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Abstract

Preterm infant brain activity is discontinuous; bursts of activity recorded using EEG

(electroencephalography), thought to be driven by subcortical regions, display scale free

properties and exhibit a complex temporal ordering known as long-range temporal

correlations (LRTCs). During brain development, activity-dependent mechanisms are

essential for synaptic connectivity formation, and abolishing burst activity in animal models

leads to weak disorganised synaptic connectivity. Moreover, synaptic pruning shares similar

mechanisms to spike-timing dependent plasticity (STDP), suggesting that the timing of

activity may play a critical role in connectivity formation. We investigated, in a

computational model of leaky integrate-and-fire neurones, whether the temporal ordering of

burst activity within an external driving input could modulate connectivity formation in the

network. Connectivity evolved across the course of simulations using an approach analagous

to STDP, from networks with initial random connectivity. Small-world connectivity and

hub neurones emerged - characteristic properties of mature brain networks. Notably,

driving the network with an external input which exhibited LRTCs in the temporal

ordering of burst activity facilitated the emergence of these network properties, increasing

the speed with which they emerged compared with when the network was driven by the

same input with the bursts randomly ordered in time. Moreover, the emergence of
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small-world properties was dependent on the strength of the LRTCs. These results suggest

that the temporal ordering of burst activity could play an important role in synaptic

connectivity formation and the emergence of small-world topology in the developing brain.

Introduction

Network connectivity shapes activity and modulates information transfer in the brain. For

example, small-world network architecture allows e�cient integration and segregation of

information [1], and hub neurones or regions play a key role in carrying information

throughout the brain [2]. This structured connectivity emerges during early human brain

development; a small-world modular network organisation with hub nodes can be observed

in preterm di↵usion and functional MRI, with a significant increase in small-world topology

between 30 and 40 weeks’ gestation [3, 4].

The major period of connectivity formation and refinement in the cortex starts during

foetal development from approximately 20 weeks’ gestation and continues for the first few

years of postnatal life [5, 6]. MEG recordings of foetal brain activity and EEG recordings

from preterm infants are characterised by discontinuous activity - bursts of slow wave

oscillations with nested high frequency activity are interspersed within periods of apparent

electrical silence [7]. These bursts can occur in response to sensory stimulation [8–10], or

following movement [11], but the majority occur spontaneously in the background

EEG [11]. Spontaneous bursts are thought to originate from regions such as the

subplate [12, 13], a transient population of neurones present in early development [14], and

may also relate to activity in the insula [15]. Neuronal activity is crucial for connectivity

formation [16], and blocking or reducing burst activity during critical developmental

periods, for example, through removal of the subplate in animal models, leads to abnormal

cortical network connectivity, with weak thalamocortical connectivity [17] and loss of

cortical columnar structure [18, 19].

The temporal organisation of neuronal activity in early development may also play a key

role in connectivity formation - rearing fish in an environment with stroboscopic

illumination prevents the refinement of retinotectal maps [20] and periodic electrical

stimulation of the ferret optic nerve results in altered orientation selectivity in the

cortex [21]. Moreover, activity-dependent mechanisms at the synaptic level are key to

connectivity refinement in the developing brain, and synaptic pruning shares similar

molecular pathways with long-term depression (LTD) in the adult brain [22], suggesting

that the temporal organisation of activity may play a critical role in connectivity formation.
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Recently it has been demonstrated that the burst activity in preterm EEG exhibits

scale-free properties [23], and that the bursts do not occur randomly in time but follow a

complex temporal ordering, known as long-range temporal correlations (LRTCs) [24]. Thus,

in the preterm neonatal brain, the timing of any given EEG burst is correlated with the

time of occurrence of all previous bursts of EEG activity [24]. Whether this correlated

temporal structure of the timing of burst activity a↵ects connectivity formation in the

developing brain is an important open question.

Here we consider this question by investigating connectivity formation in a simple

activity-dependent neuronal network model of the cortex. Motivated by the excitatory role

of GABA within the developing brain [25], we consider a model where all connections are

excitatory. We assume the cortex is driven by bursts of activity from a non-cortical source

such as the subplate [12, 13]. We compare connectivity formation in a network driven by

bursts which exhibit LRTCs, to the network connectivity that emerges when the network is

driven by bursts with random temporal ordering. We also investigate the relationship

between network connectivity parameters and the strength of LRTCs within the burst

temporal organisation. We test the hypothesis that LRTCs in the burst activity of the

external input promotes the emergence of small-world connectivity, which will facilitate

information processing and transfer in the developing cortex.

