
Computation offloading with ICN
Michał Król

UCL
m.krol@ucl.ac.uk

Adrian-Cristian Nicolaescu
UCL

a.nicolaescu@ucl.ac.uk

Sergi Reñé
UCL

s.renel@ucl.ac.uk

Onur Ascigil
UCL

o.ascigil@ucl.ac.uk

Ioannis Psaras
UCL

i.psaras@ucl.ac.uk

David Oran
Network Systems Research & Design

daveoran@orandom.net

Dirk Kutscher
Huawei

dirk.kutscher@huawei.com

ABSTRACT
This demo shows an implementation of a computation-centric ar-
chitecture over NDN. The system is able to perform in-network
load balancing of incoming computation requests, reliably authen-
ticate consumers and allow them to submit large payloads without
routable prefixes. The system is able to migrate requested func-
tion in a form of unikernels where they are needed, follows ICN
pull-based model and introduces only minimal changes to the NDN
stack.

CCS CONCEPTS
• Networks→ In-network processing; Naming and addressing;
Network architectures; Session protocols;

KEYWORDS
Information Centric Networks, NamedDataNetworking, in-network
processing, naming, thunks

ACM Reference Format:
Michał Król, Adrian-Cristian Nicolaescu, Sergi Reñé, Onur Ascigil, Ioannis
Psaras, David Oran, and Dirk Kutscher. 2018. Computation offloading with
ICN. In 5th ACM Conference on Information-Centric Networking (ICN ’18),
September 21–23, 2018, Boston, MA, USA. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3267955.3269009

1 INTRODUCTION
During the past two decades, we have been witnessing a con-
tinuous trend towards centralising Internet content delivery and
application-oriented computation. Centralisation led to the devel-
opment of huge-scale data-centres (commonly referred to as the
cloud), which is where 90% of users’ requests end up being executed
[1]. Although this trend served well the purposes of the Internet as
we know it today and achieves impressive economies of scale, it is
certainly not a good fit for a number of future applications.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICN ’18, September 21–23, 2018, Boston, MA, USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5959-7/18/09.
https://doi.org/10.1145/3267955.3269009

Edge-/Fog-computing has been proposed recently as a comple-
mentary paradigm to the cloud. The main driver behind the edge-
/fog-computing trend is the de-centralisation of the cloud into
multiple smaller scale computing devices ranging from mini-data
centres to server racks, WiFi APs and Raspberry Pis. The need
for a shift from the traditional/current host-centric paradigm to a
more flexible information and computation-centric environment
is becoming clear. The current, IP-based routing, forwarding and
especially the name resolution model is brought to its knees if ap-
plied to an environment where computation resources need to be
chosen and invoked at millisecond timescales.

Based on a loosely coupled communication model, Information-
Centric Networks (ICN) eschews a host-centric communication
model. The paradigm uses content-identifiers directly as network
names which simplifies discovery, permits direct access to data, and
offers mobility support inherently [2]. Therefore, the paradigm can
be a great fit for provider-agnostic distributed clouds: it does not
matter where and by whom an application/function is executed, as
long as the result is correct, valid, verified and trustworthy. This
is in stark contrast to a host-centric edge-computing environment
where edge devices need to connect to some specific IP address
operated by a trusted entity (e.g., redirected from the cloud).

Despite its conceptual fit, the vast majority of ICN approaches
to date focus on naming, routing/forwarding and distribution of
static content. In view of these limitations, multiple works have
recently tried to extend ICN’s capabilities to deal with dynamic
content. Notable among these efforts, Named Function Networking
(NFN) [3] and Named Function as a Service (NFaaS) [4] extend
ICN’s named data access model to a remote function invocation
capability, enabling consumers to request the network to execute
functions remotely. In NFN [3], for instance, function invocation
corresponds to independent computational processes, evaluated
as expressions in a functional programming model, while NFaaS
exploits unikernels migration to satisfy users’ requests.

In addition to NFaaS/NFN, there have been several other ap-
proaches for integrating computation with ICN. However, when
using them to realize real-world applications like web-style inter-
actions, several additional aspects beyond the fundamental Named
Function invocation concept need to be addressed: consumer au-
thentication and authorization, parameter passing and accommo-
dating non-trivial computations

https://doi.org/10.1145/3267955.3269009
https://doi.org/10.1145/3267955.3269009


ICN ’18, September 21–23, 2018, Boston, MA, USA M. Król et al.

Figure 1: Demo description

To deal with those problems we recently proposed RICE - a
remote method invocation framework for ICN [5]. RICE introduces
a secure, 4-way handshake for ICN in order to achieve shared secret
derivation, consumer authentication and parameter passing. It also
employs the concept of thunks1 from the programming language
literature to decouple method invocation from the return of results
to enable long-running computations. The thunk is used to name
the results for retrieval purposes.

