiclassical pseudodifferential operators using a quantitative estimate
relating averages of quasimodes to the behavior of the associated defect measure. As a
consequence, we characterize defect measures for which the corresponding quasimodes
may have maximal averages.

It is convenient to work with general semiclassical pseudodifferential operators, in-
stead of only with the Laplace operator, for several reasons. First, by generalizing
the operators under consideration, we are able to understand the phenomena which
underly estimates for averages. Also, we are able to study many types of operators,
e.g. Schrodinger operators, simultaneously with the Laplacian. For example, by a
simple argument we are able to apply Theorem [f] directly to obtain estimates on nor-
mal derivatives of Laplace eigenfunctions to hypersurfaces (see Theorem . Finally,
since we are able to work in compact subsets of phase space, defect measures appear
naturally as a description of the microlocal concentration properties of eigenfunctions.

We say that a sequence of functions {¢y,} is compactly microlocalized if there exists
X € CX(T*M) so that

(1= Opn(x))Pn = Oce= (h*|[#nl 2(ar))- (1.6)
Also, we say that {¢p} is a quasimode for P € Wy°(M) if
Pon=op2(h),  |#nllre = 1. (1.7)

In addition, for p € S°(T*M;R), we say that a submanifold H C M of codimension
k is conormally transverse for p if given fi,... fi, € C2°(M;R) such that

k
H = ﬂ{f i = 0}, {df;} linearly independent on H,
i=1
we have
k
N'H C {p#0}U| J{H,fi # 0}, (1.8)
i=1

where H), is the Hamiltonian vector field associated to p.
Finally, we say the p is Laplace-like if for all x,

T:M N {p=0}
has positive definite second fundamental form. Let
Yy, =1p=0}NN'H,
and consider the Hamiltonian flow
@y = exp(tHp).
We fix tgp > 0 and define for a Borel measure p on {p = 0}, the measure Mg, OD 2

H,p
by setting

1
Hyy , (A) 1= 27()#( U @t(A)), for all Borel A C %, .
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Remark 2 in [CGT18] shows that if ;1 is a defect measure associated to a quasimode
{#n} and H is conormally transverse for p, then p, (A) is independent of the choice
of tp. It is then natural to replace the fixed choice of ty with limy,—,¢. In particular,
for 11 a defect measure associated to {¢p},

Hy ,(A) = lim iu( U %(A)), (1.9)

for all Borel sets A C %, .
Next, let 77 : M — R be the geodesic distance to H. Then, define [Hyry|: Y, — R
by
[ Hyrr|(p) := im [Hyrr (¢:(p))].
Finally, we write 4 L. A when p and A\ are mutually singular measures and let % be
the volume measure induced on %, by the Sasaki metric. Note that in Fermi normal

coordinates (z/,x”), as in (1.3,

o2
SHp

=0H (ﬂfl)dVObH’me;M(ﬁ”)? (1.10)
where Vol denotes the volume induced by the Euclidean metric on N;H.

Theorem 6. Let (M,g) be a smooth, compact Riemannian manifold of dimension
n and P € (M) have real valued principal symbol p(x,§). Suppose that H C M
s a closed embedded submanifold of codimension k conormally transverse for p, and
that {¢p} is a compactly microlocalized quasimode for P with defect measure p. Let
feL(H, O’EHP) and A, Loy, be such that

Py, = deEH,p + A, (1.11)

Let w € C°(H®). Then there exists C(n,k) = Cp i, > 0, depending only on n and k,
k—1
limsuph 2

so that
/wgf)hdoH SCn,k/ lwl\/ flHpra|~'doy, . (1.12)
h—0+ H H P

If in addition p is Laplace-like, then for w € C*°(H) and A C H with dimpy(0A) <

1
n—k—1,

. k—1
limsup h 2
h—0t+

/w(bth'H gCn,k/ |w\ f’HpTH|_1d0'EH . (1.13)
A T (A) ”

In addition to relating the L? microlocalization of quasimodes to averages on subman-
ifolds, Theorem |§| gives a quantitative version of the bound proved in [Zel92l
Corollary 3.3] and generalizes the work of the second author [Gall7, Theorem 2] to
manifolds of any codimension. Note also that the estimate is saturated for every
0 < k < n on the round sphere S™.

Remark 1. Let e(h) > 0 satisfy e(h) = o(1). We actually prove the stronger statement

that (1.13]) can be replaced with
<C k/ \ fIHpru|~tdo,
n, ﬂﬁl(A) ’ p SHp

k-7
lim sup th sup
h—s0+ (A1,H1)EA(A,H (h))

¢ndom,
Ay
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where

A(A, H,e(h)) =
{(A1, Hy) | Ay C Hy, dimpoyg(941) < n—k—1%, d(A, A1) = e(h), ds(S,,,. Sm,) = (h)}
and dg is the distance induced by the Sasaki metric. That is, our estimate is locally

uniform in o1 (1) neighborhoods of H (see Remark 4] for an explanation). This also
implies that all of our other estimates are uniform in oc1(1) neighborhoods.

A direct consequence of Theorem [f] is the following.

Theorem 7. Let (M, g) be a smooth, compact Riemannian manifold of dimension n.
Let H C M be a closed embedded submanifold of codimension k, and let A C H be a
subset with boundary OA satisfying dimpey(0A) <n —k — % If {¢n} is a sequence of
Laplace eigenfunctions with defect measure p so that p, 1 140y, , then

/ éndor = o(h'7).
A

Theorem [7| strengthens the results of [CGTI8|. In particular, in [CGTI8|, the
measure £ is said to be conormally diffuse if 41, (SN*H) = 0, which implies p,; L o

N*H *
We note that Theorem [7] is an immediate consequence of Theorem [6] To see this,
first observe that if we take P = —h?A, — 1, set p(x,&) = ‘56(:(:) —1=0(P), and let

{¢n} satisfy P¢p, = 0, then
(1 = Opn(x))¢n = Ocee (B[ ¢nl[ L2),

for any x € C°(T*M) with x = 1 on [{]|; < 2 (see e.g. [DZ16, Appendix E] for the
elliptic parametrix construction). Next, note that in this setting we have T, = O

*E 0

T YSN*H*
Hence, if

-1
Ty (

A) \/?dO-EHw =0
then by Theorem [6]
/ ondor = o(h' 7).
A

To see that any H C M is conormally transverse (recall the definition (1.8))), observe
that if I = N¥_, f;, then N*H = span{df; : i = 1,...,k}. In particular, given (z,¢) €
N*HN{p = 0} there exists ¢ € {1,...,k} for which H,f;(x,&) = 2(df;(x),&) # 0.

1.3. Manifolds with no focal points or Anosov geodesic flow. In order to prove
parts E and [F| of Theorem |4} we assume either that (M, g) has no focal points
or that the geodesic flow on (M, g) is Anosov. We show that these structures allow us
to restrict to working on the set of points Ay in SN*H at which the tangent space to
SN*H splits into a sum of bounded and unbounded directions. To make this sentence
precise we introduce some notation.

If (M, g) has no conjugate points, then for any p € S*M, there exist stable and
unstable subspaces E4(p) C T,5*M so that

dG' : Ex(p) = Ex(G'(p))
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and
|dG*(v)| < C|v| forv € Ex andt — +oo.
We recall that a manifold has no focal points if for every geodesic v, and every Jacobi
field Y (¢) along v with Y (0) = 0 and Y'(0) # 0, Y (¢) satisfies %HY(t)H2 >0 fort >0,
where || - || denotes the norm with respect to the Riemannian metric. In particular,
if (M, g) has non-positive curvature, then it has no focal points (see e.g. [Ebe73a
page 440]). It is also known that if (M, g) has no focal points then (M,g) has no
conjugate points and that Ey(p) vary continuously with p. (See for example [Ebe73al,
Proposition 2.13 and remarks thereafter].) See e.g. [Rug07, [Ebe73bl [Pes77] for further
discussion of manifolds without focal points.
In what follows we write

Nz(p) :=T,(SN™H) N Ex(p). (1.14)
We define the mized and split subsets of SN*H respectively by

My i={p € SN'H : N_(p) # {0} and N+ (p) # {0} },

(1.15)
Sii={p€ SN'H : T,(SN'H) = N_(p) + N+(p)}.

Then we write
Ay = Mg NSy, NH = Mg USy, (1.16)

where we will use Ay when considering manifolds with Anosov geodesic flow and Ny
when considering those with no focal points.

Next, we recall that any manifold with no focal points in which every geodesic
encounters a point of negative curvature has Anosov geodesic flow [Ebe73al, Corollary
3.4]. In particular, the class of manifolds with Anosov geodesic flows includes those
with negative curvature. We also recall that a manifold with Anosov geodesic flow
does not have conjugate points [Kli74] and for all p € S*M

Tp(S™M) = E1(p) ® E_(p) ® RH).

where E, E_ are the stable and unstable directions as before. (For other characteri-
zations of manifolds with Anosov geodesic flow, see [Ebe73al, Theorem 3.2], [Ebe73h].)
An equivalent definition of Anosov flow is that there exists C' > 0 so that for all
p € S*™M,

dG(v)| < CeFelv|,  ve Ei(p), t— Foo, (1.17)
and the spaces E(p) are Holder continuous in p [Ano67].

Theorem 8. Let H C M be a closed embedded submanifold.
If (M, g) has no focal points, then

o - (RH ﬂNH) = Ognepr (T\’,H)
If (M, g) has Anosov geodesic flow, then
Onert (Rt NV AR) = Oy (Rir)-

Theorem [§ combined with Theorem [2 give the following result.
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Corollary 9. Let H C M be a closed embedded submanifold of codimension k, and
let A C H satisfy dimpex(0A) <n —k — % Then if (M, g) has no focal points and

O (Ng N W;II(A)) =0
we have

/ dndoy = o(h'Z) (1.18)
A

as h — 07 for every sequence {¢n} of Laplace eigenfunctions. If instead (M,g) has
Ansov geodesic flow then (1.18) holds when

Gy (A 75 (A)) = 0,

Note that if dimM = 2, then Ny = Ay since dim7,(SN*H) = 1. Indeed, it is
not possible to have both Ny(p) # {0} and N_(p) # {0} unless Ny(p) = N_(p) =
T,(SN*H) and hence Mg C Sg. In [Wym17b,[Wym17a] the author works with (1, g)
non-positively curved (and hence having no focal points), dimM = 2 and H = v a
curve. He then imposes the condition that for all time ¢ the curvature of v, k-(t),
avoids two special values determined by the tangent vector to v, ki (7/(t)). He shows
that under this condition

/Vqﬁhdaw = o(1).

If Ky (t) = k+(7/(t)), then the lift of v to the universal cover of M is tangent to a stable
or unstable horosphere at v(t) and k- (t) is equal to the curvature of that horosphere.
Since this implies that T{(y),(1)SN™7 is stable or unstable, the condition there is that
N, = 0. Thus, the condition a,., (Ng N7 (A)) = 0 is the generalization to higher
codimensions of that in [Wyml17bl Wymli7a]. We note that [Wyml7a] obtains the

improved upper bound O(| log h\_%).

1.4. Organization of the paper. We divide the paper into two major parts. The
first part of the paper contains all of the analysis of solutions to Pu = o(h). The
sections in this part, Section [2] and Section [3] contain the proofs of Theorem [6] and
Theorem (3| respectively. The second part of our paper, consists of an analysis of the
geodesic flow and in particular a study of the recurrent set of SN*H. Theorem [2] is
proved in Section [4 and Theorems [4] and [§] are proved in Section

Note that as already explained, Corollary [5| is an immediate consequence of com-
bining Theorems [2] and [4] Also, Theorem [7]is a direct consequence of Theorem [6] and
Corollary [9 is a consequence of Theorem [2] and Theorem Finally, Theorem [1] is
exactly part [D] of Theorem [

ACKNOWLEDGEMENTS. Thanks to Semyon Dyatlov, Patrick Eberlein, Colin Guil-
larmou, and Gabriel Paternain for several discussions on hyperbolic dynamics. The
authors are grateful to the referee for careful reading and many helpful comments
which improved the exposition. J.G. is grateful to the National Science Foundation
for support under the Mathematical Sciences Postdoctoral Research Fellowship DMS-
1502661.
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2. QUANTITATIVE ESTIMATE: PROOF OF THEOREM [0]

In Section [2.1] we present the ground work needed for the proof of Theorem [6l In
particular, we state the main technical result, Proposition on which the proof of
Theorem [ hinges. We then divide the proof of Theorem [6] in two parts. Assuming
the main technical proposition, we first prove the theorem for the case A = H and
w € C(H) in Section[2.2] and then generalize it to any subset A C H in Section
Finally, Section is dedicated to the proof of Proposition

Throughout this section we assume that P has principal symbol p and H is conor-
mally transverse for p as defined in . We also assume throughout this section that

{¢n} is a compactly microlocalized quasimode for P (see (1.6) and ([1.7))).