Results

We investigated connectivity formation in directed networks of leaky integrate-and-fire

neurones. The networks were driven by a bursty input, Fig. 1A. In all cases the bursts

themselves were of a fixed duration and amplitude; di↵erences in the driving input were

only reflected in the temporal ordering of the bursts, i.e, in the ordering of the inter-burst

intervals (IBIs) - the time between the bursts. In the case where the network was driven

with burst dynamics that exhibit LRTCs, the sequence of IBIs exhibited long-range

temporal correlations with a Hurst exponent (H) greater than 0.5. In the shu✏ed input

case, the same IBIs were randomly re-ordered in time, giving a Hurst exponent of the

sequence of IBIs of H ⇡ 0.5. Thus, in both cases the external input had the same IBI

distribution, but the temporal ordering of the bursts was changed and in the latter case the

temporal correlations were lost.

Driving the neuronal networks with bursty input also led to bursts within the network

(Fig. 1B,E). The Hurst exponent for the sequence of IBIs was determined using detrended

fluctuation analysis (DFA). The DFA exponents for the sequences of IBIs in the network

3

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/355800doi: bioRxiv preprint first posted online Jun. 26, 2018; 

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1101/355800


firing dynamics reflected those of the corresponding DFA exponents of the external input

(Fig. 1C,F), indicating that the temporal characteristics of the driving input were

transmitted to the network activity itself.
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Figure 1: Network input and burst dynamics. (A,D) Networks were driven by a bursty input.
Bursts of activity (grey shaded region) were of fixed duration and amplitude, and interspersed within
periods of silence - inter-burst intervals (IBIs). (A) Example burst dynamics for the first few bursts
within a simulation where IBIs exhibited LRTC, and (D) the same IBIs randomly shu✏ed. (B,E)
Raster plot of network firing at the start of a simulation, demonstrating that burst dynamics also
occur within the network. Firing dynamics are shown for the network driven with LRTCs (B, blue),
and driven with the same IBIs randomly shu✏ed (E, green). (C) DFA plots of the IBI sequences for
the network external input across simulations of length 100, 000. The Hurst exponent is estimated by
the slope of the line of best fit, which in these examples were H = 0.68 (with LRTC input, blue), and
H = 0.51 (with the same input shu✏ed in time, green). (F) DFA plots for the burst dynamics of the
network firing across the same simulations. For these examples the Hurst exponents of the network
firing were estimated as H = 0.65 when the network was driven by an external input which exhibited
LRTCs (blue), and H = 0.51 when the network was driven with the same input randomly re-ordered
in time (green). n is the box size and F (n) is the root mean square of the detrended signal across the
box (see Estimation of the Hurst exponent in the Methods).

Emergence of small-world topology and hub neurones

Network connectivity was allowed to evolve during simulations using an approach analogous

to spike-timing dependent plasticity (STDP). The likelihood of gaining a connection

between any two neurones was increased if the presynaptic neurone frequently fired just

before the postsynaptic neurone, whereas the likelihood of losing a connection was increased

if the postsynaptic neurone frequently fired before the presynaptic neurone. Connections
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were then lost or gained if this likelihood measure reached set thresholds for gaining and

losing connections (see Methods). Network connectivity was initially random, with 40%

connectivity in a network with 200 neurones. As with STDP in the adult brain [26], and as

similar mechanisms to LTD play a dominate role in neuronal network development [22], we

initially set depression to be slightly stronger than potentiation. We also modelled

alternatives, i.e. equal amounts of depression and potentiation and stronger potentiation

than depression, which are described below (see section Varying the plasticity parameters).

