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Abstract: Extracting information related to weather and visual conditions at a given time and space
is indispensable for scene awareness, which strongly impacts our behaviours, from simply walking
in a city to riding a bike, driving a car, or autonomous drive-assistance. Despite the significance
of this subject, it has still not been fully addressed by the machine intelligence relying on deep
learning and computer vision to detect the multi-labels of weather and visual conditions with a
unified method that can be easily used in practice. What has been achieved to-date are rather
sectorial models that address a limited number of labels that do not cover the wide spectrum of
weather and visual conditions. Nonetheless, weather and visual conditions are often addressed
individually. In this paper, we introduce a novel framework to automatically extract this information
from street-level images relying on deep learning and computer vision using a unified method without
any pre-defined constraints in the processed images. A pipeline of four deep convolutional neural
network (CNN) models, so-called WeatherNet, is trained, relying on residual learning using ResNet50
architecture, to extract various weather and visual conditions such as dawn/dusk, day and night for
time detection, glare for lighting conditions, and clear, rainy, snowy, and foggy for weather conditions.
WeatherNet shows strong performance in extracting this information from user-defined images or
video streams that can be used but are not limited to autonomous vehicles and drive-assistance
systems, tracking behaviours, safety-related research, or even for better understanding cities through
images for policy-makers.

Keywords: computer vision; deep learning; convolutional neural networks (CNN); weather condition;
visual conditions

1. Introduction

Cities are complex entities by nature due to the multiple, interconnected components of their
systems. Features of the physical environment extracted from images, or so-called urban scenes,
have great potential for analysing and modelling cities because they can contain information on a
range of factors such as people and transport modes, geometric structure, land use, urban components,
illumination, and weather conditions [1]. In recent years, computer vision techniques have shown
progress in extracting and quantifying these features [2,3].

This article is concerned with the recognition of weather and visual conditions, which are two
related but separate aspects of urban scenes that can be extracted in order to better understand the
dynamics of the appearance of the physical environment [4]. In this study, we refer to visual conditions
as the significant changes in the appearance of cities during dawn/dusk, day or night-time including
the effect of glare on visibility, whereas weather conditions are the meteorological changes of the
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environment due to precipitation including clear, rainy, foggy, or snowy weather. They represent
crucial factors for many urban studies including transport, behaviour, and safety-related research [5].
For example, walking, cycling, or driving in rainy weather is associated with a higher risk of
experiencing an incident than in clear weather [5,6]. Fog, snow, and glare have also been found
to increase risk [6,7]. Importantly, it is not only the inherent risk that different weather and visual
conditions pose to human life that is of interest to researchers. Scene awareness for autonomous
navigation in cities is highly influenced by the dynamics of weather and visual conditions and it is
imperative for any vision system to cope with them simultaneously [8]. For example, object detection
algorithms must perform well in fog and glare as well as in clear conditions, in order to be reliable.
Accordingly, finding an automatic approach to extract this information from images or video streams
is in high demand for computer scientists, planners, and policy-makers.

While there are different methods that are used to understand the dynamics of weather and
visual conditions, a knowledge gap appears when addressing this subject. To date, these two crucial
domains—weather and visual conditions—have been studied individually, ignoring the importance of
understanding the dynamics and impact of one domain on the other. There is no unified method that
can extract information related to both weather and visual conditions from a street-level image that
can be utilised by planners and policy-makers.

Building on the current advances of scene awareness based on computer vision, in this paper, we
present a novel framework, WeatherNet, that aims to recognise and map the dynamics of weather and
visual conditions with a unified method. The framework takes single-images as input and does not
require pre-defined constraints such as the camera angle, area of interest, etc. WeatherNet relies on
multiple deep convolutional neural network (CNN) models that aim to recognise visibility related
conditions such as dusk/dawn, day or night-time, glare, and weather conditions such as clear, fog,
cloud, rain, and snow. The motivation behind WeatherNet is to practically extract and map weather
information in cities that could help planners and policy-makers to analyse cities and contribute to the
intelligent systems of navigation in cities and autonomous driving. Figure 1 shows the output of the
WeatherNet framework.