2.1. Preliminaries. Let H C M be a smooth closed submanifold and let Uy be an
open neighborhood of H described in local coordinates as Uy = {(2”,2'): z € V C R%},
where these coordinates are chosen so that HNUpy = {(0,2'): (0,2) € V'}. The coor-
dinates (z”,2) € Uy induce coordinates (z”,2',£",{') on X7, M = {(z,§) € {p =0} :
z € Ug} with (§”,¢) € {p =0} NI oM. In these coordinates, &' is cotangent to H

while £” is conormal to H. Since H is conormally transverse see (1.8 for p, we may
assume, without loss of generality, that " = (x1,Z) with dual coordinates £" = (&1, €),
where

Og,p(x,§) #0on {p=0}NN"H.
Consider the cut-off function y, € C(R, [0, 1]) with

Yalt) = {0 it a (2.1)

Lt <3,

with |x,,(t)| <3/a for all ¢t € R. For € > 0 consider the symbol

Be(@', &) = X (1€ |y (ary) € O (T H), (2.2)
where g is the Riemannian metric on H induced by g. Let w € C°(H?), where H?
denotes the interior of H. We start splitting the period integral as

/ wen dogg = / Opn(Be) fwin) dogs + / Opn(1 — o) wiy] do.
H H H

The same proof as [CGTI8, Lemma 8] yields that for all u € L2, (H®)

comp

‘/H Opn(1 — Boyudon| = 0o(h™) lull 2gan-

(see also Lemma [12)).

Choosing u = w¢y, and using the restriction bound (¢ |2y = O(hfg) obtained
from the standard L® bounds for compactly microlocalized functions [Zwol2, Lemma
7.10], we have

/ wey, dogy = / Opn(82)[wen] doss + O-(h). (2.3)
H H
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We control the integral of Opp(B:)wey using the following lemma. To shorten
notation, we write

AH,T = U Spt(EH,p)

[t|<T

where we recall that ¥, := N*H N {p = 0} and continue to write ¢; := exp(tHp).

Proposition 10. Let x € C°(T*M) so that Hyx =0 on Ay, for some T > 0. Let
w € CX(H?). There exists Cp i, = C(n, k) > 0 depending only on n and k so that

2

lim lim sup h* !
€0 hso+

/H Opn (Bew) [Opn(:) ] doe

< Cni 0y, (supp(xls, )) /Z w2 Hyrg |~ dp,.

H,p

The proof of Proposition [10]is given in Section [2.4] The purpose of this proposition
is to allow us to use x to localize quasimodes to the support of A\, and its complement.
Recall that A, is defined by (1.11)). Since A\, and sy, A€ mutually singular, it is not

difficult to see that Proposition [10] gives the bound

1/2
hmsuph z ’/ wgbhdaH’ <C / wacla2 .
h—0+ b i

H,p
By further restricting x to shrinking balls inside %, ~an application of the Lebesgue
differentiation theorem allows us to obtain a bound of the form C fz |w|\/fdo,
as claimed. This improvement will be needed when passing to subsets A C H. The
factor |Hprp|™ ! measures the cost of restricting to a hypersurface containing H which

is microlocally transversal to H,. In particular, we choose coordinates so that H C
{r1 = 0} and |Hpry| = Ogp # 0 at a point p € ¥, . This is possible since H is

conormally transverse see (|1.8]) for p.

To apply Proposition |10] it is key to work with cut-off functions x € C°(T*M) so
that H,x = 0 on A, for some T" > 0. Therefore, the following lemma is dedicated
to extending cut- off functlons on ¥, to cut-off functions on T*M that are invariant
under the Hamiltonian flow inside A . Let T, S > 0 be such that

p: [F2T,2T) x X, — A

H,2T
is a diffeomorphism for all 0 < T < 7, . Such a 71, exists since H is compact

H,p H,p
and conormally transverse for p. Moreover, for T' < T ) A is a closed embedded

H,2T
submanifold in 7M.

Lemma 11. For all x € CZ°(%,,;[0,1]) and 0 < T < T, ~ there eists
X € CX(T*M;[0,1)) so that ’
for all [t| < T and (z,§) € X, . In particular, Hyx =0 on Ay,
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Proof. Let ¢ € C°(R;[0,1]) be a fixed function supported on (—27,27") with ¢ = 1
n [T, T]. Then, using that o : [-2T,2T] x %, — A, is a diffeomorphism, define
the smooth cut-off x : A, — [0,1] by the relation

Finally, extend x to all of 7*M so that x € C>°(T*M;[0,1]). We can make such an

extension since AHT is a closed embedded submanifold in T*M. O

2.2. Proof of Theorem [6] for A = H and w € C°(H?). Fix 6 > 0. Recall that
A, is defined by (L.11)). Since % and A\, are two Radon measures on 3}, that are

mutually singular, there exist K5 C EH’p compact and Uy C EH,p with K5 C Us and so
that

Oy, (Us) < ¢ and Ay (8, \K5) < 0.

Indeed, by definition of mutual singularity, there exist V,W C X, so that A, (W) =
% (V) =0and VUW = %, . Hence, by outer regularity of oy, » there exists
Us D V open with 05, (Ug) < 5 Next by inner regularity, of A\, there ex1sts Ks C Us
compact with A, (o, \Kg) Ay (Us \ Ks) < 6. Let &5 € C2°(X,,;[0,1]) be a cut-off
function with

ks =1 on Ky and supp ks C Us.
Let ks € C°(T*M;[0,1]) be the cut-off extension of %5 given in Lemma [11| with
Hpks =0 on Ay,

where we have fixed T > 0 so that 2T < TEH . We use (2.3) and split the period
sP

integral as

/ wen dogg = / Opn(Bow) [Opn (5)én] dors
H H

+ [ Opu(Baw)(Op(1 ~ rs)n] o + 0-(h).
H
Applying Proposition [10| with xy = ks, we have that
2

lim lim sup AF !
=0 p0

/H Opn(Bew) [Opn (r5)én) dor

(2.4)
2.2
< CUEHYp(supp /4512&?) /E ksw dpy, < C0.
H,p
Here we have used that O'ZHP(U(;) < ¢ and that by construction supp Rglng =
supp kg C Us.
We dedicate the rest of the proof to showing that

hmhmsuph 2 ‘/ Opp(Bw)[Opr(1 — K]5)¢h]dUH‘ < an/ \wh/ﬁda +C(52

=0 h0

(2.5)
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where f) := f|Hprg|™!. Putting (2.4) together with (2.5) would conclude the proof of
the theorem.

We start by splitting the left hand side in into an integral over small balls.
Note that since dimM = n, dim¥, = n — 1 regardless of the codimension k. By
the Besicovitch-Federer Covering Lemma [He101 Theorem 1.14, Example (c)], there
exists a constant ¢, > 0 depending only on n and ro = r¢(H) so that for all 0 < r < r,
there exist open balls {B1, ..., By} C X, of radius 7 with

N(r) < cprt™™ and o,

Hp

(Bj) < enr™ 1, (2.6)

so that
N(r)

v, CUB

and each point in ¥, lies in at most ¢, balls. Let {1;} with 1; € C(2 s 05 1])
be a partition of unity associated to {B;}, and write v, for the extensions 1); €
C°(T*M;[0,1]) given in Lemmaso that ¢, (pi(z,€)) = P;(x, ) for all t| < 2T and
(z,§) € X, . With this construction, Hy; =0 on Ay,

N(r)
Z Yj=1onAy,,, and supp(z/)jlgHyp) C B;. (2.7)

Let ¥ := Z;V:(I) (o Setting X = (1 = V)(1 — ks) we have Hyx = 0 on A, and
supp(xlgH’p) = () (since 1 =¥ =0 on A ,,.). We then apply Lemma to x, to obtain

. . k-1
lim limsup h™ 2
e=0 po

| om(Eioma -~ m))@]daﬂ\ —0.

On the other hand, by the triangle inequality we have

N(r)
S |, OmterOmtvs 1~ wa))nl o

] | Omn(80)(0p (W1 = ) nldon <

By construction we have that Hy[1;(1 — x5)] = 0 on A, .. We may therefore apply
Proposition 10| with x = 1;(1 — k5) to find that there exist eg, Cp, 1, > 0 so that

2

lim lim sup A* !
20 h—o

/H Opn(Bew)[Opp(¢(1 — ks))dpn] don

< Cppr™” 1/ w 1—%5) |Hprm|™ 1dqu

Here we have used that supp(v; lng) C Bj and for r; > 0 small enough O, (Bj) <

cyr™ ! forall j =1,...,N(r), and some ¢, > 0 depending only on n. It follows that
there is Cj, ;, > 0 for which
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lim lim sup h*7* ‘ / Opn(B-w)[Opn(¥(1 — k) drldory| <

=0 h-o
<Chir T </ ¢ — kg)” |Hp7"H1d/~LH,p>

Decomposing p, , = f"z:Hp + ), and using that
supp((1 — K}(;)le’p) C ¥, \Ks
while \, (X, \K5) <, we conclude that there exists C' > 0 so that

1
2

lim hmsuph z ‘/ Opp(Bw)[Opp(1 — H5)¢h]dJH‘ < CpiFrfi +C8§'/? (2.8)

=0 ph0
N(r
Fofi =77 (/ Piw? f1 do; )

Indeed, applying the triangle inequahty,

where

N(r 3

n,kT 2 (/ 1/} 1—55) ‘H TH’ 1d/LHp> <

N(r)
Co ik F(r) + Cr"z (/ Prw n5)2d)\H>

S

By Cauchy-Schwarz,
%
Z(/ w 22d)\) 1/2 / Zw d)\
Hp j= 1
1

< ONy (supp(l — kg)1s, )2

D=

| /\

<082,
and this proves ([2.8).
We dedicate the rest of the proof to proving that there exists C}, > 0 such that
th(l)lp F.f1 < C’n/|w|\/f1dasz. (2.9)
r— ’

Inserting (2.9)) into (2.8) proves (2.5). Putting (2.4]) together with (2.5) concludes the

proof of the theorem. Note that for any positive function 6 € Ll(EHp7 Oy, )
’ P

1
FTG_ (”1/ P2w?6 do, p)
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By (Z7) and

NI

n— 1
F,0| < CoN(r)3r"s / Zzﬂ 0da,,, | <Cl6l (2.10)
g ,

Hp]l

where C is independent of r.
Next, suppose that 6§ > 0 is a continuous function. Let §; € ¥, be so that

Bj = B(&;,r) and note that for r small enough, C,; 'r"~1 < Oy, (B(&j,r)) < Cpr™1,
where C), depends only on n. Using this, and that supp(t; 12Hp) C Bj, the definition
of F.0 yields

N(r) . 1/2
F.0< Cn/ 1g. / w?do. do:

Now, since ¢y, is compactly microlocalized (see (1.6])), we may assume %, 1s compact.
Then, since w and @ are continuous, they are uniformly continuous. In particular, for
any €o > 0 there exists r small enough so that for all £ € 3, and p € B &, r),

1/ w?do, 1/2 < w|(p)VO( )+87°
CBEN) Jpeny e ) SIS, )

F.0 < Cn/ |w|\/§daEHp + Chep.
EH,p ’

Thus,

Next, let {0,,}m be a sequence of continuous positive functions with 6, — f in
L'. We may assume by taking a subsequence that 6,, — fi a.e. Fix g9 > 0 and let
My > 0 be so that ||f1 — QmHlL/IZ < gg for all m > My. Since vVa+b <+ /a+ Vb, for
all m > M()

|Frf1’ §Fr|f1—9m|+Fr9m Sc”fl m”l/Q“‘FremS 050+Fr0m- (2'11)
Now,
/E ] /Omder,, = /E | /max(G, Do, + /E Loy [0(V/b — 1)dor,,
'H,p 'H,p H,p

Observe next that max(6,,,1) — max(fi,1) a.e. and by the dominated convergence

theorem,
/E |w\\/max(9m,1)daEH’p —>/E |w|y/max(f1,1)do;
'H,p H,p

Also,

—h
| oo = o | =] [ ol g2 o, | <1 = il
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This proves that fEH,p w]v/Omdoy,, — — fZH,p w|v/fidoy,, . Therefore, there exists
My > 0 so that for m > M,

/ [w[v/ Omdo S/ lwlv/ fidoy,,  + 0.
Shp P Shp i

Let m > max(My, M) and choose r small enough so that F,.0,, < C, fz ]w|\/9mdUEHp +
H,p ’
0. Then, (2.11)) yields that for some C,, > 0

Frfl SCSO+Fr6m§Cn/ |w‘vf1d0'2Hp+Cn50'
Y '

This proves ([2.9)) as claimed, and hence concludes the proof of the theorem. O

2.3. Proof of Theorem [6] for any A C H. We first sketch the steps necessary to
pass to A C H. We break the integral into two pieces. First, in an h-independent
neigborhood of the conormal bundle N*H, we approximate 14 by an (h-independent)
smooth function and apply the theorem on all of H. Then, to estimate the piece
bounded away from N*H, we approximate 14 by a smooth function depending badly
on h. We are then able to perform integration by parts to estimate contributions away
from 0A and a simple volume bound near JA. In order to handle the boundary of H
itself, we extend H to a larger closed embedded submanifold H C M so that H® € H°
is an open subset.

