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Gravitational-wave (GW) observations of binary neutron star (BNS) mergers can be used to measure
luminosity distances and hence, when coupled with estimates for the mergers’ host redshifts, infer the
Hubble constantH0. These observations are, however, affected by GWmeasurement noise, uncertainties in
host redshifts and peculiar velocities, and are potentially biased by selection effects and the misspeci-
fication of the cosmological model or the BNS population. The estimation of H0 from samples of BNS
mergers with optical counterparts is tested here by using a phenomenological model for the GW strains that
captures both the data-driven event selection and the distance-inclination degeneracy, while being simple
enough to facilitate large numbers of simulations. A rigorous Bayesian approach to analyzing the data from
such simulated BNS merger samples is shown to yield results that are unbiased, have the appropriate
uncertainties, and are robust to model misspecification. Applying such methods to a sample ofN ≃ 50 BNS
merger events, as LIGOþ Virgo could produce in the next ∼5 years, should yield robust and accurate
Hubble constant estimates that are precise to a level of ≲2 km s−1 Mpc−1, sufficient to reliably resolve the
current tension between local and cosmological measurements of H0.
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I. INTRODUCTION

The current expansion rate of the Universe is charac-
terized by the Hubble constant H0. While there is an
empirical consensus that H0 ≃ 70 km s−1 Mpc−1, there is a
4.4σ tension between the most recent local and cosmo-
logical measurements: the anchor-Cepheid-supernova dis-
tance ladder gives H0 ¼ 74.2� 1.8 km s−1Mpc−1 [1],
while the Planck cosmic microwave background (CMB)
data, combined with the assumption of a standard flat cold
dark matter (ΛCDM) cosmological model, imply thatH0 ¼
67.3� 0.6 km s−1 Mpc−1 [2]. It is tempting to use this
tension as motivation for rejecting or extending ΛCDM
[3–25], but before settling on such an exciting possibility it
is necessary to ensure that the discrepancy is not due to
limitations in the analysis of one or both of the data sets
[26–39].

The most direct way of resolving this “Hubble trouble”
would be a local measurement of H0 that is completely
independent of the above distance ladder. One of the most
promising options is gravitational-wave (GW) observations
of mergers between compact/relativistic objects such as
black holes (BHs) and neutron stars (NSs). The GW wave-
form from any such merger provides information about the
distance to the system which can then be combined with a
redshift measurement/estimate to constrain H0 [40]. The
advent of the Advanced Laser Interferometer Gravitational-
Wave Observatory and Advanced Virgo (LIGOþ Virgo)
has resulted in the detection of several suchmergers [41,42],
although the utility for measuring H0 depends strongly on
the type of system:
(1) Binaryneutron star (BNS)mergers are particularly pro-

mising, as a possible electromagnetic (EM) counter-
part could be used to identify a host galaxy from
which a spectroscopic redshift measurement could be
made (e.g., Refs. [43–45]). For some fraction of BNS*mortlock@ic.ac.uk
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mergers a counterpart will not be identified, in which
case it is plausible to take a statistical approach,
averaging over the host galaxies that are consistent
with the GW localization [46–48]. It is also possible
that GW data alone could be used to obtain redshift
constraints by exploiting either the narrowness of the
NS mass distribution [49] or NS tidal deformability
[50]. The first BNS merger event detected in GWs,
GW 170817/GRB 170817A [41], provided the
constraint that H0 ¼ 70.0þ12.0

−8.0 km s−1 Mpc−1 [45].
More precise, if necessarily model dependent, con-
straints can be obtained by using EM data to estimate
the inclination of the system [51], with different
analyses of the data from GRB 170817A yielding
H0 ¼ 74.0þ5.3

−13.7 km s−1 Mpc−1 [52] and H0 ¼
68.9þ4.7

−4.6 km s−1 Mpc−1 [53]. Conversely, if it had
not been possible to identify an EM counterpart to
GW 170817, the GW measurements alone would
have yielded H0 ¼ 70.0þ48.0

−23.0 km s−1 Mpc−1 [48].
(2) Binary black hole (BBH) mergers are the strongest

GW sources and have dominated current merger
samples [54]. But the expected lack of any EM
emissions, along with their broad range of masses,
makes it difficult to obtain useful redshift estimates.
The best hope is to take the same sort of statistical
approach as considered above for the BNS mergers
[46,55,56], although the uncertainties in H0 are then
dominated by this limitation (e.g., Refs. [57,58]).