The rest of this paper is structured as follows. Section 2 reviews the related work, discusses the
methods used and their limitations. In Section 3, we introduce the materials and methods used for
WeatherNet. In Section 4, we show the results of the different CNN models and their diagnostics,
discussing the outcome and the current limitations. Some discussions are provided in Section 5,
before we draw conclusions and present our recommendations for future work in Section 6.
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2. Related Work

Various weather and visual conditions have been detected relying on a wide spectrum of
computer vision algorithms. Here, we categorised them into four broad types: mathematical models,
filter-based models, machine learning models using shallow algorithms, and deep models using a
convolution structure.

2.1. Mathematical Models

Mathematical models for weather detection have focussed mainly on fog detection, with
applications in drive-assistant navigation systems. For instance, [9] developed a statistical framework
based on the mixture of Gaussians to detect binary weather conditions, snow and fog, based on the
dynamics of the spatial and temporal dimensions of images. The method for rain detection senses
the moving textures of rain due to the transparency of water drops relative to light. This approach
requires settings for capturing images to be known such as camera optics and the viewing distance,
etc. Therefore, although the results for detecting snow and fog are promising, the method can only be
applied in specific, controlled cases and is insufficient for capturing different weather events. A method
based on Koschmieder’s law, [10] was developed to detect fog in daytime and estimate visibility
distance from images, where the sky and road are present, based on the theory of how the apparent
luminance of an object is observed against the background (i.e., sky) on the horizon [11]. Apart from
the achieved accuracy, this method is limited for detecting fog during daytime only. Another model
was developed to detect fog based on the Canny edge detection algorithm [12]. While the model
is capable of estimating not only fog, but also the visibility distance from black-and-white images,
the accuracy of the model is reduced when analysing urban scene images crowded with vehicles.
Although the method shows good potential in detecting fog from daytime images, given the nature of
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the model algorithms, the proposed method is limited to fog detection in constraint conditions such as
daytime and requires further development to detect fog at night.

2.2. Filtering-Based Models

Moving toward filtering images, different techniques have been achieved to recognise weather
conditions based on their visual characteristics and features. For example, [13] developed a model
to detect weather conditions such as sunny and cloudy weather based on the global illumination,
relying on the association between scene illumination and weather conditions. [14] presented an
algorithm for weather recognition from images relying on information such as a road, a histogram
of colour, and gradient amplitude. [15] developed a model to detect dense fog from black-and-white
daytime images relying on Gabor filters represented in different scales, orientations, and frequencies.
[16] developed a model to detect raindrops based on the photometric characteristics of raindrops,
relying on variations of the gradient in the image.

The purpose or the accuracy of these individual models may vary. However, the common
limitations of these models are that they all require pre-defined settings for the models to function.
Such settings are often limited for a given purpose or task (i.e., fog detection). This reduces the ability
of the given models to be transferable to tackle the other aspect of weather and visual conditions.

2.3. Machine Learning Models

Machine learning models have shown progress in recognising the multi-class conditions of
weather. For example, Reference [17] developed a model to classify weather conditions using a support
vector machine (SVM) trained on single colour images. However, the model is limited to detecting
three weather conditions: clear weather, light, and heavy rain. Reference [18] used a random forest
classifier to classify weather conditions using tagged images of weather data such as weather condition
(sunny, foggy, cloudy, etc.), temperature, and humidity. Furthermore, Reference [19] developed a
method to classify weather conditions based on a general framework that aimed to extract multiple
features such as sky, rain, snowflakes, shadow, dark channel, saturation, and contrast relying on
k-nearest neighbours and SVM. Still, the achieved models are rather confined for a given sector of
weather classification, in which their methods cannot be transferred to cover the different classes of
weather and visual conditions.