With slightly stronger depression than potentiation, and driven with burst dynamics which

exhibit LRTCs, the network on average lost connections across the course of the simulation

and the normalised clustering coe�cient and small-world index increased. Fig. 2 shows the

mean proportion of connections (i.e. the number of connections divided by the number of

all possible connections within the network), normalised clustering coe�cient and

small-world index from 20 simulations, which were all driven with external input which

exhibited LRTC with H ⇡ 0.7. At the end of the simulations, the node degree distribution

is skewed, with some neurones showing much higher degree than others, indicating the

presence of hub neurones (Fig. 2D). Thus, across the course of the simulation a small-world

topology and hub neurones emerge. Moreover, the speed at which the proportion of

connections, normalised clustering coe�cient and small-world index changes is high at the

start of the simulations, indicating that the network rapidly evolves to have connectivity

with small-world properties.

In contrast, when the network is driven with the same external input but in which the burst

order has been randomly shu✏ed in time (and therefore does not exhibit LRTCs but

instead H ⇡ 0.5), the rate of change in the network parameters at the start of the

simulation is much lower than with external input which exhibits LRTCs, Fig. 2. Thus,

whilst over the course of the simulation on average connections are still lost, the final

network has a higher proportion of connections. The normalised clustering coe�cient and

small-world index exhibit very little change compared with when the networks are driven by

bursts which exhibit LRTCs. Moreover, the resultant degree distribution is approximately

normal and does not indicate the presence of hub neurones, Fig. 2D.

Comparison of the speed at which the network properties evolve in the network driven by

external input which exhibits LRTCs with the case where the external input is randomly

shu✏ed in time suggests that there is an early window during which the network is highly

sensitive to the temporal organisation of the external input. Whilst the level of activity

within the external input across the whole simulation is identical in both cases, we also

ascertained that this di↵erence in the speed of emergence of small-world properties was not

related to di↵erences in the level of activity of the external input at the start of the
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Figure 2: Emergence of small-world topology and hub neurones. Network parameters across
the course of simulations in networks driven with burst activity which exhibits LRTCs in the IBIs
(blue) and with input with the same IBIs randomly shu✏ed in time (red). Solid lines indicate the
mean across 20 simulations, and the shaded areas indicate the standard deviation. (A) The proportion
of connections in the network, (B) the normalised clustering coe�cient, and (C) the small-world index
across the course of the simulations. (D) Average degree distributions at the end of the simulations
with the networks driven by burst activity which exhibits LRTCs in the IBIs (blue) and by the input
with the same IBIs shu✏ed (red).
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simulation. The average rate of input at the start of the simulation was similar when the

input exhibited LRTCs and when the IBIs were randomly shu✏ed in time (Fig. S1).

Moreover, considering individual examples with similar levels of the external input at the

start of the simulations, those networks driven with input which exhibits LRTCs have

di↵erent trajectories of their network properties compared with those driven with shu✏ed

input (Fig. S2). Therefore, the di↵erence in the speed of emergence of the network

properties between the networks driven with external input with LRTCs in the IBIs and the

shu✏ed input is not because the level of input to the network is di↵erent at the start of the

simulation.

The di↵erence in emergence of small-world properties when the external input exhibits

LRTCs leads to the question as to whether the magnitude of the LRTCs also a↵ects

connectivity formation. Therefore, we next investigated how driving the network with burst

activity with IBIs which exhibit di↵erent strengths of LRTCs alters the rate of emergence of

small-world properties.

Varying the Hurst exponent modulates connectivity formation

We investigated driving the network with burst dynamics which had 4 di↵erent levels of

Hurst exponent: H ⇡ 0.5, 0.6, 0.7 and 0.8. In all cases, on average the network lost

connections, but networks driven by external input with higher Hurst exponents lost

connections at a faster initial rate and quickly evolved to a network with small-world

properties, see Fig. 3. The average Hurst exponent estimated using DFA in preterm infants

is 0.68, with a range of 0.55 - 0.81 [24], so the levels of Hurst exponent seen in preterm

infants fall within the range of data simulated here.

In these simulations, whilst the mean IBI of the external input was equal, the exact

distribution of the IBIs was not. However, using the exact same IBI distribution for all

simulations, but continuing to vary the Hurst exponent, does not alter the results; the

networks driven with LRTCs with higher Hurst exponents exhibit a higher initial rate of

change of network parameters (see Fig. S3). This demonstrates that the change in

connectivity formation is directly related to the the temporal dynamics of the external

input.