(3) NS-BH mergers might provide tighter distance
constraints than BNS mergers due to both their
higher system mass [44,59] and the possibility that
the BH spin is not aligned with the orbital angular
momentum, which would induce precession of the
orbital plane [60]. It is less clear, however, whether
there would be detectable EM emission from such
mergers; if there is not, then the constraints on H0

would be limited in the same way as BBH mergers
and BNS mergers without counterparts.

As compact mergers with EM counterparts provide the
cleanest H0 constraints and no NS-BH merger has yet been
decisively confirmed in either GWor EM observations, the
focus here is on BNS mergers with EM counterparts and
confirmed host galaxies, although the overall approach
taken here applies to all types of compact binary mergers.
The thirdLIGOþ Virgo observing run should detect several
more BNS mergers which, if EM counterparts could be
identified in all cases, would already give an uncertainty in
H0 smaller than the difference between the local and CMB
values [61,62]. Looking further ahead, detector advances
over the next 5 years could yield a sample of ∼50 BNS
merger events, sufficient to measure H0 with a precision of
≲2 km s−1Mpc−1 [62,63].
Such a sample of BNS mergers with EM counterparts

would be sufficient to resolve the current H0 tension [63],
but only if the data analysis produces H0 estimates that

have correct uncertainties and that are free of systematic
biases (i.e., accurate, as well as precise). One potential
source of bias is selection effects, as detection on the basis
of the observed GW signal-to-noise ratio (SNR) will
preferentially include events for which the measurement
noise has augmented the signal, making such mergers
appear closer than they are. Unless accounted for, this
selection effect would result in a systematic overestimate of
H0 (e.g., Refs. [64,65]). Another potential source of bias is
misspecification of the cosmological model or the BNS
population, as the data-generation process linksH0 to these
other global parameters (e.g., Refs. [45,62,64]). Eventually,
overall calibration uncertainties are likely to provide the
absolute systematic floor to the precision in H0 of a BNS
merger sample; these are currently at the level of a few
percent, although there are clear prospects for further
improvements [66,67].
The main aim of this paper is to test whether a

Bayesian population analysis of the sort described by
Refs. [45,48,62–64,68,69] gives unbiased H0 estimates
with valid uncertainties (i.e., is both accurate and precise)
when applied to realistic BNS merger samples. A secon-
dary aim is to provide a derivation from first principles of
the full posterior distribution appropriate to a sample of
BNS mergers with EM counterparts. Simple predictions for
the uncertainty and selection bias inH0 are given in Secs. II
and III. The sample simulations are described in Sec. IVand
the Bayesian analysis approach is summarized in Sec. V.
The large-sample properties of this approach are then
explored in Sec. VI, with the conclusions and possibilities
for future development summarized in Sec. VII. The
general model and inference formalism is presented in
Appendix A and the simplified BNS inspiral model is
described in Appendix B.

II. PREDICTED UNCERTAINTIES

In order to assess the performance of any data analysis
method it is useful to have a prediction for the expected
uncertainties in the idealized case in which there are no
complicating factors like selection biases or systematic
errors. This gives a target for the uncertainties obtained
from real data and also a guide for assessing whether any
potential systematic effects are likely to be significant.
For a local sample of BNSmergers with counterparts, the

predicted uncertainty in H0 can be estimated by consid-
ering an expanding Euclidean geometry in which distance
D is related to redshift z by D ¼ cz=H0, where c is the
speed of light. Given a measured (spectroscopic) redshift ẑ,
an estimated peculiar velocity v̂, and a GW distance D̂, for a
BNS merger event (or any other low-redshift extragalactic
object) the natural estimator for the Hubble constant is

Ĥ0 ¼
cẑ − v̂

D̂
; ð1Þ
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where the peculiar velocity estimate effectively corrects the
spectroscopic redshift to (hopefully) bring it closer to
the cosmological value. The resultant uncertainty (really
the standard deviation of the estimator) is approximated to
leading order as (cf. Refs. [61,62])