Let A C H be a subset with dimpey(0A) < n —k — % and indicator function 14.
Extend H to H another closed, embedded submanifold of codimension k so that H© is
compactly contained in the interior H°. We will actually apply Theorem |§| to H and
w € C°(H®). Since C2°(H?) is dense in L?(H?), for any § > 0, we can find a positive
function 14 € C°(H®) with

||¢A - 1A||L2(1§() <.

For any ¢ > 0 and w € C’SO(I:I"),
| [ Lawondog| < | [ 140m(8)w dn)dog | + (1 - Opu(B)(win), L)
" q

We claim that if A C H has boundary satisfying dimpey(0A) <n —k — % Then, for
all § > 0 and ¢ > 0,

11— Opn(B)) 1all o g7y = O (RTH). (2.12)

We postpone the proof of (2.12)) until the end. Assuming that (2.12)) holds, the upper
1

bound for eigenfunctions of Laplace-like operators |[¢pl| 27y < Ch—*z i [BGTO7,
Theorem 3], [Tacl0, Theorem 1.7] together with Cauchy-Schwarz give
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k—1
h2

/ 1Aw¢hd‘7H‘ <
o

k-1
<hz

k—
4 140py(Be)(w ¢h)d0’H‘ + th ||w¢h||L2(g) 10pr(1 — 55)*1/1”1;2(1;()

k—1
<hz

| (4= 0a)0m(E won)dorg| + 15| [ 6a0m(B)wendoy] + oc(1)
= Typ+Top+o0:(1). (2.13)

Remark 2. Note that in fact, when k£ > 1, the estimates from [BGTO? Tacl0] show
that ||gnll 2y < C’h ~1 can be improved to 100l p2(y < Ch™ 2 if k> 2 and

||¢hHL2(H < Ch (logh 1/2 if k = 2. Therefore, when k > 1, we may allow A
with boundary having higher box dimension than the upper bound requested.

Next, note that ||Opp(8)(w ¢n)ll 27y = O(h%) and apply Cauchy-Schwarz to
obtain

k=1
Tip < 14— ¢A||L2(H)h 2 [|Opp(B:) (w ¢h)||L2(i]) < (9,
for some C' > 0. Finally, to bound the second term in we note that

/ Opp(B:)(Yaw ¢p)doz| +o(1) = ‘/ Yawopdog

and that by Theorem |§| with A = H and w € C°(H®) there exists Ch.i > 0 for which

Tgh—hQ +0()

limsupTZh < an/ pa ’w‘ f‘HPTH’ Ldo Osnrig =
h—0

Cose [, Tuly/FHyrl o, + COIf 3 gy 0]
7|'Hl(A)

The last equality follows from Cauchy-Schwarz and the bound |[1)4 — 1 AH L2 ) < 0.
This gives the stated result provided (2.12] - holds. We proceed to prove

To prove we first introduce a cut-off function x, € C°(H®) so that (1—x;)1a
is smooth and close to 14 and 3, is 1 in a neighborhood of dA. For this, fix 0 < § < 1
and cover A by (n — k)-dimensional cubes Q;;, C H°, with 1 < i < N(h), and side
length h9 with disjoint interiors. This can by done so that

log N (h
limsupL()

msup o = dimpex(0A).

We decompose
(X = Opn(B2)) L all 27y = 11 = Opn(B))* (1 = xa)lall 2
+ 111 = Opr(B)) xnlall g2y (2:14)

We bound ||(1 — Oph(ﬁa))*xhlAHLz(H) using that 1 — Opp,(3:) is L?-bounded and that
Xrla has compact support. We proceed to bound ||Xh1AHL2(g)- Cover each cube
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Qi.n by 2"~k open balls B; j, of radius ho. Let Xi.h € C°(Bin; [0,1]) be a partition of
unity near A subordinate to B;; and define xj; = Zf\;(lh ) Xin- Then,

Xn = 1 in a neighborhood of 9 A, suppxp C {x € H: d(x,04) < 2h5},
105 xn] = Oa(h71709). (2.15)
Moreover, since the volume of each cube Q); , is R("=k) there is C' > 0 so that
||Xh||iQ(g) < CN(h)hé(n—k) < O S (n—k—dimpey (9A))
It follows that
* 3 (n—k—dim
(1 = Op(B))" XLl pa iy = O (B3 Htmeesl04). (2.16)

On the other hand, the function (1 — xz)14 = (1 — xp) satisfies the bounds ([2.15]).
In particular, putting ¢y, = 1 — xj, in Lemma [12| below, for § < 1,

11 = Opn(Be))" (1 = Xn)Lall oo (1) = Oc(R). (2.17)

Combining (2.16]) and (2.17)) into (2.14)), and taking 0 < § < 1 sufficiently close to 1,
proves (2.12)) as claimed.

O
Lemma 12. Suppose that ¢y, € C°(H®) satisfies (2.15) for some 0 < § < 1. Then,

(L = Opn(B))*Ynll oo 71y = Oc,6(h).

Proof. We work in Fermi normal coordinates (z’,2”) so that 2’ is a coordinate on H.
Integrating by parts with

1 = / = / /
Ly = ' — 2|2 + [€/]2 Zgthy; + Z(l‘] o yj)thé- )
7j=1 j=1

relation ([2.15)) gives
(11— Oph(ﬁa))

27rh” k//

(27rh (2rh)nFk // LN (1L = B, €)Y dy de’

_ OaN(hk n+N(1- 6)

)

:—\

@V (1~ By, &) (n(y))dy de’
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2.4. Localizing near bicharacteristics: Proof of Proposition Throughout
the proof of Proposition [I0] we will need the following lemma. Since it is a local result,
we state it for functions and operators acting on R™. We write (x1,#) € R x R*~! for

coordinates in R™ and (&1,&) for the dual coordinates.
Lemma 13. Let k = /ﬁ(:cl,iu,g) be a smooth function with compact support and fir
po € T*R™ with

p(po) #0  or  O¢p(po) # 0.

Then, there exists Co, Ty > 0 and a neighborhood V' of pg so that for all 0 < T < Ty
the following holds. Let U be a neighborhood of supp k and b € C°(T*R™) with

U efp=01n0)c{p=1}. (2.18)
[t|<T

Let x € C*(V), x € CX(T*R"™) with x = 1 in a neighborhood of supp x, and q =
q(x1) € C®°(R; S®(T*R"1Y)). Then, there exists C > 0 so that the following hold.
If p(po) # 0, then

10P1(0)Opn (k) OPh(X)bnl L3 12 < ClIOPR(X) Pnl| L2 +O(h™) | dnll2-

If p(po) =0, then
sup  [|[Opn(q)Opn(k)Opn(X)Pn(x1,)ll 2 <
|1]<%10g, p(po)]
< 4T |9, p(po) 2 101 (D) Opn(x)Opn (@) Prll L2
+ CoT=h ™| Opn(5)Opn(p)Opn(x)Opn(9)6nl 2 + Ch™ [Opn(X) Pon|
+ ChY2)| Opn(X)énllzz + O(h™)||dnl| 2

The proof of Lemma [13|is very similar to that of [Gall7, Lemma 4.3], although some
alterations are needed. For the sake of completeness we include the proof.

Proof. First, suppose pg € T*M is so that p(pg) # 0. Then, there exists a neighborhood
U C T*R" of pp with U C {p # 0}. One can then carry an elliptic parametrix
construction so that

Opi(q £ X)pn = Opn(€)Opn(X)Opn(p)pn+Oy oo (h7°) Ph, (2.19)

for all x supported in U and some suitable é. Therefore,

10p (g 5x)61(0,2")l| 12 < CllOPR(X) Ponll 2 +O(h™)|nll 12,

as claimed. We may assume from now on that

po € {9¢,p # 0} N {p = 0}.
By the implicit function theorem, for y supported sufficiently close to pg, and supp x C
fx=1} )
p(z, X (&) = e(x,£)(&1 — a(,))

with e(z, £) elliptic on supp x and & = (&1,&). In particular,
Opn(p)Opnr(x) = Opn(e)(hDz, — Opn(a)))Opn(x) + hOpp(R)Ophr(X)-
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Therefore,
(hDy, — Opp(a))w = f,
where we have set
w = Opy(X)Opn(q)Pn,
£ :=[Opn(e) " Opn(p)Opn(x)Opn(q) + hOpp(R1)Opn(x)Opw(q)]dn + O(h™)

and Opy,(e)~! denotes a microlocal parametrix for Opy,(e) near supp x. Defining
t
A(t, S, .i‘, hDj;) = / a(a:l, i’, hDi)da:l,
S
we obtain that for all s,t € R

i

w(s, &) =e”

>

- t .
Alt:s,EhDs) (¢ 7) — % / e nAESTIDE) () F)day.
S

Let 6 > 0 be such that

no| N

5 < glaglp(po)l < 5 inf {!3§1P($75)| s (z,6) € SUPPX} (2.20)

and ® € C°(R;[0,26~!]) with supp ® C [0, 6] and Jg ® = 1. Then, integrating in ¢,

w(s, &) = /q)(t)e—;LA(t,s,@,hDi)w(t,j)dt — ;L/
R

t .
0 / e~ nA@LSBAD) £ (00 T dt.
R s

Next, applying propagation of singularities, we claim that
Opn(K)w(z1, %) = /q)(t)Oph(ﬂ)e’Z;A(t’ml’j’hDi)Oph(b)w(t, )dt
R
- t . i
~ 1 o) [ O A 000p, ) (s, 2)asar P2V
R T1
+ Ru(21,2) + O(h™)|[¢nll 12,
with | R (21, %) 1o 2 = O(hH|Opn(X) Pl 12). Indeed, (2.21)) follows once we show
1T x T
that for any v € S°(T*M) supported on ¥ = 1 and 1 € [0, J]
1Opp(r)e #AELEERDD) (1 — Opy, (6)) Opp(v)dnll L2 <
CllOpn(X)Ponllz + O(h™)lgnllrz-  (2:22)
Let x. € C°(R; [0, 1]) be as in (2.1)). By the same construction carried in (2.19)) (which
gives that ¢y, is microlocalized on {p = 0}) we conclude
|Opy (k)e™ #AE@AERDE) (1 — Opy (b)) Opp (v) (1 — Opr(x=(p))dnll 12 <
Ce|Opr(X) Ponllrz + O(R)||dnllrz-  (2.23)
Therefore, to prove we need to estimate

|Opn(r)e™ FA@LEAD) (1 — Opy, (b)) Opn (v) Opn (x= (P)) bn 2
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Let ¢; denote the Hamiltonian flow of p(x,€) = & —a(x, €). Then, for (z,£) € {(z,€) :
Ip(z,&)| < Ce?} and |t| < 1, we have d(¢i(z,€),pi(z,€)) < Ce?. By (2.18), b is
identically 1 in a neighborhood of