2.4. Deep Learning Models

Computer vision relying on deep models, specifically, CNN models, has shown progress for image
processing tasks and scene awareness [20]. A range of applications based on classifying, segmenting,
and localising pixels from street-level images has become a common approach for understanding the
various components of an urban scene [21–24]. Similarly, various models have been developed to
classify weather from features extracted based on a convolution structure of deep models. For instance,
a CNN model coupled with sparse decomposition was trained to classify weather conditions [25].
Additionally, a binary CNN model was trained to classify images as either cloudy or sunny [26,27].
However, this model remains limited to the given binary classes of weather, ignoring the complexity
of the addressed subject. Building on previous methods, [28] developed a framework relying on
super-pixel masks, CNN, and SVM classifiers to detect three weather classes: rain, fog, and snow.
While this model shows progress in recognising more weather classes, it only sees weather conditions
as exclusive classes, ignoring the co-existence of two or more classes in a single image for a given time.
Finally, to solve the combination issue of the existence of multiple weather class in a single image,
[29] used a CNN based model that includes an attention-layer to allow the model to infer more than a
class for a given time depending on the characteristics of the input image. While this model shows
progress in classifying multiple weather conditions and their combinations (sunny, cloudy, foggy, rainy,
and snowy), it still ignores the dynamics of visual conditions and the time of day that may influence
weather classification accuracy.
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2.5. Summary

Table 1 summarises the aforementioned four approaches of dealing with weather classification
and shows the advantages and disadvantages of each approach.

Based on current literature, there is still on-going research to cover the current limitation in
addressing the weather and visual conditions simultaneously, in which addressing only one domain
would not necessarily cover the dynamics of the appearance of urban scenes. For instance, cities may
appear darker when it rains in the daytime than during clear weather at the same time. While the
above-mentioned models show progress in the given tasks, there are a number of knowledge gaps
that need to be addressed to cover the stated subject of weather and visual classification, which are:
(1) These crucial domains—weather and visual conditions—have been studied individually, ignoring
the importance of understanding the dynamics and impact of one domain on the other. There is no
unified method that can extract information related to both weather and visual conditions from a
street-level image; (2) weather classification has been treated with a limited number of labels, ignoring
the variation of weather conditions. Even when weather is treated as a multi-label classification,
a knowledge gap appears in representing scenes with multiple labels that simultaneously co-exist;
and (3) current models used to classify weather and visual conditions are either limited to a presenting
requirement or are limited in accuracy. These methods are not up-to-date with the state-of-the-art of
machine vision research (i.e., no models rely on residual learning to understand weather).

3. Methodology

3.1. WeatherNet Framework

To address the current knowledge gap, we introduced a framework of parallel deep CNN
models to recognise weather and visual conditions from street-level images of urban scenes, so-called
WeatherNet (see Figure 2). This WeatherNet comprises four deep CNN models to detect dawn/dusk,
day, night-time, glare, rain, snow, and fog, respectively. These models are: (1) NightNet detects the
differences between dawn/dusk, day and night-time. It aims to understand the subtleties of street-level
images despite the dynamics of weather conditions and urban structure; (2) GlareNet detects images
with glare regardless of its source (sun or artificial light) for both dawn/dusk, day and night-time of
various weather conditions. Glare is defined as a direct light source that can be seen to cause rings
or star effect on the length of the camera without any correction; (3) PreciptationNet detects clear,
rainy, or snowy weather for both day and night-time; and (4) FogNet detects the occurrence of fog
for dawn/dusk, day and night-time and whether this fog happens in the existence of clear, snowy,
or rainy weather.

Models 2 and 4 are trained as binary classifiers (0,1) that detect whether one of the aforementioned
events occurs, whereas models 1 and 3 are trained to output one of three classes. The main reasons for
training different sets of CNN models then combining them in a framework are the complexity of the
classification of urban scenes and the mutual occurrence of one or more of the events at the same time.
Figure 3 explains the classes that may occur in one scene by solid arrows, whereas the classes that
are mutually exclusive are not linked. For instance, it may be rainy and foggy during the daytime,
while glare is present. Therefore, combining separate models that tackle a certain event in a binary
fashion would give a better description of the events in a single image, in addition to the simplicity of
the usage and the integration of these models, entirely or partially, for various studies depending on
which factors are useful. On the other hand, this binary format makes the precision of the individual
models independent from each other, which could allow the modification or improvement of one
classifier or more without changing the entire framework.
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Table 1. Comparison of approaches for weather classification.

Approach Mathematical Models Filtering-Based Models Machine Learning Models Deep Learning Models
A

dv
an

ta
ge

• Easily interpreted • Easily interpreted • Faster algorithms • Multi-labelling—transfer learning

• Minimal data required • Minimal data required • Less complex than deep
learning models • High accuracy

• Minimal pre-defined settings

• Unrestricted image dataset

• Easily implemented

D
is

ad
va

nt
ag

e

• Model fit for a specific task • Model fit for a specific task • Model fit for a specific task • Computationally intensive
for training

• User-defined settings • User-defined settings • Requires data fusion for
multiple sources

• Difficult to interpret the
model structure

• Less accurate • Depends of the pixel values
of the image • Require large dataset • Require large, labelled dataset
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Figure 3. Exclusive vs. co-existing classification classes.