σH ≃
1

D
ðc2σ2z þ σ2v þH0

2σ2DÞ1=2; ð2Þ

where σD is the uncertainty in the distance from the GW
data, σz is the observational redshift uncertainty, and σv is
the uncertainty in the peculiar velocity (which should be no
larger than the observed peculiar velocity dispersion of
∼200 km s−1 [70], but could be smaller if object-specific
information is available).
Using representative numerical values for BNS mergers,

and exploiting the fact that it is already known that H0 is
close to 70 km s−1 Mpc−1, Eq. (2) can be rewritten as

σH≃7.8 kms−1Mpc−1
�

D
43.8Mpc

�
−1

×

��
0.21σz
0.00024

�
2

þ
�

0.20σv
70.0 kms−1

�
2

þ
�

σD
4.9Mpc

�
2
�
1=2

≃7.0 kms−1Mpc−1
�

D
100Mpc

�
−1

×

��
0.43σz
0.001

�
2

þ
�

0.29σv
200 kms−1

�
2

þ
�

σD
10Mpc

�
2
�
1=2

;

ð3Þ

where the first case uses GW 170817 as a reference and the
second uses more generic values appropriate to the sim-
ulations described below. Both cases illustrate that the error
in the reconstruction of the source distance from the GW
data will be the dominant uncertainty unless the SNR is
sufficiently high that σD can be reduced to ≲3 Mpc, which
might be possible for very nearby sources (e.g., the
“golden” events invoked in Ref. [62]). Even for such
sources, however, there would be little value in obtaining
a redshift measurement more precise than the fiducial value
of σz ≃ 0.001 unless the peculiar velocity uncertainty of the
host could be reduced significantly below the cosmological
prior value.
A single BNS merger clearly cannot place interesting

constraints onH0, but if the uncertainty from a sample of N
events scales as N−1=2 then Eq. (3) broadly confirms the
numerical predictions [62,63] that ∼50 events should yield
σH ≲ 2 km s−1Mpc−1 and hence be able to resolve the
current Hubble constant tension. For the purposes of
making quantitative predictions, it is useful to take a more
realistic approach that incorporates both the dependence of
the uncertainty on source distance and the relative numbers
of sources at different distances.

For a given source the GW strain signal is inversely
proportional to its distance, while the strain noise is
additive and a characteristic of the detector (e.g.,
Ref. [71]). Assuming the sources are all intrinsically
identical (i.e., truly “standard” sirens), the SNR can then
be written as ρ ≃ ρ�D�=D, where ρ� is the minimum SNR
required for selection and D� is the maximum distance out
to which the survey can detect such sources. Assuming
further that the relative uncertainty in the distance
reconstruction is related to the SNR by σD=D ≃ 1=ρ, the
absolute distance uncertainty is (cf. Refs. [61,71,72])

σD ≃
D2

D2�
σ�; ð4Þ

where σ� is the distance uncertainty for a source at D�.
Combining this with Eq. (2) gives

σH ≃H0

σ�
D�

�
D2

0

D2
þD2

D2�

�
1=2

; ð5Þ

where D0 ¼ ðc2σ2z þ σ2vÞ1=2=ðH0σ�=D�Þ ≃ 30 Mpc is the
distance beyond which redshift/velocity uncertainties
become unimportant. This relationship also identifies a
distance of ∼ðD0D�Þ1=2 ≃ 30ðD�=D0Þ1=2 Mpc as that for
which a single source in such a survey would yield the
tightest constraint on H0 (cf. the “sweet spot” distance
of Ref. [62]).
The number of detected sources will, out to ∼D�, be

proportional to the volume element, which for the purposes
of this calculation can be approximated as dV=dD ≃ 4πD2.
Ignoring the effect of noise on completeness (which is
discussed below in Secs. III and IV D), the probability of
selection S is PðSjD;D�Þ ¼ ΘðD� −DÞ and so the distance
distribution of detected events is then