U ¢:({supp s} n {p=0})
[t|I<T
and thus for € > 0 small enough on
U @:({supp s} n{lp| < Ce*}).
|t|<2T
In particular, since we assume that supp ® C [0,4] and 0 satisfies (2.20)), we have
1@(t)Opp(r)e™ w AT (1 — Opy, (b)) Opn(a) Opn(xe (P)) bl L2 = O=(h™) | 6nll 12

(2.24)
Together (2.23)) and (2.24) give (2.22). In particular, we obtain (2.21)) which, since

(1) <267,  and hence  ||®2 < 2572,

implies that for |z;| <9,

10pr(r)w(wy, )|z < 26~1/2(|Opn(b)wll 2 + Co6"*n | Opr () £ 12
+ ChH|Oph(R) Ponll 2 + O(h™) |1 dnll 2

To see this, we start by applying Cauchy-Schwarz to the first term in (2.21]) and use
that e~ wAE2LERD:) jg 5 unitary operator to get

To bound the second term in (2.21)) we apply Minkowski’s integral inequality, use that
the support of ® is contained in [0, ], and that |z1| < J to get

/R (1)0pi(s)e HAGEEND) Oy (oYt B)de| < |22 |0pn(x) [ Op (Bo)u] 2 -

2
L3 L2

t . N
/(I)(f)/ Opn(r)e™ wAEEERDL Opy (bo) f (s, )dsdt
R T

Ly L2

, ) 2 3
<| [ e ( / ( / 1[-5,5]<s>oph<n>e-iA(&t’zthf)oph(bo)f(s,f)ds) daé) dt
n—1
R R R I
< 1 5.1(5) 122 100 () 1 Opn(bo) .,
Now,

Opi(q)Opn(r)Opn(x) = Opn(k)Opr(X)Opi(q) + [Opr(q), Opn(K)Opr(X)]-

Therefore, since

I[Opn(a), Opn(k)Opr () on (21, )l L2 < Ch2 | Opn(X)énll 2 + O(h™)|6nl 12,
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we have the following L? bound for |z1| < § = %\8§1p(p0)]

10pA (%) O (x) O (@) dn(z1,-)ll 2 < 25~/ Opn(b)wll 2 + Cod"*h™" | Opa (b) £ 2

_ y 1 § ~
+Ch™ | Opu(X) Ponllr2 + Ch2||Opr(X)dnllrz + O(h™®)|Idnllrz  (2.25)
finishing the proof. O

The proof of Proposition [10| hinges on Lemma[14] below. This lemma is dedicated to
obtaining a gain in the bound for ||Op(B:)Opn(x)énll 2z by localizing in phase space
near bicharacteristics emanating from ¥, . The key idea is that microlocalization near
a family of bicharacteristics parametrized by H implies a quantitative gain in the L?(H)
norm. By decomposing ¢; into many pieces microlocalized along well-chosen families
of bicharacteristics, we are able to extract Proposition

Let Z: H — %, be a smooth section (i.e. =€ C* and Z(x) € T, M); where we
continue to write ¥, = {p =0} NN*H. Let x € CZ°(T*M) supported near pg € %, .

FIGURE 2. We show a schematic of Z(x), ¥, , and 7.(Z, R) for H a
curve and d = 3.

We choose Fermi coordinates with respect to H, (z1,Z,2’), so that H = {(x1,z) = 0}
and, making additional rotation in (x1,Z) if necessary, so that

|Hpre (po)| = O p(po) # 0.

Moreover, note that for u supported near zo we have ||lul[z2 < 2[|ul|p2(ar)-
For each (0,2’) € H in the projection of supp xy onto H define a vector-valued func-
tion a(z1;2')€ C®(R"*+1;R") so that & — a(z1;2’) vanishes on the bicharacteristic
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emanating from ((0,2"),Z((0,2)))). This is possible since we have chosen coordinates
so that

de,p(po) # 0,

and hence the bicharacteristic emanating from ((0,2’),Z((0,2)))) may be written lo-
cally as

Yo (=T Ty) = T°M, Yo (21) = (2(21527), 0213 27)) (2.26)
where T}, > 0 is small enough, and z, a are smooth functions depending on x. Indeed,
if we write v,/ (t) = (x(t),&(t)), we have that %xl(t) = O¢, p(7a(t)) which allows us to
use the inverse function theorem to locally write ¢t = ¢(z1) as a function of z.

To exploit the construction of the function a we further localize in phase space on
tubes of small radius R that cover supp(xlng). We define the tubes

TER = | al{@8 e, d(@) @2@) <R,  (227)
|t|<2T
where d((w,§), (z,Z(x))) describes the distance in ¥, NT,; M between the points (z, )
and (z,=(z)) (see Figure [2| for a schematic picture of these objects).
The spirit of the following result is similar to that of [Gall7, Lemma 5.2]. Lemma
is dedicated to showing that microlocalizing with x supported on 77 (Z, R) gives an
RF=1 gain in the bound for ||Opy(B:w)Opp(X)dnl 2 (#)-

Lemma 14. There exist Cy,j, > 0 depending only on n and k and ¢ > 0 depending
only on (M, g, H) so that the following holds. Let x € C°(T*M) supported sufficiently
close to po € Xy satisfy

Hyx = 0, on Ay 4,

where 0 <T < T\ and Ty is defined in (2.26). Let Z: H — X, be a smooth section.
Then for all0 < R < c and w € CSO(HO) z'f

supp(xlAH’T) C T,(E,R), (2.28)
then
k—1 2 R 2 -2
lim li h @) -w)O < Chp =7 vedp,
Jimg Tim sup 10pr(Bew)Opn(X)Pnll72 () < Cnk TalrH(po)l/A X wdp
(2.29)

where w € C°(T*M) is any extension of w for which Hyw =0 on Ay ... In addition,
if the assumption in (2.28)) is not enforced, then (2.29)) holds with R = 1 and C,,
replaced by a constant depending on (M, g, H,p).

Proof. In what follows we write  for the normal coordinates to H that are not xi.
With this notation x = (z1,Z,2’). As before, let ¢, . € CX(H) with

twe(2') =1 for 2’ € suppw, ;gr(l) tw,e = lsuppw-

Define also
ke(,6) = Be(2, € )xe(|(21, T)| ) taw e (2).
and W € CX(T*M) with
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. . . . _k
Since ¢y, is compactly microlocalized (see (1.6)), we have ||¢p| 27y < Ch™ 2, we bound

10ph(B=w)Opr(X)nll L2 (rr) < HOph(REUN)X)¢hHL2(H)+Oe(h¥) = ”UhHL?(H)"i‘OE(h%)'
for

vy o= e h @@ N Opy (D) g,
where a(z1;2') = (az(21,4"),. .., ax(z1,2')) and a is defined in (2.26). The reason for

working with this function vy is that

e~ w2 TN (WD, ) oy, = (WD, — ;) (Opa(k<ix)én),
for i = 2,...,k, and this will allow to obtain a gain in the L?-norm bound, since, as we
will see below, supr,(z r)na,,, Max; & — ai(z1,2")| < 3R. We bound |vp || p2¢py using

the version of the Sobolev Embedding Theorem given in [Gall7, Lemma 5.1] which
states that if £ > (k — 1)/2, there exists Cy; > 0 depending only on ¢ and k so that
for all @ > 0

k
lon (1, 27) | ee SCe,khl_kG&k_leh(xh L )||72 + oY I (ADS,) o (a, fE')H%g) 7
1=2

for all x1, /. Now, for all x1, Z, integrate in z’ to get

k
|vn (21, T, -)H%i/ < Cpph' ™ (akluvh(xh,)uii / +ak%*%ZII(hDagi)%h(mlv')HQL% ,> ,
y 122 x,r

In particular, setting (x1,Z) = (0,0) on the left hand side we get

k
lonl 72y < Cexh' ™" (alevh(Q ')H%; T oY (ADy,) on(0, )32 ,
y i:2 x,T
(2.30)
We will end up choosing « = R and ¢ = k.

Remark 3. Note that when k£ =1 (i.e. in the case of H is a hypersurface), estimates
on the derivatives are not necessary. In particular, since H acts as a single space-like
hypersurface in the energy estimates of Lemma we cannot hope to gain additional
powers of R in the L?(H) norm from better control on derivatives along H.

By (1.8) we may assume, without loss of generality, that Oz, p # 0 on supp k. N {p =
0}. We choose Fermi coordinates with respect to H so that

[Hpri(po)| = 9e,p(po) #0  or  p(po)#0.

Moreover, in these coordinates ||ul|z2 < 2||ul[z2(pr). Hence, we will apply Lemma
with k = k. and x (here we shrink the support of x if necessary). In order to apply
the lemma, we note that

supp ke N {p = 0} C {(z,€) : |z1| < 3e, [€'] < 3¢, p =0},
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and define b, € C2°(T*M;[0,1]) so that
eb.=1 on |J @:({(z,6): [(x1,2)] <3¢, [¢'| <3e, p=0}),

[t|I<T/3

esuppb. C | @i({(z,€): [(z1,2)] < de, [¢] <4, |p| < 2¢}).
t|<T/2

(2.31)

We apply Lemmawith k = ke and x (here we shrink the support of x if necessary).
Next, let 7, be an extension of ¢, off of ¥, .y SO that Hj,t, . = 0 in a neighborhood
of b. = 1. We do this as in Lemma @ using that Hy, is transverse to ¥, to solve the
initial value problem.

Next, we choose g to obtain a gain in the L?(H) restriction norm related to R. Let

Ty = T‘aglp(po)‘.
Applying Lemma [13| with k = k., X, b = Ly b, and ¢ = 1, we have

_1
th( )HL2 o < 8T902 ”Oph(zw,sbswx>¢h‘|L2(M

+ CoT2h™" | Opp(Tuw,cbe) POPh (@) énl 12(ar) + 0e7(1)

with Cp > 0 independent of 7. Here we have used that in our coordinates [ul[z2 <
2lull 2 (ary-
Let ¢ with 2¢ > k — 1 and define

Qi = (hDy, — ai)f and Qi = Opn(q:).

In particular, ¢; = (& — a;)* + O(h). Then, Lemma |13| gives that there exists Cy > 0
independent of T" so that

|(hDg,) vn (0, )| i, < 128T,;,%||Op(zw,aba)0ph(wX)Qi¢hHLQ(M
+ CoT2 ™| Opn (7s.cbe) POP(ix)Qichn 12 ar) + 0=.7(1).
Applying gives that for any o > 0
B Opn(B-w)Opn (X) dn | 72 i)
< Cppa ( p()l”Oph(Lw ebewx)nllz2(ap) + 2 CET O (fw,ebe )POPh(@X)QShH%Q(M))

+ Cp ot Z T 1 Opn (s b2) Opi (X)) Qihn |2 s
=2

+ Cp a2 10 QZCOTHOph(Lwa <) POpw(0X)Qidnl72(ary + 0o 7(1). (2.32)
=2

Now, we use that H,(wy) = 0, P¢p, = o(h), and

PO (iX)n = Opnix) Pén + - Op (Hy(i)n + Ops (7).
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In particular, since p is the defect measure associated to {¢}, we obtain

hr]]la sgp hF= 1H0ph(55)0ph(Xw)¢hHL2 <
H

ey *Mzieb?(T L2 o+ CRT | () )y

T Cypak=2 12 / 2 B (TN + CIT|Hy(ixq:) 2.

Next, we observe that by (2.31]) and the fact that 0 < b? < 1, we have

th b <w %1 D
£=0 suppw

Sending ¢ — 0 and using Hj(wx) = 0 on A, (together with u(7T*M) = 1 to apply
the dominated convergence theorem) we have

hmhmbuphk H1Opn (B-w)Opr(X)dnllZ2 () < Cona® Tyt / X*udp
e—0 h—s A

H, T

k
+ Cppah 21 Z/ X0 (Tt qf + CET | Hpgil)d.

(2.33)
Next, assume that supp(x1a,,.) C 7,(E, R). By [Gall7, Lemma 3.1, where G is

used to denote exp(tHp) = ¢,

sup  max|& — ai(z1,2")| < 3R. (2.34)
TT(E,R)HAH,T ?