Varying the plasticity parameters

In the simulations to this point, LTD of the likelihood of losing/gaining a connection was

set to be slightly stronger than long-term potentiation (LTP) (i.e., AD = 0.55 and

7

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/355800doi: bioRxiv preprint first posted online Jun. 26, 2018; 

http://dx.doi.org/10.1101/355800
http://creativecommons.org/licenses/by-nc-nd/4.0/


0 1 2 3 4 5

0.32

0.36

0.40

Time
x106

Pr
op

or
tio

n 
of

 c
on

ne
ct

io
ns

0.28

0.24
1.00

1.02

1.04

1.08

1.06

0 1 2 3 4 5

Time
x106

N
or

m
al

is
ed

cl
us

te
rin

g 
co

ef
fic

ie
nt

1

1.005

1.01

0 1 2 3 4 5

Time
x106

N
or

m
al

is
ed

 m
ea

n 
pa

th
 le

ng
th

1.00

1.02

1.04

1.08

1.06

0 1 2 3 4 5

Time
x106

Sm
al

l-w
or

ld
 

in
de

x

A B C

D E

0 40 80 120
0
5

10
15
20
25
30
35
40

Node degree

C
ou

nt

160

Figure 3: The speed of network evolution is related to the Hurst exponent of the driving

input. Changes in network parameters with the networks driven by burst input with temporal
correlations with di↵erent Hurst exponents: H ⇡ 0.5 (red), H ⇡ 0.6 (purple), H ⇡ 0.7 (blue, same
simulations as in Fig. 2), and H ⇡ 0.8 (black). (A) The proportion of connections in the network, (B)
the normalised clustering coe�cient, (C) the normalised mean path length (note for H ⇡ 0.5 and 0.6
the mean path length is equal to one throughout) and (D) the small-world index, across the course of
the simulations. (E) The average degree distributions at the end of the simulations. The solid lines
indicate the mean across 20 simulations, and the shaded area the standard deviation.
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AP = 0.5, see Methods). This led to the network on average losing connections. We next

explored changes in connectivity when these parameters were varied so that potentiation

and depression were equal (AD = AP = 0.5) and potentiation was greater than depression

(AD = 0.5, AP = 0.55). With potentiation higher than depression, on average connections

are gained, and the normalised clustering coe�cient and small-world index increases

(Fig. 4). With the potentiation set equal to the level of depression, the change in network

parameters across the simulation are very small in comparison, and whilst on average there

is also an increase in the proportion of connections, the normalised clustering coe�cient and

the small-world index, the networks at the end of the simulation do not exhibit a high

small-world index. Notably, in both cases the speed of emergence of these properties is

higher in the networks driven by bursts which exhibit LRTCs, as was observed with

AD = 0.55 and AP = 0.5, again demonstrating that the temporal ordering of the burst

activity in the external input plays an important role in shaping the network connectivity.
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Figure 4: Changes in connectivity are related to the levels of potentiation and depression.

(A) The proportion of connections in the network, (B) normalised clustering coe�cient, and (C)
small-world index across the course of 20 simulations with AD = AP = 0.5. (D) The proportion of
connections in the network, (E) normalised clustering coe�cient, and (F) small-world index across
the course of 20 simulations with AD = 0.5 and AP = 0.55. The networks are driven with burst
dynamics which exhibit LRTCs (H ⇡ 0.7, blue), compared with the same input randomly shu✏ed in
time (red). Solid lines indicate the mean across the 20 simulations and the shaded area indicates the
standard deviation. Results are shown on the same scale for comparison.

Finally, we evaluated changes to the decay constants of the plasticity parameters - ⌧ , the
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decay constant of the spike timing, and ⌧L, the decay constant of the likelihood of gaining

or losing connections (see Methods). For all previous simulations ⌧ = 10 and ⌧L = 100.

Setting AD = 0.55 and AP = 0.5, first we varied ⌧ 2 {5, 6, ..., 15}. In all cases the

proportion of connections lost, and the normalised clustering coe�cient vary according to

the Hurst exponent, with the speed of emergence high in networks which exhibit LRTCs.

For lower values of ⌧ the overall change in these parameters across the simulation, and the

speed of emergence is lower than with ⌧ = 10, but small-world properties emerge (see Fig.