The training and testing images are resized to (224 × 224 × 3) and fed-forward to the input layer of
ResNet50 via transfer learning. Apart from the depth of the architecture of the ResNet, which makes this
network a robust one for various classification tasks compared to the previous network, is the concept
of residual learning. For a further explanation of the architecture and the hyperparameters of the
model, see [30]. The gradients, pre-trained on the ImageNet database [31,32], of the different residual
blocks of convolution, pooling, and batch normalisation layers are set to false, whereas the gradient of
the two fully-connected layers of 64 nodes are activated by a ReLU function [33,34], defined as:

f (x) = max (0, x) (1)



ISPRS Int. J. Geo-Inf. 2019, 8, 549 8 of 18

where x is the value of the input neuron.
The output layer of the model gives a binary output of single neurons activated based on a sigmoid

function, defined as:

δ(x) =
1

1 + e−x (2)

where x is the value of the input neuron.
The four CNN models are trained based on the back-propagation of error with a batch size of 32,

with ‘adam’ optimiser [35] and with an initial learning rate of 0.001 and momentum of 0.9. Each model
is trained for 100 training cycles (epochs).

While different architectures of the deep CNN model perform differently [36], it is worth
mentioning that we experimented with different types of CNN models. These included architectures
such as AlexNet [31], VGGNet [37], deeper ResNet (152), or custom-made architecture, similar to
what was introduced in the URBAN-i model [3]. However, transfer learning via ResNet50 for the
stated classification tasks provided optimised results in terms of accuracy and computational speed.
One main reason could be due to the nature of the classification models that differentiate them from
other object-classification tasks. They can be categorised as perception models, as explained by Ibrahim
et al. (2020), that require an understanding of the overall scene while extracting nuanced features for
each class. Therefore, the challenge is to find a CNN architecture that is deep enough to extract these
subtle features without overfitting to the details of each scene, which may include features that do not
belong to weather or visual conditions.

3.2. Data

While Google Street-view images are a good source for various deep learning applications in
cities, the images presented there only represent urban areas at a single weather condition, commonly
clear weather, neglecting other visual and weather conditions that impact the appearance of cities.
On the other hand, there are different datasets for detecting different weather conditions. For instance,
the Image2Weather dataset consists of more than 180,000 images of global landmarks of four weather
categories such as sunny, cloudy, rainy, snowy, and foggy [38]. However, the images used for training
are still limited and represent cities during the daytime. Accordingly, data augmentation techniques
have been applied to enhance the training of each model. The datasets are augmented by rescaling,
shearing, horizontal flips, and zooming. These techniques are often common approaches for best
practice to enhance the training process and the overall performance of deep learning models [20,39].

Similarly, the Multi-class Weather Image (MWI) dataset consists of 20,000 images of different
weather conditions [19]. Another example is a binary weather dataset that contains 10,000 images
belonging to either sunny or cloudy weather [27]. Additionally, a large dataset of images is presented to
describe weather conditions from the aspect of cloud intensity such as clear, partly cloudy, mostly cloudy,
or cloudy including the time and location data [40]. However, the dataset only represents cities at
daytime for cloud intensity, neglecting the other factors.

Put together, creating our own datasets that represent the different environmental conditions of
urban scenes was the only way to conduct this research. We downloaded 23,865 images from the web,
specifically Google images for training and testing, using different queries for each class of the weather
and visual conditions that included day and night-time, glare, fog, rain, snow and clear weather.
After inspecting these images qualitatively and disregarding images that clearly did not belong to any
of these categories, the images were labelled according to each visual class. It is worth mentioning
that the process of manually labelling these images into multi-classes and verifying the outcome is
time-intensive. This is because some images may include features that belong to two exclusive classes
and a thorough categorisation needs to be made after a second inspection. Additionally, they may
not contain enough features to clearly represent a visual class, in which case they must be discarded.
Accordingly, the process increases the workload and the interval of time needed to make realistic
labelling for the data beyond their meta-data. On the other hand, selecting images based on their public
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accessibility without breaching any individual’s copyrights was also a key for selecting or disregarding
images. Subsequently, the images collected were used only for the purpose of training and testing,
without publicly sharing or posting them elsewhere. Table 2 summarises the classes and sample size
of the datasets used for each model. Figure 4 shows a sample of the multi-class images for training,
testing, and validation.
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The datasets for each CNN model were subdivided into training and testing sets in an 80–20%
train-to-test fashion.