Hence, since Hy,(& — ai(x1,2")) = 0 on vy,

sup | Hpqi| < CR’.
TT(E,R)HAHT

Furthermore,

sup || < (1+ C8)R" + O(RY)
TT(E,R)HAH,T

Thus, taking 7" small enough, we obtain from (2.33|) that

lim lim sup 7! HOph(ﬂgw)Oph(x)ngh||%2(H)
e—=0 p_sp

< CE,kTp_Ol/ XQwQ(ak—l + O[k‘—QK—lRQE)d’u“
A

H, T
Choosing o = R and fixing ¢ = k gives (2.29). 0
Remark 4. To see that the conclusion in Remark [1| holds, observe that the estimate

in (2.33) holds for Hy = Hy(h) as long as %,  and ¥, are o(1) close. That is, as
long as

sup{ds(p,p1) 1 p € 5y, p1 € Xy} = 0(1),
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where we continue to write ds for the distance induced by the Sasaki metric. In
particular, it is enough that H and Hy are o(1) close in the C* topology. That is, if in
local coordinates H = {(2’,0)}, then Hy(h) = {(2’, fn(z’)} with

[fnllzoe + [V fnllzee = o(1).

Indeed, the same arguments apply to Hy with ¢, and w. adapted to H;. Then, when
evaluating the limits in (2.33), the fact that X, = and X, are o(1) close implies that
the right hand side converges as claimed to an integral over Ag 7.

We now present the proof of Proposition

2.4.1. Proof of Proposition Let x € C2°(T*M) so that Hyx = 0 on A, for
some T > 0. Also, fix w € C*(H).
For all § > 0, we can find (z;,7;) and (25, R;) with j =1,... K(J) so that if we set

Uj = {(x,&) : € B(zj,rj), £ € B(Ej(w),Rj)} C %y, and U=1\JU;

=

1

j
where B(xj,7;) C H and B(Zj(z),Rj) C {{ € NjH : p(z,§) = 0} are balls of radius
r;j and R; respectively, then

supp(xly, ) C U,

and
K

Y o, (U) < oy, (supp(xls, )) +3. (2.35)
=1

Let x; be a partition of unity for U subordinate to {U;}. Apply Lemma to obtain
the flow invariant extensions
X;j € CZ(17M;[0,1])

so that

(1) Hyxj; =0 on AH,T’

(2) (suppxjla,, ) C Uper e:(Uj) C T (55, RBj),

(3) {z: (2,€) € (suppx;lrym)} C By, rj),

K _
(4) S5, x5 =1 on Uper ¢i4),
(5> 0< Zszl Xj < 1 on AH,T'

Note that, since H,x =0 on A, ., we have
supp(xla,,) = |J G'(wpxls, ) |J G'W).
[t|<T [t|<T
Therefore,

K
supp (1 — Z)@) Nsupp(xla, ) = 0.
j=1
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By Lemma [14] we conclude

lim hmsuph 2 / Opp(Bw )[Oph<1—ZXj>Oph( )qﬁh}daH =0.

e—0
h—0 j=1

We then have

hmhmsuph 2 ‘/ Opp(Bw)[Opr(x )qﬁh]daH‘

=0 ho

= hmhmsuph z /Oph Bew [Oph(ZXg>Oph( )qﬁh}daH .

=0 h0 =

Now, to recover the spatial localization we introduce ¢; € C°(H) with suppv; C
B(zj,2rj) and

wj(x,)Xj(Oax/7£) = Xj(ovx,a§)7 (wl?g) € T;IM
Then,

10Pk (X)) én | 20y = 195 0pn () Bl 2 ary + O(B'F).

In fact, on R? with the standard quantization, we have [(1 — 1;)Opp(x;)on]ln = 0.
Hence, the above estimate follows from the fact that quantizations differ by Or2_,12(h)
together with the standard restriction estimate for compactly microlocalized func-
tions [Zwol2, Lemma 7.10].

In what follows we bound [|Opp(B:)[Opn(X;x)#n]l| L2(mr) using Lemma [14f applied to
x;jX- This can be done since Hy(xx;) =0 on A, .. Lemma (14| yields that there exists
Cy.k > 0 depending only on k and p; € (B(x;, 3r]) x B(Z(zj),3R;)) NY,, so that, for
any w € C(T* M) extension of w with Hyw =0 on A, .., and T),, := T|0¢,p(p;)|,

hmhmsuph 2 ‘/ Opn(B:w)[Opr(x )(;Sh]daH‘

e=0 ho

<hmhmsuph z lelsuppw]HL2 Y0P (B=w)[Opn (xix)Pnlll 2 (m)

e—0 h—0 =1
K 1/2
< Chk Z ||1supp¢jHL2(H) (Tp_leé?l/A XJX deAL)

1/2
X5x w2du>

j=1 H,T
K n—k k=1
<Gk ) 17 Ry (T/le/
7j=1 AH,T
K 1/2 1/2
< Chk Zr?_kR;“_l / ZXJX wldu . (2.36)
j=1 HT 7j=1

Now, note that

(Uj) = exear FRET + OGR! 4R RE)

[0
X:H,p J
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Thus, for r;, R; small enough

K K
Zl r;?—kR;‘?—l < cnk z; Oy (U;) < cn [O’ZH,p (supp Xle’p) + 5} (2.37)
j= j=

where we use (2.35)) in the last inequality.
Next, observe that by continuity of |Her\_1 on X, ,asrj, R; =0,

K
2.2 -1 2 -1
> XX 1y, sup [Hpra| ™' — x| Hyra|
- U;
Jj=1 J
pointwise and the dominated convergence theorem implies

K
Tp—jl/A Z)@)fﬁﬁdu —>/E X2w? | Hyrg |~ dpy, . (2.38)
H,p

HT j=1

Using (2:37) and (238) in (230), yields
/H Ophwaw)[oph(x)th]dalf‘

. . k-1
lim limsup A 2
e=>0  p0

1/2
1/2
1/2 _
< C”ak?cn{k‘ [UZH;; (supp Xlng) + 6} </ X2w2|Her| 1d,uH + 5) .
: 7 S
Since § > 0 is arbitrary, this completes the proof of the proposition.

g

3. PROOF OF THEOREM [

While Theorem (3] is only stated for Laplace eigenfunctions, in this proof we work
with operators P as in Theorem (7| and ¢, compactly microlocalized quasimodes (see
and ) When the codimension of H is equal to 1 and %, = is compact we can
include an estimate on the normal derivate in all of our results. In particular, for v a
unit normal to H, we may replace all instances of [ 4 Prdop with

’ /A qﬁhdaH‘—i-‘ /A hD,,qﬁhdaH‘.

To see this, observe that if ¢y, is a quasimode for P€ ¥ (M) with real p so that H
is conormally transverse for p and {¢p} is compactly microlocalized, then letting D,
denote a vector field which agrees with the normal derivative on H and is extended
smoothly to M we obtain

hDyPop, = orz(h||én| L2)-
In particular,
PhDyén + [hDy, Plon = op2 (h|gp|2)- (3.1)
Let x € S°(T*M) have x = 1 in a neighborhood of N*H and

suppx  {(2.6) € 7M1+ |(w(a).€)| > 51 ).
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Then, there exists £ € ¥ (M) so that
Opn(x)[hDy, P] = hERD,
and in particular, applying Op(x) to we find
(Opr(X)P + hE)hDydp = orz2(h|¢nllL2)-

Now, o(Opp(x)P+hE) = x p. Therefore, since x = 1 in a neighborhood of N*H and H
is conormally transverse (see (|1.8))) for p, H is conormally transverse for x(z, §)p(z, §).
Thus, Theorem [6] applies and gives

lim sup
h—0t

/ ’U)th,¢hdUH
A

< cn,k/ |\ F s | do,
T (A)

H,p ’
where
BHxp = dezHJ, + An
with A\gy L O and [ is the defect measure for hD,¢p. It is straightforward to see
that
A=), n,
and hence (for ¢gp > 0 chosen small enough)

[irxp = |<V(37)a€>’2/~LH,p = ’<V($),§>\2(fdaZH’p + A, )

In particular,

lim sup
h—07+

/ wwmhdw\wn,k / jwly/ FIHpra (), €)dos,,
A 5 (A)

< é/ woly/FI Hor Yo,
Tt (A) : SRy
since X, is compact and f is supported on X, .
Remark 5. Note that the constant C' now depends on supy, [(v(),&)]-
P

This proves that the analog of Theorem [6] holds for AD,¢;,. One can then obtain
an analog of Theorem [7] for hD, ¢y, which in turn implies Theorem

4. PROOF OF THEOREM

We prove Theorem [2| by contradiction. Suppose that there exists a sequence {¢p, }
and ¢ > 0 such that

1—k
‘/Acbhmdaﬂ > chn? . (4.1)

Then, we may extract a subsequence (still writing it as ¢ ) with defect measure
p. Let p,, be the induced measure on SN*H and )\, be the measure on SN*H with
Ay L and so that

O:SN *H

e = fO:S'N*H + Ay
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for f € L'(SN*H, 0., )-

/ | \fd Osn+mr :/ | \[d Osn+mr / . | \[d Osn+mr
75 (A) RpNmy (A) RNy (A)
:/ . fd Osnxmr ) (4'2)
RGNy (A)

where the last equality follows from the fact that oy., (Rg N 75 (A)) = 0. Also,
since \, L o,.,, there exist V.W C SN*H so that A\, (W) = o,.,(V) = 0 and
SN*H = V U W. Next, we use that Lemma (15| below gives Ly (R%;) = 0. It follows
that

1
2
_ 1
/ \[d Ouniry < (/ » fdasN*H> = u, (R N 7TH1(A) NW)z =
R?{QTK‘H (A4)

(4.3)
Combining (4.2) and (§ gives f P Vfdoy., = 0, and so Theorem [7| gives a
contradiction to 1}

Then,

g

Lemma 15. Let H C M and suppose that {¢n} is a sequence of eigenfunctions with
defect measure . Then,
g (Rir) = 1 (SN'H).

Proof. Let B C SN*H be an open set and for § > 0 define
Bos = U G'(B).
—26<t<28

Observe that the triple (S*M, u, G!) forms a measure preserving dynamical system.
The Poincaré Recurrence Theorem [BS02, Lemma 4.2.1, 4.2.2] implies that for u-a.e.

p € Bys there exist & — 400 so that Gt’jlt(p) € Bss. By the definition of Bsg, there
exists s with |sf — | < 20 such that Gon (p) € B. In particular, for p-a.e. p € Bas,

ﬂUGt )NB#0, and ﬂUG )N B # 0. (4.4)

T>0t>T T>0t>T

We have used that the sets U;>7G*t(p) N B are non-empty, compact, and nested as T'
grows.

We next show that holds for p,,-a.e. point in B. To do so, suppose the opposite.
Then, there exists A C B with p, (A) > 0 so that for each p € A, there exists T > 0
with

UGwnB=0 o |JG T p)nB=0 (4.5)
t>T t>T
We relate p and g, using [CGT18, Lemma 6] which gives

1l Bys = gy dt.

U ¢«

—0<t<o

Then, if we let
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we have
H(A5) = 20 - 1y (A) > 0.

Then As C Bsygs, and for all p € As there exists T > 0 so that holds. Since this
implies that does not hold for a subset of Bys of positive p measure, we have
arrived at a contradiction. Thus ) holds for p,, a.e. point in B.

To finish the argument, let {Bk} be a countable basis for the topology on SN*H.
Then for each k there is a subset By, C By, of full i, measure so that for every p € By,
relation ) holds with B = Bjy,.

Let Xk = Bk U (SN*H \ Bg). Next, note that Ny X C Rpy. Indeed, if p € Np X
and U C SN*H is an open neighborhood of p, then there exists £ so that p € By C U.
In particular, since p € X, we know that p € By and so (\pwoUssp G1(p) N By # 0.
We conclude that p returns infinitely oftern to U.