S4). For higher values, however, when H ⇡ 0.8 and H ⇡ 0.7 the number of connections lost

at the end of the simulation is high so that the network becomes disconnected. This leads

to large variability in the small-world index (Fig. S4). A similar pattern also emerges when

⌧L is varied with ⌧L 2 {50, 60, ...., 150}. For lower values, the speed of emergence is slower

than with ⌧L = 100, but small-world properties emerge. For higher values, with H ⇡ 0.8,

the network becomes disconnected (see Fig. S5), leading to a break down in the small-world

properties. However, there is still a clear distinction in the changes in the proportion of

connections and normalised clustering coe�cient with the level of the Hurst exponent.

Disconnection of the network suggests that high values of both decay constants may lead to

pathological network connectivity. This is particularly the case with H ⇡ 0.8, however, this

level of LRTCs is rarely observed in the burst activity of preterm infant EEG (average

Hurst exponent estimated using DFA in preterm infants is 0.68 [24]).

Discussion

Here we examined an activity-dependent neuronal network model of connectivity formation

in the developing brain. We demonstrate the emergence of small-world topology and the

presence of hub neurones, characteristics of brain networks [1, 2, 27, 28]. Furthermore, we

found that the temporal ordering of the activity driving the network is important - when

the bursty input driving the network had IBIs which exhibited LRTCs this resulted in

faster network evolution compared with when the network was driven by the same input

randomly reordered in time. Moreover, network evolution dynamics were related to the

magnitude of the Hurst exponent, with a faster speed of emergence of small-world

properties in networks driven by external input with higher Hurst exponents.

Emergence of small-world topology

Starting from networks with initially random connectivity and allowing network

connectivity to evolve using a simple Hebbian STDP rule, we observed the emergence of
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small-world topology and hub neurones. Small-world connectivity has been shown to arise

in simple models due to constraints such as e�cient neuronal communication and metabolic

costs related to neuronal wiring [29], and hub nodes can arise through mechanisms such as

preferential attachment [30]. A number of previous authors have also examined more

realistic computational models of brain development, including examining axonal growth in

molecular gradients [31] and neurite branching [32]. Van Ooyen and Van Pelt showed that a

simple model of connectivity formation, with the growth and retraction of circular dendritic

and axonal fields based on neuronal activity, results in an equilibrium connectivity level

after an initial overshoot in connectivity consistent with experimental observations [33].

Meisel and Gross further demonstrated that an activity-dependent model of connectivity

formation ‘self-organised’ to a balanced connectivity level irrespective of the initial level of

connectivity [34]. More recently, Damicelli et al. found that a local Hebbian plasticity rule

allowed a network to reorganise to a modular structure [35]. Thus, all of these models

demonstrate the importance of neuronal activity in connectivity formation. However, whilst

it is known that neuronal activity is essential in the developing brain, both before and after

birth [12,16], we importantly show that the temporal ordering of activity may also play an

important role in development.

The role of LRTCs

We find that when driven by burst activity which exhibits LRTCs the network evolves

quickly to a state with small-world topology. We speculate that this may be important in

development, where quickly transitioning to this type of network will allow for e�cient

integration and segregation of information in the developing brain. This work was

motivated by the observation that inter-burst intervals between bursts of activity in the

EEG of preterm infants exhibits LRTCs, with an average estimated Hurst exponent of

0.68 [24]. Evidence suggests that the subplate provides essential input to the cortex during

this stage of development [12,13] so we made the assumption that these burst dynamics

were driven by an external input from a region such as the subplate. However, the LRTCs

in burst dynamics are also passed to the network itself, suggesting that other models which

exhibit LRTCs in network activity may also quickly evolve their connectivity. For example,

this type of burst dynamics with LRTCs in the inter-burst intervals can emerge in a system

driven with continuous external input in the region of a critical state [36].
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Future directions - understanding pathology in the developing brain

Premature-born infants display altered brain connectivity, indicated by reduced white

matter integrity [37, 38] and altered resting state connectivity [39, 40], at term-corrected

age [37,39] and into childhood [38,40]. Tactile, auditory, visual and noxious stimuli all

evoke bursts of activity, observed using EEG, in very preterm infants [8–10]. It is plausible

that unexpected sensory exposure, which will disrupt the temporal patterning of the

ongoing brain dynamics, in the premature period relates to the long-term neurological

problems observed in children who have been born very prematurely [41]. Indeed, the

number of painful procedures an infant receives in the premature period is correlated with

altered brain development, including lower white matter integrity, and lower cognitive

ability at school age [38]. Whether sensory stimuli alter LRTCs in the ongoing EEG of

preterm infants is an open question, and a possible extension of this model would be to

determine whether sensory input disrupts connectivity formation, which may lead to a

better understanding of the long-term e↵ects of premature birth.