Table 2. Sample size and categories of the datasets.

CNN Model Dataset Classes Sample Size

Model1—NightNet Dawn/Dusk 1673
Day 2584

Night 1848
Model2—GlareNet Glare 1159

No glare 3549
Model3—PrecipitationNet Clear 4017

Rain 2343
Snow 2347

Model4—FogNet Fog 718
No fog 3627

3.3. Evaluation Metrics

We evaluated the performance of each CNN model using the following metrics: A cost function
of cross entropy was used to evaluate the model loss during training, testing, and validation. It is
defined as:

E = −
∑n

i
ti log

(
yi

)
(3)



ISPRS Int. J. Geo-Inf. 2019, 8, 549 10 of 18

where ti is the target vector; yi is the output vector; and n represents the number of classes. We also
calculated the accuracy, precision and recall, false-positive rate, and F1-score for each model, defined as:

Accuracy = (TP + TN)/(TP + TN + FP + FN) (4)

Precision = TP/(TP + FP) (5)

Recall = TP/(TP + FN) (6)

False− positive rate = FP/(FP + TN) (7)

F1− score = 2×
Precision×Recall
Precision + Recall

(8)

where TP are the predicted true-positive values; TN are the predicted true-negative values; FP are the
predicted false-positive values; and FN are the predicted false-negative values.

Finally, we compared the performance of our framework with other benchmarks in terms of scope
and accuracy. This discussion is partly qualitative due to the absence of benchmark datasets to compare
the results from all the methods. However, we also evaluated the performance of WeatherNet on two
available datasets, [29,41], and compared the results of our framework with the original outputs.

4. Results

Putting all the algorithms of WeatherNet together, the framework can enable the users to extract
information of georeferenced weather, and the visual conditions to be used for multi-purpose research
related to scene awareness where the weather and visual conditions play a crucial role.

Table 3 summarises the evaluation metrics of each CNN model at the testing phase. After training
the four CNN models for 100 epochs, the accuracies of NightNet, GlareNet, PrecipitationNet, and FogNet
on the test datasets were 91.6%, 94.8%, 93.2%, and 95.6%, respectively. The models also showed high
precision and F1-score with low false-positive rates of 6% or lower.

Table 3. Diagnoses of the Convolutional Neural Network models for the test sets.

CNN Model Loss
(Cross Entropy)

Accuracy
(%)

Precision
(a)

Recall/True-Positive
Rate (a)

False-Positive
Rate (a) F1-Score

Model1—NightNet 0.098 91.6 0.885 0.825 0.045 0.854
Model2—GlareNet 0.040 94.8 0.883 0.895 0.035 0.889

Model3—PrecipitationNet (b) 0.077 93.2 0.959 0.932 0.068 0.947
Model4—FogNet 0.037 95.6 0.862 0.829 0.022 0.845

(a) The metrics are evaluated for the referenced class—indexed zero—for each model. (b) This model contains three
classes, in which the false-positive rate is shared with the classes prior to the referenced class.

In order to further investigate the performance and the fitness of each model during training and
testing, Figure 5 shows the training and validation accuracies for each epoch, highlighting the overall
performance and fitness of each model. It shows the consistency of the accuracies between the training
and testing curves, in which no over-fitting was observed. However, due to the high variance in data
and subtle differences among classes for the same model, the output for each training cycle showed a
high level of instability to converge and reach global minimum loss.
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Table 4 evaluates our framework against other existing methods that deal with some aspect of
weather and visual condition detection. The method used for each model and the yielded accuracy
on the dataset used for each paper are also shown. WeatherNet performed favourably in terms of
accuracy when compared with the other methods, but it should be noted that the datasets used were
not the same.