PðDjS;D�Þ ≃ ΘðDÞΘðD� −DÞ 3D
2

D3�
; ð6Þ

where Θð·Þ denotes the Heaviside step function.
The optimal estimate from a sample of BNS events

would be to take an inverse variance-weighted average of
Ĥ0 from Eq. (1) for each source, with the weighting
proportional to 1=σ2H from Eq. (5). The resultant uncer-
tainty inH0 for a given sample ofN sources with individual
uncertainties σH;1; σH;2;…; σH;N would then be σH ¼
½ðPN

i¼1 1=σ
2
H;iÞ�−1=2. However, because the number of

sources increases as D2 and for D≳ ðD0D�Þ1=2 the inverse
variance weighting decreases as D−2, the uncertainty
produced by weighting all sources equally is within
∼10% of that given by the optimal scheme, so uniform
weighting is used here for simplicity. The expected
uncertainty from a sample of N events is hence approxi-
mated as the average of the expected variance per event,
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σH ≃
�
1

N

Z
∞

0

dDPðDjS;D�Þσ2D
�
1=2

¼ 1

N1=2

�Z
D�

0

dD
3D2

D3�

�
H0

σ�
D�

�
2
�
D2

0

D2
þD2

D2�

��
1=2

¼ 1

N1=2

�
3

5

�
1=2 H0σ�

D�

�
5
D2

0

D2�
þ 1

�
1=2

; ð7Þ

where Eqs. (4) and (5) have been used. These uncertainties
are shown for different sample sizes as the colored bands in
Fig. 1, from which it is clear that redshift and velocity
uncertainties become irrelevant for sufficiently deep sur-
veys with D� ≫ D0 ≃ 30 Mpc. In this regime Eq. (7)
simplifies to

σH ≃ 1.2 km s−1Mpc−1
�
N
50

�
−1=2

�
σ�=D�
0.15

�
; ð8Þ

where the fiducial value chosen for σ�=D� is, from
simulations, found to be approximately 2=ρ�.
Equation (7) [or, if appropriate, Eq. (8)] represents a

target for any analysis of real or simulated BNS merger
data, and also provides a guide to the level at which
potential biases could have a significant impact.

III. SELECTION BIAS

Given that it is likely that GW observations of BNS
mergers will soon produce uncertainties in H0 sufficiently
small to resolve the current Hubble constant tension, it is
important to ensure that the resultant estimates are not
significantly affected by systematic biases. There can be
systematic errors frommodel misspecification, but the most
pernicious potential bias comes from the fact that any real
BNS merger sample will consist of sources selected on the
basis of the measured SNR of the same GW data that is then
used to obtain distance constraints. This selection cut will
preferentially include cases where the measurement noise
has added to the signal, and which hence are inferred to be
closer than they in fact are; applying any sort of simple
average [e.g., using Eq. (1)] to such a BNS merger sample
would overestimate H0.
The magnitude of this potential bias is somewhat

ambiguous, as it is only defined in the context of a specific
method for obtaining a distance estimate D̂ from the GW
data, but a reasonable approach is to extend the simple
survey model described in Sec. II by including selection
effects. The error in H0 from a single object at distance D
for which the data give a distance estimate that is off by
ΔD ¼ D̂ −D is

Ĥ0 −H0 ≃ −
ΔD
D

H0

≃ −10 km s−1Mpc−1
ΔD=D
0.15

; ð9Þ

where the (cosmological) redshift is assumed to be known
perfectly and the final expression is reasonable for an object
that is close to the detection threshold.
The implied bias from a sample would then be given by

averaging Ĥ0 −H0 over all distances and possible noise
realizations, which would require an explicit model for the
measurement process. A more generic approximation is
possible by considering the distinct behavior in three
different distance ranges: objects with D≲D� − σ� are
all well detected, irrespective of the noise realization, and
so dilute any overall bias; objects close to the survey
horizon with jD −D�j ≲ σ� are detected only if the noise
augments the signal, in which case their distance is
underestimated by jΔDj ≃ σ�; and objects with D≳
D� þ σ� are never detected and so do not affect the
Hubble constant estimate at all. Taking the distance
distribution of detected objects as

PðDjSÞ ∝
8<
:

D2 if 0 ≤ D ≤ D� − σ�;

ðD� þ σ� −DÞðD� − σÞ2=ð2σ�Þ if D� − σ� ≤ D ≤ D� þ σ�;

0 if D > D� þ σ�;

ð10Þ

FIG. 1. The expected range of H0 estimates from samples of
N ¼ 10, N ¼ 30, and N ¼ 100 BNS merger events, as a function
of the maximum distance D� to which sources can be detected.
The offset from zero comes from the potential bias due to
selection effects, which would dominate over sample variance for
N ≳ 10 and D� ≳ 70 Mpc.
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the bias from selection effects would be

ΔHsel ≃
3

1þ 2σ�=D�

�
σ�
D�

�
2

H0

≃ 3.6 km s−1Mpc−1
�
σ�=D�
0.15

�
2

: ð11Þ

The ðσ�=D�Þ2 scaling comes about as this ratio determines
both the range of distances for which selection effects are
important and the magnitude of the distance underestimate
for the fraction of these objects selected. This bias is shown
as the offset in Fig. 1 and, aside from being comparable to
the current difference between the local and cosmological
H0 measurements (Sec. I), is larger than the predicted
uncertainties (Sec. II) from a sample of even N ≃ 10 events
if D� ≳ 70 Mpc. While the exact value of the predicted H0

bias is somewhat model dependent, it is clear that it must be
taken into account if BNS mergers are to be useful in
resolving the current Hubble tension.

IV. SIMULATED BNS MERGER SAMPLES

In order to test both the precision and accuracy of H0

estimates from BNS mergers it is necessary to generate
simulated samples of events that, in particular, are subject
to appropriate selection effects. The population model and
observations described here represent a specific version of
the general structure described in Appendix A. The primary
focus is on the self-consistency of the model, with the
sample selection being performed on the same measured
quantities which are subsequently used to drive the infer-
ence calculation. As such, the model is reasonably simple,
and includes neither realistic detector and noise models (cf.
Refs. [44,62,63]) nor full inference of the individual BNS
merger parameters (cf. Refs. [45,63,73–75]).

A. Cosmology

For the low redshifts of z≲ 0.2 out to which BNS
mergers (and NS-BH mergers) are likely to be detected in
the next decade it is sufficient to adopt the standard Taylor
series approximation to the cosmological expansion his-
tory, in which the dynamics are characterized to leading
order by the deceleration parameter q0 (e.g., Ref. [76]). In a
ΛCDM model q0 ¼ Ωm=2 − ΩΛ, where Ωm is the normal-
ized matter density and ΩΛ is the normalized cosmological
constant. The Planck CMB data imply that Ωm ≃ 0.31 and
ΩΛ ≃ 0.69 [2], and hence that q0 ≃ −0.53, although these
values would come into question if the Planck value of H0

were determined to be incorrect.
In this cosmological model the luminosity distance is

Dðz;H0; q0Þ ≃
cz
H0

�
1þ 1

2
ð1 − q0Þz

�
ð12Þ

and the comoving volume element is

dV
dz

ðH0; q0Þ ≃ 4π
c3z2

H3
0

½1 − 2ð1þ q0Þz�: ð13Þ

B. BNS population

The local BNS population is taken to be defined by
the rate of mergers per unit proper time per unit co-
moving volume, Γ, which has been measured as Γ ¼
1540þ3200

−1220 Gpc−3 yr−1 [41].
As discussed further in Appendix B, an individual BNS

merger can effectively be described by just two parameters:
its chirp mass M ¼ ðM1M2Þ3=5=ðM1 þM2Þ1=5, where M1

and M2 are the masses of the two NSs, and the inclination
of the system to the line of sight ι. The population prior
distribution in these parameters is taken to have the
redshift-independent form

PðM; ιjM̄; σMÞ ∝ NðM;M̄; σ2MÞΘðιÞΘðπ − ιÞ sinðιÞ
2

;

ð14Þ

where1 the sinusoidal distribution in ι encodes the
assumption that these systems have random (and indepen-
dent) orientations.
The distribution of host (line-of-sight) peculiar motions

is taken to be

PðvjσjjÞ ¼ Nðv; 0; σ2jjÞ; ð15Þ

where σjj ≃ 500 km s−1 from observations of local galaxy
motions [70]. The additional motion of the BNS system
relative to the host is unimportant in this context
(Appendix B).