Long-term depression of hippocampal synapses in mature cultures has been shown to result

in weaker synapses followed by selective elimination of very depressed synapses [42].

Moreover, synaptic pruning shares similar molecular pathways with long-term depression

(LTD) [22]. This suggests that connectivity formation in the developing brain may be

altered through STDP-like mechanisms, which forms the basis of the model we have used

here. In some pathological states, including neurodevelopmental disorders such as

autism [43] and schizophrenia [44], brain connectivity is altered, with network architecture

which has lower clustering and fewer hub nodes [29]. Both hyper- and hypoconnectivity

have been observed in children with autism [45,46], and LTD dysregulation has been

identified in mouse models of autism, leading to the suggestion that alterations in synaptic

plasticity and pruning may prevent proper development of brain connectivity [22]. Further

exploration of STDP models of connectivity formation, such as the one presented here, may

shed light on these disorders.

Limitations

To simplify the model, all neurones within the network were driven by the same external

input. Whilst bursts of activity in the preterm EEG known as delta brushes can occur in a

di↵use pattern over large cortical areas, this is not always the case, with localised delta

brushes also observed [11]. It would not be realistic to model the whole cortex as being

driven by one external input, and a useful extension would be to determine how connectivity

changes if neurones were to receive di↵erent external inputs. As well as the external input,
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neurones that were connected to each other received input when these neighbouring

neurones fired. To avoid either saturation of network firing or quiescence, the weights

between individual neurones were evolved according to the level of network connectivity,

which can be thought of as a form of homeostatic plasticity [47]. However, a limitation of

our approach was that connections could be continually lost (and gained), which can lead to

the network forming disconnected components. A possible extension of the work would be

to see if maintaining the level of connections within the network, as was done by Damicelli

et al. [35] (another form of homeostatic plasticity), but allowing connectivity to continue

to evolve under the dynamics of the network, would lead to small-world properties.

Summary

In conclusion, early spontaneous and sensory driven activity is known to be crucial for the

development of connections within neural networks. Here we investigated whether the

temporal ordering of burst activity within an external driving input a↵ects connectivity

formation in the developing cortex. Using a STDP model of connectivity formation, we

observed that the presence of LRTCs in the ordering of burst activity facilitates the

emergence of small-world topology and hub neurones. We suggest that early brain activity,

driven by the subplate, leads, through activity-dependent mechanisms, to a small-world

cortical network structure, and that LRTCs play an essential role in this connectivity

formation.

Software availability

All the code for this model can be downloaded here

https://github.com/berthouz/BrainDevBursts/tree/1.0 [48]

Methods

Neuronal dynamics

Individual neuronal dynamics were modelled as leaky integrate-and-fire neurones described

by the di↵erential equation

dV

dt
= �gL(V � Vr) + I(t) (0.1)
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where V is the membrane potential of the neurone, Vr is the resting potential, gL is the leak

conductance and I(t) is the input (both external input and input from other neurones

within the system). When the neurone reaches a threshold membrane potential Vthres it

fires and is reset to Vreset. For all neurones in the simulations Vthres = �54 mV ,

Vr = �70 mV , Vreset = �60 mV [49]. The leak conductances were randomly chosen from a

normal distribution with mean 0.025 and standard deviation 0.005. This heterogeneity in

the conductances leads to heterogeneity in the firing dynamics.