To provide a quantitative comparison, we applied WeatherNet to two open-sourced datasets used
in previous studies [29,41]. Table 5 describes the datasets used for evaluation, in terms of size, labels,
and the original approach used for prediction. The outcomes and evaluation that our model scored on
these datasets in comparison to the original are shown, using the same evaluation metrics used in the
original research (accuracy for the first dataset, precision and recall for the second dataset). In the case
of the first dataset, WeatherNet outperformed the method used for prediction, whereas in the second
dataset, our models showed higher precision than the original method used for many classification
labels such as clear and rain, and a higher recall for fog and snow detections. For the remaining classes,
a comparable performance was shown.
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Table 4. Evaluations of the state-of-the-art models based on model types, scope, and classification labels.

Methods Night-Time Detection
(Classes) Glare Detection Fog Detection Weather Detection (Classes) Overall Score

[17] Regions of interest—Histograms - - - x (clear, light rain, heavy rain) 0.85

[40] Support Vector Regressor - - - x (clear, partly cloudy, mostly
cloudy, cloudy) NA

[38] Random Forest Classifier - - x x (Sunny, cloudy, rainy, snowy) 0.70

[27] CNN model - - - x (Sunny, cloudy) 0.91

[28] Different types of CNN models - - x x (snowy, rainy) 0.80

[41] SAID ENSEMBLE
METHOD - - - x (sunny, cloudy, rainy) 0.86

[29] CNN-LSTM - - x x (sunny, cloudy, rainy, snowy) 0.91

WeatherNet Multiple Residual deep models x (Dawn/dusk, day, night) x x x (Clear, rain, snow) 0.93

Table 5. Evaluations of the WeatherNet framework on other open-sourced datasets.

Open-Sourced Benchmark
Datasets Total Images Labels Method Testing Scope Original Method Score WeatherNet Score

Multi-class Weather Dataset
for Image Classification [41] 1125 Cloudy, sunshine,

rain, sunset
SAID ENSEMBLE

METHOD II Rain detection Accuracy: 95.20% Accuracy: 97.69%

Multi-label weather dataset
(test-set) [29] 2000 (Sunny, cloudy,

rainy, snowy, foggy) CNN-Att-ConvLSTM

Sunny/clear detection
Fog detection
Rain detection
Snow detection

(Precision/Recall): 0.838/0.843
(Precision/Recall): 0.856/0.861
(Precision/Recall): 0.856/0.758
(Precision/Recall): 0.894/0.938

(Precision/Recall): 0.924/0.827
(Precision/Recall): 0.833/0.940
(Precision/Recall): 0.958/0.651

(Precision/Recall): 0.789/1
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Finally, as we aimed to use the proposed framework pragmatically for recognising and mapping
weather and visual conditions in cities, Figure 6 shows a few examples of the different model
predictions of a wide range of urban scene images taken from different cities globally. It highlights the
diversity of the images used for prediction. Regardless of the change in urban structure, camera angles,
scene lighting, and components, the proposed models showed a high accuracy for scene awareness
related to visual and weather conditions.
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5. Discussion

5.1. What Makes the WeatherNet State-of-the-Art?

Cities are complex systems by nature, in which the dynamics of their appearance is highly
influenced by multiple factors. Weather and visual conditions are some of these prominent factors
that not only impact the appearance of cities, but also complicate the process of understanding them.
In this paper, we introduced the WeatherNet framework to tackle the variations and dynamics of the
appearance of cities from the perspective of weather and visual aspects. From a single street-level
image of an urban scene, the framework was able to capture information related to visual conditions
such as dawn–dusk, day or night-time, in addition to detecting glare. On the other hand, the framework
could detect weather conditions such as clear, fog, rain, and snow. Figure 7 shows samples of the
testing images of various urban settings, visual, and weather conditions.

The innovation of WeatherNet, in comparison to the current state-of-the-art, can be seen in
three aspects:

1. The framework is capable of tackling various weather and visual states including detecting
glare, which has never been tackled in any previous deep learning and computer vision research.
By using a unified and simple method, the WeatherNet framework is capable of classifying day or
night-time, glare, fog, rain, and snow. Most of the previous models recognise only a limited number of
weather conditions, neglecting other vital factors.