Noting that X}, = Bj, U (SN*H \ By) has full p,, measure, we conclude that N Xy C
Ry has full measure and thus p, (Rg N SN*H) = ,, (SN*H) as claimed. O

5. RECURRENCE: PROOF OF THEOREM [4]

This section is dedicated to the proof of Theorem [l Recall that Ly is defined
in (1.4)) and denotes the loop set. In Section we prove the theorem for assumptions
showing that oy.,(Lr) = 0. We then use the fact that for H = {z} a point,
SN*H (Lyg) = 0 to prove case In Section we present a tool for proving that

Oy (R MNA)=0for AC SN*H. In partlcular we prove that it suffices to show that
t +— vol(G*(A)) is integrable either for positive times or for negative ones. In Section|5.3]
we show that for manifolds with Anosov flow we have oy, (Ru) = o4y (R N Am),
where Ap is the set of points in SN*H at which the tangent space to SN*H splits
into a direct sum of stable and unbounded directions. A similar statement is proved
for (M, g) with no focal points, but with Ay instead of Ag. In Section we prove
Theorem 4| for assumptions @, and [F| by taking advantage of the fact when (M, g)
has Anosov flow we have some control on the structure of Ay and, in some cases, on
the integrability of t — vol(G'(Apy)).

5.1. Proof of parts [A| and (B} .. In this section we prove that o,.,(Rpg) = 0 for
(M, g) and H satisfying the assumptions in parts [Al . and . B|in Theorem

Proof of part |A] .. For this part we assume that (M, g) has no conjugate points
and H has codimension k£ > ”—H. The strategy of the proof is to show that the
set {p € SN*H : 3t > 0 s.t. Gt( ) € SN*H} has dimension strictly smaller than
n — 1 = dim SN*H, and hence has measure zero. We prove this using the implicit
function theorem together with the fact that, since (M, g) has no conjugate points, we
can control the rank of the exponential map.

Note that, since (M, g) has no conjugate points, for each point x € M the expo-
nential map exp, : T, M — M has no critical points. In particular, if we define the
map

¥R x SNEH — M, Yo(1,€) = 7GY(x,€),
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with 7 : T*M — M the canonical projection we have for all (¢,£) € R x SN}H
rank (dy");¢) =n — dim H.

Remark 6. Indeed, note that the fact that exp, : T, M — M has no critical points
implies that TM \ {0} > (z,€) — 7G*(z, &) = nGEl(z,£/]€|) has no critical points.

This implies that if we define
Y :R x SN*H — M, U(t, p) = G (p),
then its differential
(dV)tp) * Tie,p) R X SN*H) — Tre () M

has
rank(dy) ) > n —dim H =k,

for all (t,p) € R x SN*H. Note that d) YH) ={(t,p) e Rx SN*H : G'(p) € S;;M}.
Let
f’LECOO(M7R) :(f177fk)M_>Rk

F7Y0) = H, {df;}*_, linearly independent on H.

The composition F o : R x SN*H — R* satisfies (F o1)~(0) = v ~'(H). Note that
since rank(di)(; ,) > k, we have

rank(d (F 0 ) (t,p)) = rank(dF )y ,) + rank(dy) ) — dim M > 2k —n
for (t,p) € (F o4)~1(0). Since by assumption k > 2L, we have
rank(d(F o) ) > 2.
Moreover, since the geodesic flow is transverse to H along N*H, d(F o 1)« ,)0¢ # 0
=0

(5.1)

7

whenever G*(p) € SN*H. Indeed, suppose that G*(p) € SN*H and d(F o), )8 .
Observe that di ) (9;) = drH,(G*(p)), so that d(F o ) ,)(0;) = dnHy(G*(p))(F)
and, lifting I to a function on 7" M independent of the fiber variable, d(F o),
H,(G't(p))F # 0 by the assumption that {(df;), : j=1,...k} define H an
SN*H.

Applying the implicit function theorem, we see that given (o, po) € %~ '(H) with
G'(pg) € SN*H, there exists a neighborhood U of (¢, pg), an open neighborhood
V C Rf of 0 for some ¢ < n — 2, and smooth functions s : SN*H — R, f: V — SN*H
with s(po) = to, f(0) = po, so that

Uny ' (H) ={(s(f(a)), f(9)) : g€ V}.

In particular, since dimV < n —1 = dim(SN*H),
[o AN (,0 € SN*H : there exists t such that (¢, p) € U and G*(p) € SN*H) =0.

Q.

o
—~
>

m

In particular, by compactness of [0, j], for any j > 0,
oS- (p € SN*H : there exists ¢ € [0, j] such that G*(p) € SN*H> = 0.

Taking the union over j > 0 we find
Osn*mr (Ln) =0.
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In particular, since Lz D Ry, this implies that oy,., (Rg) = 0. O

Proof of part Now, suppose that (M, g) has no conjugate points and K C M is
a geodesic sphere. Then there exists p € M and t € R so that K = Hy:= 7G'(SN*H)
for H = {p}. Applying the result in Part [A| gives that Rpu) = 0. In particular,

by Lemma (16| below we conclude o,

o
o, (RH,) = 0 as claimed.

g

Lemma 16. Suppose that H C M is a submanifold and for t € R define Hy :=
7GY(SN*H). Then, for any t € R so that Hy is a smooth submanifold of M having
codimension 1

(Ru) =0 if and only if osn,(Ru,) = 0.

Proof. First, observe that if H C M is a submanifold, then for t € R and H; :=
7GY(SN*H), we have

(o
Hp

SN*H; = G*(SN*H) LU G~ (SN*H)
whenever H; is a smooth submanifold of M. To see this, observe that since H; has

codimension 1, for each zo € Hy, there are exactly two elements in SN H; and hence
these elements are given by

Gt(a:, §) and G*t(a:, =£)

for some (z,£) € SN*H. Note that Ry, = GY(Ry) UG (Ry). Therefore, since
G*': SN*H — SN*H, is a diffeomorphism onto its image, d,.,,(Rg) = 0 if and only
if osn+m, (Ru,) = 0. ]

5.2. A tool for proving that o ., (Rg) = 0.

N *H

Given X C S*M submanifold, we write vol(X) for the volume induced by the Sasaki
metric on X (see (1.3))). This section is dedicated to showing that o,,., (Ry NA) =0
whenever the map ¢ +— vol(G%(A)) is integrable either on (0,00) or on (—o0,0). We
will later use that the integrability of this function can always be established if (M, g)
has Anosov flow and A is a set of points in SN*H at which the tangent to SN*H space
is either stable or unstable.

We start with a lemma where we prove that for any p € SN*H the tangent space
T,(SN*H) has no component in the direction of RH), with p = |£]y(,)-

Proposition 17. Let (M, g) be a Riemannian manifold, and let H C M be a subman-
ifold. For all p € SN*H let wp, : T,(S*M) — RH,, be the orthogonal projection map,
where Hy, is the Hamiltonian vector field associated to p(x,§) = |§|g(). Then,

7, (T,(SN*H)) = {0}.

Proof. Let (2/,2"”) be Fermi coordinates near H where we identify H with {(z/,2") :
2" = 0}. Writing (¢, £") for the associated cotangent coordinates,

N*H = {(x’,o,o,g”) 2 € H, ¢ ¢ Rk}.
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This implies that, if p = (2/,0,0,£") € N*H, then
Ty(N*H) = {(v,0y) + (w, Den’) : v € R"F 1w € RFY,
while, for (z,£) € SN*H, p(x,&) = |£|g(z) = 1§"] and hence
(Hp) (z,6) = (&", 0z) (z,§) € SN'H.

Now, 0, is orthogonal to J,s. Thus, since O~ is vertical and H), is horizontal RH), is
orthogonal to TSN*H. U

Lemma 18. Let A C SN*H.

If / vol(G'(A))dt < oo, then gy, (L5 NA) =0. (5.2)
0
0
It / VOl(GH(A))dt < o0, then ay., (L1 N A) = 0. (5.3)
In particular, either assumption implies that o ., (Rg N A) = 0.

Proof. Suppose ([5.2)) holds. From now on, given p € SN*H and t € R, we adopt the
notation

Ji(p) := dG'|p (sn+m) : To(SN*H) — dG'(T,(SN*H)). (5.4)
Note that
/ | det Jy(p)] deyoy (0) = vol(GH(A)). (5.5)

We claim that there exist constants C,d > 0 so that for any Borel set A C SN*H
and T' € R,

T+6
- (U G'(A mSN*H> < C/ |det J7(p)| dog.,, (p)= Cvol(GT(A)).  (5.6)
t=T

We postpone the proof of claim (5.6) until the end. Assuming (5.6 for now, we
note that since t — G* is a smooth group, for § > 0 small enough and t € [T, T + 6],

| det Ji(p)| < 2| det Jr(p)|. (5.7)
Hence,

Z O (P € A2 G7H(p) € SN*H, for some t € [nd, (n +1)d]) <

n>0
<cz/ [ det Jus(p)] ooy (0)

n>0
<206™ / / | det Ji(p)| dog.,, (p)dt < oo.
Therefore, by the Borel-Cantelli Lemma,
p€A: G *p) € SN*H for infinitely many ¢ € [0,00)) =0
L7 NA)=0. The case of is identical.

SN*H (

and in particular, o, (
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In order to finish the proof of the lemma we need to establish the claim in (5.6). We

proceed to do this. Fix ¢ > 0. Let {Ai,s}fv:(f) be a partition of A C SN*H into sets of
radius less than e.
Fix coordinates, y on A;.. Then there exists p; € A;. so that for all p € A;,

G'(p) = G'(p1)) + dG'(y(p) — yi(p)) + O(e?)
= G'(pi) +dG' (mi(y(p) — yi(p))) + O(<?)
where m; : T,,,(T*"M) — T,,(SN*H) is the projection operator. In the last line, we use

that since y,y; € SN*H, y — y; = vd(p, pi) + O(d(p, pi)?) where v € T,,SN*H.
Therefore, using (5.5))

T+6

O:S’N*H( U Gt(Ai,8)> <
t=T
sup | det Jy(pi)| - Oy (Aie)(1+ O(€)) sup #{t € [T, T + 6] : G*(p) € SN*H}.
te[T,T+] pEA, .

Now, Proposition |[L7| together with the compactness of SN*H give that for § > 0 small
enough and all p € A,

#{t € [T, T+6): G'(p) € SN*H} < 1.
In particular,

(U C@) <P U ¢0)

te[T, T+4) te[T, T+9]

<3 sup [det Ji(p)] - Oy (Aie) (14 OE))
id te[T,T+4)
<> 20 det Jr(pi)] - Ogey (i) (1 + O(e))
2%
where in the last line we use (5.7)).

Sending € — 0, since dG! is continuous, the Dominated Convergence Theorem shows

that
T+6

o (U G'() < /A 2| det J1(p)| ey, (5.8)
t=T

as desired. O

5.3. Manifolds with no focal points or Anosov flow. This section is dedicated
to the proof of Theorem [8] We need a preliminary lemma.

Lemma 19. Suppose that py € SN*H with G*(pg) € SN*H for some ty > 0. If there
exists w € T, SN*H with dG'*w ¢ T, SN™H @ RHy, then there exists Uy, p, C
R x SN*H a neighborhood of (to, po) such that

oS- (,0 € SN*H : there ezists t with (t,p) € Uy, o and G'(p) € SN*H> =0.
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Proof. Define
YR x SN*H — S*M, Y(t,p) = G (p),
so that
dq/}(t,p)(’r? w) = THP(Gt(P)) + thpw
and let f1,...fn € C®(S*M;R) be defining functions for SN*H near G (pg). In
particular,

SN*H = ﬂ{fz = 0}, {df;} are linearly independent on SN*H.
i=1
Finally, let F' € C*°(S*M;R"™) be given by
F=(fi,...,fn)
Note that G*(p) € SN*H if and only if (t,p) € (F o)~(0). Now, since dGw ¢
Ttop, (SN*H ) & RHy,, Proposition (17| gives that the vectors
(F © zﬂ)(to p() (0 W) - dFGtO (dw t() p()) (O W))
and

(F © zﬁ)(to £0) ( ) dFGtO (dw (to,p0) (7—7 ))
are linearly independent. We then have that

rank(d(F o ¢)(t0 p0) ) > 2.

By the implicit function theorem, there is a neighborhood U of (to, po), a neigh-
borhood V' € R of 0 for some ¢ < n — 2, and smooth functions s : SN*H — R,
a:V — SN*H with s(0) = tg, «(0) = po, so that

UNy~(SN*H) = {(s(alqg)),a(q)) : g€ V}.
In particular, since dimV < n — 1 = dim(SN*H),
Tonps (,0 € SN*H : there exists ¢ such that (¢, p) € U, G*(p) € SN*H) =0,
as claimed. O

Remark 7. In fact Lemma [19 shows that the points p € SN*H near py which loop at
times near tg are contained in a smooth submanifold of dimension < n — 1.