Neuronal input

The external input to the system was constructed using fractional Gaussian noise; an

example of a process that exhibits LRTCs, with a Gaussian data distribution. The IBI

sequence was constructed from a random normal distribution with mean ⇡ 4.5 and

standard deviation ⇡ 3. This sequence was ordered according the ordering of the fractional

Gaussian noise process, generating LRTCs in the IBI sequence. The external input to the

system was constructed from this sequence of IBIs, with bursts with a duration of 5 and an

amplitude of 0.8mV between each IBI, see Fig. 1A. We confirmed that the sequence of IBIs

constructed in this way exhibited LRTCs indicated by a DFA exponent greater than 0.5

(see Estimation of the Hurst exponent). The Hurst exponent of the IBIs was altered by

varying the exponent of the fractional Gaussian noise.

We compared the connectivity changes, to connectivity changes within a network evolving

under external input with random burst occurrence. This input was constructed by

randomly shu✏ing the IBIs from the original external input. In this way the two inputs are

identical in terms of the distribution of the IBIs (and bursts are identical throughout) and

it is only the temporal structure of the input that is altered.

In Supplementary Figure 1, the rate of input is calculated within moving windows of length

200 by summing the external input within the window and dividing by the window length.

As all bursts have equal amplitude, this reflects the temporal ordering of the burst activity

within the external input.

The external input was the same to all neurones. Each neurone also received, at each

time-step, an input from presynaptic neurones that had fired at the previous time-step.

Synaptic weights were equal for all connections and were set to 2
pN where N is the number

of neurones in the network and p is the proportion of connections in the network. This is

calculated at each time step, according to the maximum number of connections which is

equal to N(N � 1) (networks are directed). This update to the synaptic weights can be

thought of as a form of homeostatic plasticity - without it the network either stops firing
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when connectivity falls (the external input alone is not su�cient to make the network fire

frequently), or the network starts to fire continually as connectivity is increased. Using this

approach, the average levels of activity in the network were maintained across the course of

the simulation.

Estimation of the Hurst exponent

The presence of LRTCs in data can be determined through estimation of the Hurst

exponent, H. A Hurst exponent of H = 0.5 indicates that the data does not exhibit

correlations or exhibits short-range correlations only (for example, white noise). A Hurst

exponent of 0.5 < H < 1 indicates that the data exhibits LRTCs. Here we estimated the

Hurst exponent using detrended fluctuation analysis (DFA) [50] which calculates the

exponent as the slope of the line of best-fit of the average root-mean-square fluctuations

across di↵erent box sizes (see Fig. 1C for an example plot and Peng et al. [50] for detailed

methodology). Briefly, the signal is first integrated and then divided into boxes of equal

length, n. For each box a least-squares fit to the data is found and the integrated signal is

detrended by subtracting this local trend. The root mean square fluctuation, F (n) is

calculated and the process is repeated for di↵erent box sizes and the average fluctuation is

compared to box size on a double logairthmic plot. The minimum box size was set to 5 IBIs

and the maximum to one tenth of the length of the IBI sequence (the recommended

maximum window size [51]). This approach has been used by a number of previous authors

to determine the presence of LRTCs in data, including neurophysiological data

sets [24, 52–57]. As the external input was constructed to have true LRTCs, and these will

not be contaminated by noise, it is reasonable to use DFA to calculate a single linear fit to

the data. However, in the absence of such prior knowledge, it is more robust to to use

maximum likelihood techniques along with model selection methods [58,59].

To examine network firing and periods of activity/inactivity within the network dynamics

itself we separated activity using the method of Benayoun et al. [60]. Briefly, two

consecutive spikes within a network are separated as distinct bursts if the time di↵erence

between them is greater than the average time, dt, between consecutive spikes within the

total simulation. Thus, a single burst consists of consecutive spikes which are less than dt

apart. Benayoun et al. used this approach to define avalanches - cascades of network

activity - which have periods of separation between them. In this way, avalanches are the

same as bursts of activity and so the same approach can be used to determine the bursts

here. However, it is worth noting that the term neuronal avalanche is used to define

specifically bursts of activity within a network where the distribution of avalanche sizes

follows a power-law [61–63].
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The average IBI within the network was lower than the average IBI within the external

input. This meant that, for the same simulation length, there are more IBIs within the

network dynamics, so when calculating the DFA exponents (Fig. 1) the maximum box size

is larger in the case of the network firing dynamics than for the external input.