C. Observations

Any BNS merger that has been detected from its GW
emission is subject to intensive follow-up observations, the
primary aim of which is to identify an EM counterpart and
hence a host galaxy. While there is no guarantee of this
process being successful [40,46–48,55,57], it is reasonable
to assume that hosts will be identified for a significant
fraction of BNS mergers [77]. And, as it is these systems
which will provide the best constraints on H0 (e.g.,
Ref. [62]), they are the focus here. Three distinct types
of measurement can provide information about a BNS
merger with a confirmed host: the GW data from the BNS
merger, the host galaxy redshift measurement, and, poten-
tially, an estimate of the (line-of-sight) peculiar velocity of

1Here Nðx; μ; σ2Þ ¼ exp½−ðx − μÞ2=ð2σ2Þ�=½ð2πÞ1=2σ� denotes
a normal density of mean μ and variance σ2.
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the host galaxy. Following the general formalism in
Appendix A 2, the associated likelihoods depend on the
details of the relevant observations and measurements,
which are denoted by O for brevity.
The GW data from a merger produced by a single

detector consists of the discretized and noisy linear combi-
nation of the two GW polarizations weighted by the
detector response function. A full simulation of such data
would require using a numerical general relativity code
(e.g., LALSimulation [78]) to generate such waveforms,
multiplying them by the response function, and adding
noise as appropriate for the instrument. The resultant time
stream(s) could then be analyzed to obtain parameter
constraints using software such as such as LALInference

[73], BILBY [74], or PyCBC [75]. Repeating this procedure
for large numbers of mergers, as required here to examine
the bias of population-level inference approaches (Sec. VI),
would be prohibitive.
Fortunately, it is possible to make use of a more

streamlined approach in which the time series data is never
actually simulated (and hence, even more importantly, the
full parameter estimation procedure is not required).
In order to assess the inference of the population-level
parameters, and H0 in particular, the only requirement on
the model is that the dependence of the likelihood on the
model parameters is accurately represented. For a BNS
merger, almost all of the constraining information about
M, ι, and D is encoded in the relatively simple inspiral
phase, the data from which can be summarized by three
statistics that can be calculated from the full data
(as described in, e.g., Refs. [44,71] and defined in
Appendix B): a measured value of the redshifted chirp
mass M̂z, which is obtained from the time dependence
of the chirp signal, and the measured amplitudes2 of the two
orthogonal strain components, Âþ and Â×.
The uncertainties in these three quantities (σMz

, σAþ , and
σA×

) are determined primarily by the properties of the
observations (noise level, correlations, time resolution,
etc.), and here are taken to effectively characterize the
survey. The utility of BNSmergers as a means of measuring
distances rests on the fact that the redshifted chirp mass can
be measured to high precision (e.g., Refs. [40,41]), and the
small error in this quantity does not contribute significantly
to the overall uncertainty on the merger distance. As such, it
is a reasonable approximation to ignore the uncertainty in
Mz completely, treating the measured redshifted chirp
mass as exact. Both amplitude measurements, however,
have appreciable uncertainties of up to ∼10% for a realistic
sample of detected mergers (cf. Sec. IV F). The errors in
these measured amplitudes not only are the dominant
contributions to the distance uncertainty, but are also linked
to the event selection (Sec. IV D), and so must be included

self-consistently to assess any potential biases. In general
the uncertainties of the amplitudes of the two components
will differ, but for the purpose of the bias analysis
undertaken here it is sufficient to assume that they are
the same, so that σA ¼ σAþ and σA×

is the primary quantity
used to characterize the GW observations here.
As detailed inAppendixB, themain result of applying the

above approximations and simplifying assumptions is that
the likelihood for a single BNS merger can be written as

PðM̂z; Âþ; Â×jM; ι; z; H0; q0; σAÞ
¼ δ½M̂z − ð1þ zÞM�

× N

�
Âþ;