Since it will be used frequently in this section, we recall the definition (1.17]) of an
Anosov flow: For all p € S*M,

T,(S™M) = E(p) ® E_(p) ® RH).

where E_, E, are stable and unstable directions as before. Moreover, there exists
C > 0 so that for all p € S*M,

dGt(v)| < Ce ¥ C|o] forve Ey andt — 400,
[dGt(v)| < C /€| forve F_ andt — —o0.

Recall also the notation Ny(p), N_(p) from (1.14), Sy, My from (1.15) and
Ny, Ag from (1.16]). Next we present a proposition in which we show that if (M, g)
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has Anosov geodesic flow, then for any compact subset K C SN*H\Spy there is a
decomposition of K, K = K+ U K~ and T sufficiently large such that if py € K*
and G'(py) € SN*H with either Fto > T, then there exists w € T, SN*H with
dGw ¢ Teu, poON"H & RHp. This will allow us to later use Lemma to prove
Theorem |8l We define the following functions m, my : SN*H — {0,...,n — 1}

m(p) == dim(Ny(p) + N-(p)),  mx(p) := dim N1 (p) (5.9)
We first show that continuity of E4(p) implies that m, my are upper semicontinuous.
Lemma 20. Let m,my be as in (5.9). Then m, my are upper semicontinuous.

Proof. We prove this for m4 (p) = dim(7,SN*H N E,(p)). Let p € SN*H and p; — p.
Suppose that limsup; m(p;) > m4(p). Then, without loss, we may assume that

dim(7,, SN*H N Ey(p;)) > dim(T,SN"H N E(p))
for all j. In particular, there exist {vij,...vp ()41} € E+(pj) N Ty, SN*H with
{vi,j}?fl(p )+1 orthonormal. Extracting a subsequence so that v; ; — v; € T,T"M,
j—)OO

we have, by continuity of E(p) and T,SN*H, that v; € E,(p) and v; € T,SN*H. In

particular, v; € T,SN*H N E4(p) and {vi}zrfl(p J*1 are orthonormal, contradicting the
definition of m(p). O

Proposition 21. Suppose (M, g) has Anosov geodesic flow and let K C SN*H\Sp be
a compact set. There ezist positive constants Tye > 0 so that if py € K, |to| > T, and

G"(po) € Blpo,e) N SN'H,
then there is w € T, (SN*H) with
dG" (w) ¢ Tito (po) (SN*H) © RH)p. (5.10)
Proof. Throughout the proof of this proposition we will use the norm induced by the

Sasaki metric on TT*M. Note, however, that any inner product norm suffices. Let
po € K. Since T,,(SN*H) # N (po) ® N_(po), we may choose

u € Tpy (SN'H) \ (N (po) @ N—(po)), [ulf = 1.
Now, let uy € E4(po) and u_ € E_(po) be such that
u=u; +u_.

Without loss of generality, we assume that u_ is orthogonal to N_(pp) and, since pg
varies in a compact subset of SN*H\ Ay, we may assume uniformly for pg € K that

M 7wy < flu-|| < Mug].
Since dG' : E_(pg) — E_(G'(pp)) is an isomorphism,
dim (RAG"(u_)®dG*(N_(py))) = 1 + dim N_(po).

Note that for m_ as in (5.9), m_ is upper semicontinuous and we may choose € > 0
uniform in py € SN*H, so that dim N_(G*(py)) < dim N_(pg) for all ¢ such that
G'(po) € B(po,e). For such values of ¢ we then have

dim (RAG'(u_)®dG"'(N_(po))) > 1+ dim N_(G*(po))- (5.11)
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Next, we note that span(dG'(u-), dG'(N_(po))) C E_(G'(py)). Also, note that
if dG'(w) € E_(G"(p0))\N-(G"(po)), then dG'(w) ¢ T (p)(SN*H). In particular,
relation ([5.11)) gives that there exists a linear combination

W¢ = a;u_ + e,(t),
with e_(t) € N_(pg), so that
710 (dG w0 | = 1 = [[dG'wi

)

where 7, : TGt(pO)(S*M) — Vi po 1s the orthogonal projection map onto a subspace
Vipo Of Tigi(pe) (S™M) chosen so that Tiep) (S*M) = Vi py @ Tit(pe) (SNH) is an or-
thogonal decomposition. If we had that w¢ was a tangent vector in Tige(,,)(S™ M),
then we would be done. However, since u_ is not necessarily in T (,,)(S*M) we have
to modify wy a bit. Consider the vector

po)

wy =a;u+e_(1),
and note that Wy € T, (SN*H). Then,
dG* (W) = dG*(wt) + a; dG* (uy).
By the definition of Anosov geodesic flow (see ), for all 6 > 0, there exists
T =T(6) > 0 so that
I(dG e )M <6, t>T.
Thus, since wg € E_(po) and ||[w¢|| < J, we have
o o7, t=T
Observe next, [Ebe73a, Corollary 2.14] that there exists B > 0 uniform in 7'S*M

so that for v € E,(p), and t > 0 ||dG'v|| < B|lv|. In particular, choosing § <
apllu-lllus |~ for t > (5, K),

- 1
172,90 (G )| > |71, (dG W) | = llae e, p (G 01 ) | > 3

Hence, there exists ¢ > 0 and T' > 0 (uniform for py € K) so that if G*(pg) €
SN*H N B(po, €) for some tg with |tg| > T, then there is w = Wy, € T),,(SN*H) so that

dG™ (W) & Tgro(py)(SN'H) & RH,. (5.12)
O

We now show that for manifolds with Anosov geodesic flow the set of points in
RuN[Sy \ Mp] has measure zero.

Lemma 22. Suppose that (M, g) has Anosov geodesic flow. Then

O:S'N *H

(La=nipe SN'H : T,(SN'H) E+(p)}> ~0

and
Govens (L3701 {p € SN'H - T,(SN'H) € E_(p)}) =0,

In particular, oy.,, (RH N [Sx\ MH]) =0.
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Proof. Observe that setting
A:={peSN'H: T,(SN"H) C E;(p)},
we have, using the definition of Anosov flow (|1.17))),

|det Jy(p)| < e (mDHC >,

fot Ji(p) defined in (5.4). It follows that
vol(Gt(A)) < O e~ (=D Cq (A,
and so

/OO vol(G*(A))dt < .
0

Therefore, the proof is complete by Lemma [I8] The E_ case is identical where we
integrate backwards in time rather than forwards. O

In what follows we write
ME = {p e SN*H : Ny(p) # {0}},
and note that
Ng =Sy U (ME ﬂ./\/l;{),
and
SN*H\ Ny = [SN'H\ (Su UMP)] | [SNH \ (Sg UMp)].

We now prove the analog of Proposition [2I] for manifolds with no focal points.

Proposition 23. Suppose (M, g) has no focal points and let K C SN*H \ (Sg U./\/lfl)
be a compact set. There exist positive constants T,e > 0 so that if pg € K, Ftg > T,
and
Gto (IOO) € B(p07 6) N SN*H7
then there is w € T, (SN*H) with
dG" (W) & Tgro(py)(SN'H) & RH,,. (5.13)

Proof. We prove the lemma for K C SN*H\ (SgUM;), the other case follows similarly
after sending ¢ — —oo rather than ¢ — oo.

Define C%.(p) C T,S*M as the conic set of vectors forming at least an € > 0 angle
with E(p). Since m is upper semicontinuous, E is continuous, and T,SN*H #
Ny (p) + N_(p), there exists € > 0 so that T,SN*H NC% (p) # 0 for all p € K.

Next, let pg € K. Since N_(pyg) = {0}, the upper semicontinuity of m_ implies
that N_(p) = {0} for all p € B(po,¢), after possibly shrinking . In particular, the
continuity of E_ implies that there exists § > 0 so that for p € B(pg,¢), the angle
between E_(p) and T,SN*H is larger than 0 (after possibly shrinking ¢).

We claim that for w € C (po)\{0}, there exists T'=T'(d,¢) so that for ¢t > T,

dG'w

dist(m , E,(Gt(po))) <. (5.14)

The proof of (5.14) is postponed until the end.
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To finish the argument we argue by contradiction. Suppose that for to > T', we have

G'(po) € B(po,e) and
dG" (T, SN*H) = Tgto (g SN H.

Then, using that T,)SN*H NC% (po) # 0, we conclude from the claim in applied
to some w € T,,SN*H N C%(po)\{0} that there exists v € E_(G'(py)) so that the
angle between v and % € Tigto(po)SN"H is smaller than 0. In particular, setting
p := G"(pg) € B(po,e) we conclude that the angle between T,SN*H and E_(p) is
smaller than 6. And this is a contradiction since p € B(pg, ). This concludes the
proof of the proposition once we have .

It only remains to prove the claim in (5.14). Let w € C%(pp)\{0}. Then we can
write

w = 71+ + v
with @y € Ei(po) and & € V(po), where V(pg) C T,S*M denotes the collection of
vertical vectors v € T,,SN*H with (v, Hp),, = 0 where g5 is the metric induced on
TT*M be the Sasaki metric. Now, since E;(po) N V(po) = {0} [EbeT3a, see right

before Proposition 2.7] and E,(p) is continuous, there exists ¢. > 0 depending only
on € > 0 small enough so that

- L.
Celltg || < flwll < —[lo]l.
Ce

For any e; € E_(G!(py)) we decompose
dG'w dG'i dG'v  dG'v dG'
[dG ] laG* [dGtw]| [[dGta]| 1dG*o]

and find e; € E_(G%(pp)) so that each term in the RHS has size smaller than §/3.

Note that since © is vertical, the Jacobi field through G*(p) with initial conditions
given by J(0) = (dG'%)" and J(0) = (dG'3)?, where ()" and ()" denote respectively
the horizontal and vertical parts, has J(—t) = 0 and hence, by [Ebe73al, Remark 2.10],
there exists Ty = T1(8) > 0 so that for G!p in a compact set,

dist (dG'5 /|| dG" o, E_(G(p))) < /3.

. (5.15)

In particular, for all ¢ > Ty, there exists e; € E_(G'(pp)) so that
dG'o 5
- 5.16
iy = < 5 510

Next, observe that by [Ebe73a, Remark 2.10], for all a > 0, there exists To = T ()
so that for all p, and [t| > T,

4G~ gl < e (5.17)

In particular, by (5.17)), given R > 0 there exists T3 = T5(R,e) > 0 so that for |t| > T}
and = € C% (po)\ {0},

ldG*2|l = R||=].
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Furthermore, by [Ebe73al, Corollary 2.14], there exists B > 0 so that for all ¢ > 0 and
all u € E+(p0)7

JdGul < Blul. (5.18)
In particular, setting Rs. := 3Bcz1d71, and letting [¢t| > T3(Rse, ),
t~ ~ ~
Gl | Blisl _ Bl _ 5 519)
[dG ][] ~ [[dG*w| — Rselw] — 3
On the other hand, for [t| > T3(Rsp, €),
dG* dG* 1 |ldGay | &
- = dG's|| — ||dGt < — < - 5.20
H [dG%]| — ||dGtw]| H TaGi 1460 = G wlll < S & = 3 (5:20)

Taking 7' = max ( T3(Rs., €), Th (6)) we conclude that the claim in (5.14]) holds after

combining (5.16),(5-19), and (5:20), into (5.15).
Ot

Now that we have introduced Propositions and we are ready to present
the proof of Theorem

Proof of Theorem (8, We start with the case in which (M, g) has no focal points.
Recall from Lemma [20[ that m, my from ([5.9) are upper semicontinuous. In particular,
the sets

SN*H\Sy = {p € SN*H : m(p) < n—1} and SN*H\M%E = {p € SN*H : m+(p) < 1}

are open, and hence SN*H \ (Sir UM?7;) are open as well. Thus, there exist collections
{K tft }e of compact sets
K C SN*H\ (Sg U M}), K C SN*H\ (Sg UMjp)
with
(K7) 1 Oy (SNH \ S U M),

O:S’N *H

Since
SNH\ (Sir U (Mj; " Mp)) = [SN*H \ (Sg UM | [SN*H \ (Su U M),

the proof of the theorem will follow once we prove that for any compact subset K+ C
SN*H \ (Sy U M%)

og(RyNK*) =0. (5.21)

We then proceed to prove ((5.21)).
Let T4 > 0 and € > 0 be the constants associated to K* given by Proposition

Since
rac [N U 4NN U )

m>0n>m m>0n>m
with
AL = {pGSN*H: G'(p) € B(p,e) for some t € [n,n—i—l]},

we have that (5.21]) is a consequence of showing that
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AN K*E) =0, (5.22)

Tnverr
for all n with Fn > T4
To prove let pg € A5 N K. Since G'(pg) € B(po, ) for some ty € [n,n+ 1],
and Fto > T, Proposition 23] combined with Lemma [T9 give that there exists Uy, 5, C
R x SN*H a neighborhood of (%o, pp) for which

O:S‘N *H

(p € SN*H : G'(p) € SN*H for some (t,p) € Uto,po) =0.