The goal of the demo is to prove the feasibility of in-network
function execution with client authentication and non-trivial pa-
rameter passing, to support cases where computation takes longer
than PIT expiry time. In our system, users can take pictures and
submit them to the network requesting image processing. The re-
quests are dispatched to several Raspberry PIs acting as workers
and hosting functions in a form of unikernels. When the processing
is done, users can retrieve the final result using thunks.

2 DEMO DESCRIPTION
Our demonstration showcases a computation-centric architecture
using Android phones (Fig. 1). The system consists of the following
actors:

• Users - taking pictures and sending processing requests using
Android phones.

• Workers - Raspberry Pis receiving and processing requests.
• Access Point - setting up a wireless network and performing
load balancing among workers.

Users take pictures using their phones and send them to the
network for processing. The requests are automatically dispatched
by the Access Point to multiple deployed workers to equally share
the computation load. Raspberry Pis, acting as workers, implement
an optical character recognition (OCR) algorithm and detect text
included in the pictures. After, processing workers return results
to the requesting users.

2.1 Implementation
We implement our system on top of NDN [6]. Each system com-
ponent contains an NFD forwarder. The devices are connected in
a star topology with the AP in the center. The users have to first
take a picture of a text (step 1). Requests in the form of Interest
messages are forwarded from phones to the AP that implements a
round-robin forwarding strategy to perform load balancing among
1https://en.wikipedia.org/wiki/Thunk

workers (step 2). The Interests contain a handshake TLV field set
up in order to initiate the 4-way handshake presented in [5]. Upon
reception of a request, workers pull images from phones using
the handshake procedure (step 3) and return a thunk name and an
estimated time for processing the image (step 4).

The image processing function represented as a unikernel (as
described in [4]) is retrieved from the network (step 5) instantiated
on the worker and fed with an image to process (step 6). The image
fetching process is an optional step, if the file to be processed is not
on the worker already, or provided by the Android phone(s) at the
start of or before the initialization of the computation offloading
communication process.

Users wait for the time returned by workers and use the thunks
to request the final result (step 7). The corresponding worker re-
turns the result as a regular Data message (step 8). For a detailed
description of thunks and payload submission we refer readers to
[5].

3 CONCLUSIONS AND FUTUREWORK
In our demo, we have successfully showcased a practical example
of how to distribute computation at the edge of the network using
NDN, outsourcing computation from users’ Android smartphones,
to a network of Raspberry PIs for an image recognition application.
The same example can apply to other similar trendy usecases, such
as augmented reality applications, where we think the mix of edge-
computing and ICN networking is a perfect candidate to fulfill its
(i.e., low latency) requirements.

REFERENCES
[1] Cisco Global Cloud Index. Forecast and methodology, 2016-2021 white paper.

Retrieved 1st June, 2017.
[2] Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, Van Jacobson, Patrick Crowley,

Christos Papadopoulos, LanWang, Beichuan Zhang, et al. Named data networking.
ACM SIGCOMM Computer Communication Review, 44(3):66–73, 2014.

[3] Christian Tschudin and Manolis Sifalakis. Named functions and cached compu-
tations. In Consumer Communications and Networking Conference (CCNC), 2014
IEEE 11th, pages 851–857. IEEE, 2014.

[4] Michał Król and Ioannis Psaras. Nfaas: named function as a service. In Proceedings
of the 4th ACM Conference on Information-Centric Networking, pages 134–144.
ACM, 2017.

[5] Michał Król, Karim Habak, David Oran, Dirk Kutscher, and Ioannis Psaras.
Rice: Remote method invocation in icn. https://www.ee.ucl.ac.uk/~ipsaras/files/
remote-method-invocation-thunks.pdf, 2018.

[6] Lixia Zhang, Deborah Estrin, Jeffrey Burke, Van Jacobson, James D Thornton, Di-
ana K Smetters, Beichuan Zhang, Gene Tsudik, Dan Massey, Christos Papadopou-
los, et al. Named data networking (ndn) project. Relatório Técnico NDN-0001, Xerox
Palo Alto Research Center-PARC, 2010.

https://en.wikipedia.org/wiki/Thunk
https://www.ee.ucl.ac.uk/~ipsaras/files/remote-method-invocation-thunks.pdf
https://www.ee.ucl.ac.uk/~ipsaras/files/remote-method-invocation-thunks.pdf

	Abstract
	1 Introduction
	2 Demo description
	2.1 Implementation

	3 Conclusions and Future Work
	References