Connectivity formation

All networks were initially randomly connected with 40 % connectivity. All networks were

directed, and connections were also formed and lost in a direction dependent manner.

Connections were updated depending on activity within the network, comparing the firing

times between all neuronal pairs. Let L be a matrix of values where L(i, j) indicates the

likelihood of losing/gaining a connection from neurone i (presynaptic) to neurone j

(postsynaptic). L(i, j) was modified by

L(i, j) = L(i, j) +AP exp

✓
��ti

⌧

◆

following a spike in neurone j, where �ti is the time since the last spike in neurone i, ⌧ is a

decay constant and AP > 0 is the amplitude change when �ti = 0, and by

L(i, j) = L(i, j)�AD exp

✓
��tj

⌧

◆

following a spike in neurone i, where �tj is the time since the last spike in neurone j and

AD > 0 is the amplitude change when �tj = 0.

A connection from i to j was gained (immediately, if there was not already a connection

present) when L(i, j) increased beyond the threshold value g = 2. A connection from i to j

was lost when L(i, j) decreased beyond the threshold value l = �2. In order to better take

into account temporal dynamics within the system (for example if two neurones only spike

together rarely) the values of L decayed with rate ⌧L. Thus, at each time-step:

L(i, j) = L(i, j) exp

✓
� 1

⌧L

◆

The loss-likelihood was initially set to zero for all connections and as in Song et al. [26]

depression in initial simulations was set to be slightly stronger than potentiation with

AP = 0.5, AD = 0.55. We also set ⌧ = 10 and ⌧L = 100, with relatively slow decay of the

likelihood values L allowing for the temporal dynamics of a number of spikes to be taken

into account, and the decay of the spike timing ⌧ relatively fast so as to allow the temporal
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dynamics of the external input to take e↵ect (the periods within the external input are

relatively short and so to have an e↵ect the ‘memory’ within the system must be of a

similar level). We consider changes in the results when these parameters are varied in the

final section of the Results.

Analysis

A number of measures were used to assess how the connection topology changed over the

course of the simulations. Firstly, the proportion of connections in the network (the number

of connections divided by the number of all possible connections within the network) was

used as a straight forward measure to compare whether there were di↵erences in the

evolution of the network with di↵erent types of the external input. To analyse network

topological properties we examined the mean path length and the clustering coe�cient of

the network. Given any two neurones (or, more generally, nodes within a graph) the

shortest path length is the shortest distance needed to be traversed to pass from one node

to the other. As we set all the synaptic weights as equal, the shortest path length is

equivalent to the lowest number of connections between two neurones. The mean path

length is then calculated as the average path length for all pairs of neurones within the

network [64]. Given two neurones both connected to a third neurone, the clustering

coe�cient indicates the likelihood that these two neurones are themselves connected [64]. A

random network has a low mean path length and a low clustering coe�cient [65]. A number

of studies have shown that the neural networks have a similar mean path length to a

random network (of the same size) but are much more clustered indicating that the brain is

a small-world network [2, 27, 29,65,66]. Mean path length and clustering coe�cients of the

networks were calculated using the Brain Connectivity Toolbox, using the functions for

binary directed networks [64].

The values of the mean path length, L, and clustering coe�cient, C, are only really

meaningful when compared to the average values of random [67,68] or regular [65] networks

of the same size (number of connections and number of neurones). We therefore calculated

the values for a random network (Crand and Lrand) by averaging over the values for 50

random directed networks of the same size. Random networks were constructed in this way

for comparison every 100,000 simulation steps (at the same points as the network clustering

coe�cient and mean path length were calculated). The clustering coe�cient and mean path

length of a network from the simulations were then normalised by dividing by the average

values from the random networks to obtain the normalised clustering coe�cient and

normalised mean path length respectively. From these values the small-world index can be
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calculated [67]:

� =
C/Crand

L/Lrand
(0.2)

A value of � = 1 indicates that the network is random, whereas � > 1 indicates that the

network has small-world properties.

We also compared network degree between the simulations by calculating the degree of the

neurones, defined as the number of connections that a neurone makes. As the networks

were directed we compared the in-degree distribution (the number of presynaptic neurones

a neurone has) and the out-degree distribution (the number of postsynaptic neurones a

neurone has) separately.
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