Since, K* is compact if A% is closed, A5 N KT is compact and we can cover [n,n -+
1] x (K* N AZ) by finitely many such neighborhoods and in particular,

T (p € SN*H : G'(p) € SN*H for some (t,p) € [n,n+ 1] x (KN A%)) =0
and hence ., (A5 N K*) = 0. Therefore, we have provided we show that A
is closed

We dedicate the end of the proof to showing that A is closed. To see this, let
{pj} C A5 with p; — p € SN*H. For each j let ¢; € [n,n + 1] be such that G% (p;) €
B(pj,e). By possibly taking a subsequence of times, we may assume that there exists
t € [n,n + 1] with the property that t; — t as j — oo. In particular, we have that
G'(pj) = G'(p). Then, the triangle inequality

d(G'(p), p) < limsup (d(p, p;) + d(pj, G (pj)) + d(G" (p;), G'(p))) < €

J—00

shows that p € A}, as claimed.
In the case that (M, g) has Anosov geodesic flow, we simply appeal to Proposition
in place of Proposition [23| to show that, for K € SN*H \ Sy compact,

KQRH):O.

oo (
and hence using that SN*H \ Sy is open and approximating SN*H \ Sy by compact sets,

we see that oy, (Rg\Sg) = 0. Then, applying Lemma Oyery (RENSH\MH]) =0
and the theorem follows. d

5.4. Proof of parts D}, [E] and In all of these cases (M, g) has Anosov flow
(see (1.17))) for the definition.

Proof of part [E] For this part we assume that (M,g) has Anosov geodesic flow,
non-positive curvature, and H is totally geodesic.

We use that, since there are no parallel Jacobi fields on a manifold with non-positive
curvature and Anosov geodesic flow [Ebe73bl, Theorem 1 (6)], the spaces E and E_
are nowhere horizontal. In particular, for any horizontal vector v", ||dG*v"|| — oo
for t — +oo. To take advantage of this, fix p = (x,£) € SN*H. Since H is totally
geodesic, the horizontal lift v" of any v € T, H satisfies

o € T,(SN*H).
On the other hand, v" ¢ E, (p) U E_(p).
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Suppose that H is n — 1 dimensional. Then, we may choose linearly independent
vectors {vy,va,...,vp—1} € TpH and get

T,(SN*H) = span{vf, vl ... ol ;).

n—1
In particular, this yields that
T,(SN*H) N (E4(p) U E—(p)) = 0.

Therefore,
Sy =10,
and hence a,., (Ry) = 0.
To finish the proof we explain that it suffices to assume that H is n — 1 dimensional.
Note that since H is totally geodesic submanifold, H; := w(G*(SN*H)) is also a totally

geodesic submanifold. Now, for ¢ small,
G':N*H - M
is an isometry, and in particular, H; is an embedded submanifold of dimension n — 1.
Moreover, by Lemma osn+m,(Rm,) = 0 implies a,,.,,(Rrg) = 0. Therefore, it is
enough to show that o.,(Rmg) = 0 for every totally geodesic submanifold H of
dimension n — 1 which we have already done.
O

The proofs of Parts [C] and [F] rely on showing that in each of these settings
one has that the set of points p € Ry for which T,(SN*H) is purely stable, or purely
unstable, has full measure and applying Lemma

Proof of part [Dl For this part we assume that (M, g) is a surface with Anosov geo-
desic flow. Theorem [§ implies

Oy (RH) = Osnem (RH NSu N MH)

But, since dimM = 2, we have dim SN*H = 1 and, since E(p) N E_(p) = {0},
Mpy = 0. Thus, 0,,.,(Ru) =0 as claimed. O

Proof of part For this part we assume that (M, g) has Anosov geodesic flow and
H is a subset of a stable or unstable horosphere (see e.g. [Rug07, Chapter 4] or [KH95,
Section 17.6, Theorem 6.2.8] for a definition a horosphere). The crucial fact is that
a stable horosphere, H has the property that T,SN*H, C E.(p) and an unstable
horosphere, H_ has T,SN*H_ C E_(p). That g,,., (Ry) = 0 then follows immediately

SN*H

from Lemma 221 O

Proof of part [C] In part [C| we claim that on a manifold of constant negative cur-
vature, oy, (Rg) = 0 for all H C M. We start by showing that it suffices to as-
sume that H is n — 1 dimensional. Since the exponential map is a radial isometry,
H; = {exp,(t§) : (x,&) € SN*H} is an embedded submanifold of dimension n — 1 for
small . Moreover, by Lemma osn+H,(Ru,) = 0 implies o,,., (Ru) = 0. Therefore,
it is enough to show that o, ., (Rg) = 0 for every submanifold H of dimension n — 1.

We note that by Theorem [§ we have
Ty (RH) = Oy (R O S N M)
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Lemma 24. Let (M, g) be a compact manifold with constant negative curvature and
H C M be a closed embedded hypersurface. Then

USN*H(SH NMpg)=0.

Note that this result combined with Theorem [§] yield that
the proof of Part [C]

Rp) = 0 finishing

Tgnyeps (

0

The rest of this section is dedicated to the proof of Lemma Since we may work
locally to prove Lemma we lift the hypersurface H to the universal cover H".
Hence, in this section we work with the hyperbolic space

n
H" = {($0,$1,...,13n) € Rn+1 DX > 0, .’L'g - Zl’? = 1}
i=1
We endow H" with the metric g = dxg > dx?. To prove Lemma we adopt the
notation

n
(v, w)g = —vowo+ Z viW;

i=1
for the inner product induced by the metric g. We also write (v, w) = vowo+_ ;- viw;
for the usual inner product in R™*!. With this notation the sphere bundle takes the
form SH" = {(z,w) : =z € H",w € R"™ (w,w), = 1, (z,w), = 0}, and its tangent
space at p = (z,w) can be decomposed into a direct sum 7T,,(SH") = E, (p) ® E_(p) ®
RX where the stable and stable fibers are E_(p) = {(v, —v) : (z,v), = (w,v), = 0}
and F,(p) = {(v,v) : {x,v), = (w,v)y = 0} and X is the generator of the geodesic
flow. Since we work in the co-sphere bundle, we record the structure of the dual spaces.
The co-sphere bundle is

S*H" = {(z,¢) : z € H", £ e R"™ (£,&), =1, (z,£) = 0},
and the tangent space at any p = (z,&) € S*H" is

T,(STH") = {(ve,ve) : (2, 02)g = (&, v2) + (2,0¢) = (€, ve)g = O}
We then have
T,(S"H") = EL(p) ® E_(p) & RH),

where

Ei(p) = {((vo, V), (vo, =v")) : (z,v)g = (§,v) = 0}. (5.23)
and

E_(p) = {((vo, V), (—v0,v")) : {z,v)g = (§,v) = 0}. (5.24)
Here, and in what follows, we adopt the notation (zo,2’,z4) to represent a point in
R x R* ! x R.

Proof of Lemma [24. We assume that v is a parametrization of H C H" in a neigh-
borhood V' C H of y. That is,

HNV ={(a(2),2,v(z)): 2" € f/},
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for some V C R"! open, and where

afz’) = /1 + |22 + ~(a')2.
Using that 2o — a(2’) and z,, — (') are defining functions for H as a subset of R"*!
we find that

N'H = {(Oé, wlv Vs _)‘faa >\(f$l - 6’7)7 )\(f'}/ + 1)) D AE R},
where to shorten notation we write

f =0 <.%", 87>

This yields that
SN'H = {(a, 2, vy, =Mfa, A(fa' —9v), A(fy+ 1)},
where .
A= (1[0 + f2)72.

Therefore, given p = (z,£) € SN*H we find

T,(SN*H) = {({Dar, w), w, (Oy,w), (A,w), (B,w), (C,w)): we R} (5.25)
where

A=—-00\fa),  B:=0\(fr'=0v),  C:=0\(fy+1)).

We assume without loss of generality that y = («(0),0,+(0)), where v(0) = 0 and

0v(0) = 0. Note that, with
1
1) = LQa' ) + O )

where @ is an (n — 1) X (n — 1) symmetric matrix we have

o= 1+ P+ 0", oo = '+ O(|2'),
1
J=—5(Qa" 2"y + O(l'), of = —Qa' + O(|a']?),
1
A=1-5]Qa'P +O0('|"), OA = —(Q*',w) + O(2']%).

Now, suppose there exist two non-zero vectors
X eE (p)NT,(SNH) and X_€E_(p)NT,(SN*H).

Then, according to (5.25), (5.23) and (5.24) we have that there exist w,,w_ € R"~!
so that
Xi = ((Oa,we), we, (07, wy), (A, we), (Byws), (C,wi))

and satisfying

i) (Oa,wy) = (A, wy)
) wy = F(B,wy)
) (07, ws) = F(C,wx)
iv) (z,X4)g=0
v) (¢, X4)=0.

iii
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We proceed to showing that there cannot exist wy satisfying conditions (7), (#¢) and
(¢74) for all p = (x, &) in a subset of SN*H with positive measure on which T,(SN*H) =
Ni(p) @ N_(p), N+(p) # {0}, and N_(p) # {0}. Indeed, conditions (i), (i7) and (¢3i)
read

i) {2, wy) = £(Qa', wy) + O(|2'[)
i) we = +Qu+ £ (037(0)x)ws + O(|2']?)
i) (Qef, wa) = Q2 wa) + O(|2/]?)

These equations imply that wy = +Quw4 and so Q*w+ = w4. Furthermore, we
claim that we may assume that 93y(0) = 0. Indeed, let p € SN*H be such that
T,(SN*H) = Ny(p) ® N_(p). Then, if w € T,(SN*H), we may decompose w it
as w = wy + w_ and use that condition (i7) gives (0%y(0)z')w = 0. If we had that
condition (ii) holds on a set of p’s with positive measure, we must have that 93y(0) = 0
since we just showed that condition (i7) should also hold for all w € T,(SN*H). We
then work with

1) = 5@l ') + Ol 1)

From this we get the improved estimates
1
f=—5@Q )+ O(lz'|*) and  Of = —Qa' + O(|2|*).

We derive the contradiction from studying the second order terms in wy = F(B, w4 ).
Indeed,
(B,ws) = +Qw+ + D(w+) + O(|2'[*),

where
1
~ 5 (@Qa 4 F QY.

and where 9*y(0)x"?w denotes the vector whose i-th entry is given by (0%y(0)z"?w);, =
%&Ml'y(())xka:le. Since D (w4 ) is a second order term in 2/, equation wy = F(B, w4 )
gives that

D(wy) := —0*y(0)z"*w+ + (¢, wi)(Qx' F o)

D(wy) = 0.
To take advantage of this condition, we assume without loss of generality that
1 0 0
Q=0 -1 0],
0 0 @

where Q is an (n — 3) x (n — 3) matrix, and that
wy = (1,0,...,0) and w_ = (0,1,0...,0).

We now use that all the coordinates of the vectors D(w4) equal 0. Making the
second coordinate of the vector D(w4) equal to 0 gives

1 n
13 > Oy (0)zpm; — 2w129 =0,
k=1
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while setting the first coordinate of the vector D(w_) equal to 0 yields

1 n
T Z O1211Y(0)z ) 4 22120 = 0.
k=1

This concludes the proof since we cannot have the two relations holding simultaneously
for 2’ in a subset of H that has positive measure.
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