2. Unlike the current weather recognition models, the proposed framework does not require any
pre-defined constraints such as applying filters, defining a camera angle, or defining an action area to the
processed image. This simplicity of input makes the proposed framework user-friendly and a base for
practical applications for both computer scientists and non-computer scientists to capture information
related to weather and appearance of cities from user-defined datasets of street-level images.

3. Although weather and visual conditions depend on time and space, there are no weather stations
in each location in cities, and the data forecasted and captured rather represent the agglomeration of
locations rather than a precise condition for each location. This undermines the dynamics of the visual
appearance of cities. Accordingly, the proposed framework captures weather and visual information.
This can enable city planners to map the dynamics of cities according to their weather and visual
appearance, which can be a useful tool to understand the dynamics of the appearance of locations and
the impacts of these weather and visual dynamics to other aspects of cities (i.e., understanding locations
in cities that are most likely to cause accidents or risks under certain weather and visual conditions).
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5.2. Limitations

The proposed framework shows novelty in analysing a wide range of street-level images of cities
that belong to various urban structure, visual, and weather conditions globally. The precision of the
framework in classification depends on the individual accuracy of each trained CNN model. While the
misclassification error for each classifier was below 8% on the test-sets, in this paper, we only aimed
to introduce the concept of WeatherNet without further fine-tuning for the CNN hyperparameters
or introducing a new architecture that may give better results. In future work, more experiments
with different architectures of CNN models or the way the framework is pipelined may enhance
the accuracy.

While the trained deep models showed high accuracy, precision, recall, and F1-score in classifying
scenes regardless of the position of the camera, weather, or lighting conditions, misclassification was
still encountered in some scenes. This occurred most often in scenes where the classification may have
had some ambiguity such as scenes of heavy cloud that tended to seem rainy, or scenes of heavy fog
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that tended to seem snowy. Similar to human eyes, single shots can be interpreted differently on the
first viewing and the quality of classification can be enhanced by seeing sequential images. In future
work, such issues can be solved when video stream data is fed to the framework, where a threshold or
a smoothing function is applied for a sequence of frames of short-time interval. Subsequently, the best
probabilities of the prediction can only be taken into account for classification. The overall accuracy of
multi-frames can be enhanced by a threshold of multiple predictions.

Comparing the performance of the conducted models to previous work remains a limitation due to
the absence of weather datasets that comprise all classes as presented in this paper, despite comparing
the individual models (i.e., including images of weather at day and night-time and images with and
without glare of different weather conditions). However, this makes the proposed model indispensable
in responding to the current knowledge gap in this research area, and for analysing the variations of
urban scene images by deep learning and computer vision, which may be helpful for driver-assistance
systems or planner and policy-makers in cities.

6. Remarks and Future Work

In this paper, we presented a novel framework, WeatherNet, to detect and map weather and visual
conditions from single-images relying on deep learning and computer vision. WeatherNet is capable of
detecting 10 classes: dawn/dusk, day, night, glare, no glare, fog, no fog, clear, rainy, and snowy weather.
We aimed to exemplify the application of deep learning and computer vision for scene-awareness and
understanding the dynamics of the appearance of urban scenes that could be useful for autonomous
applications in cities or elsewhere.

After training four deep CNN models on street-level images from different corners of the globe
of various urban structure, weather conditions, and visual appearances, the proposed WeatherNet
showed a strong performance in recognising the combination of different categories of a single
image. For example, by using the WeatherNet framework, urban scenes of street-level images can be
classified with multiple classes for a given space and time such as ‘image at daytime, with fog and no
rain, in which glare exists’. The novelty of the proposed framework is in its simplicity for practical
applications and for tackling various conditions in a binary fashion, relying on a unified method
without pre-defined constraints for processing images. The proposed framework can be utilised for
various proposes; it may be helpful for data automation and autonomous driving in cities, also, it may
be utilised toward data automation for mapping and urban planning purposes.

For future work, there are two main areas that seem promising to optimise and further validate the
presented framework. First, experimenting with different architectures of CNN models including an
attention-aware layer may enhance the overall performance of the model and allow further multi-task
classification. Second, deploying the weights of the WeatherNet framework on a spatio-temporal
image dataset that is fused with historical meteorological data could be used for further evaluation of
the framework performance in a more practical setting.
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