Gð1þ zÞM=c2

Dðz;H0; q0Þ
1þ cos2ðιÞ

2
; σ2A

�

× N

�
Â×;−

Gð1þ zÞM=c2

Dðz;H0; q0Þ
cosðιÞ; σ2A

�
; ð16Þ

where3 Dðz;H0; q0Þ is the luminosity distance as defined in
Sec. IVA. It is likelihoods of this form that are incorporated
into the inference formalism described in Sec. V, although in
the numerical implementation a small uncertainty in the
redshifted chirp mass is included.
Despite the mathematical simplicity of the model sum-

marized in Eq. (16), it captures all the behavior that is
relevant to obtaining constraints on the source distance and
inclination. Examples of the resultant posterior distribu-
tions are shown in Fig. 2 for fiducial BNS mergers with
M ≃M⊙ and D ≃ 100 Mpc, which hence have amplitudes
(i.e., jAþj and jA×j) of up to ∼5 × 10−22. The uncertainties
of σA ≃ 10−23 were chosen to give constraints consistent
with LIGOþ Virgo in its current configuration. The
posterior distributions have a range of morphologies and,
most importantly, exhibit the strong distance-inclination
degeneracy that is the main source of distance uncertainty
(cf. Refs. [45,51,53]).
The reported spectroscopic redshift of a BNS host ẑ is

taken to have a measurement uncertainty σz, with the
associated likelihood

Pðẑjz; v; σzÞ ¼ N

�
ẑ; zþ ð1þ zÞ v

c
; σ2z

�
: ð17Þ

Any BNS merger event with a confirmed host galaxy is
likely to be of considerable scientific interest, implying that
high-quality spectroscopic data will be obtained, so a
typical uncertainty would be σz ≲ 0.001 (cf. the measure-
ment of σz ¼ 0.00024 for the host of GW170807 [79]).
It is possible that the (line-of-sight) peculiar velocity of a

BNS host can be estimated from the positions and/or
motions of nearby galaxies, yielding an estimate v̂, with
uncertainty σv. The associated likelihood is hence taken to be

2The term “amplitude” is something of a misnomer, as these
quantities can be positive or negative. 3Here δðxÞ denotes the Dirac delta function.
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Pðv̂jv; σvÞ ¼ Nðv̂; v; σ2vÞ: ð18Þ

The case in which there is no useful peculiar velocity
information can be encoded by taking σv → ∞, (and,
optionally, v̂ ¼ 0), in which case the uncertainty on the
peculiar velocity is given by the value of σjj assumed from
Sec. IV B.
Combining the simple GW likelihood [Eq. (16)] with the

above models of the redshift measurement [Eq. (17)] and
peculiar velocity data [Eq. (18)], it is possible to produce
constraints on H0 from mock data. This is illustrated
in Fig. 3, which shows results for Âþ ¼ 1.24 × 10−21,
Â× ¼ 1.14 × 10−21, σA ¼ 4.8 × 10−23, ẑ ¼ 0.01, σz ¼ 0,
v̂ ¼ 0, and σv ¼ 200 km s−1. These values were chosen to
mimic the jointH0 and cosðιÞ posterior from GW170817 as
presented in Ref. [45]. The essential phenomenology is
reproduced correctly, with the distance-inclination degen-
eracy still present but less distinct due to the extra
uncorrelated uncertainty from the lack of knowledge about
the (cosmological) redshift.

D. Selection function

The selection of a BNS merger event into the survey is
assumed to be determined by the GW data alone, and to
take the form of a hard cut on the observed SNR, ρ�. For the
simple model described in Appendix B, with measured
strain amplitudes of Âþ and Â× and uncertainty σA, the
observed SNR is

ρ̂ ¼ ðÂ2
þ þ Â2

×Þ1=2
σA

: ð19Þ

The selection probability is then

PðSjÂþ; Â×; σAÞ ¼ Θ
�ðÂ2

þ þ Â2
×Þ1=2

σA
− ρ�

�
: ð20Þ

The implied selection function is given in terms of the
chirp mass M, inclination ι, and source distance D as

PðSjM; ι; z; H0; q0; σA; ρ�Þ

¼
Z

dÂþ

Z
dÂ×PðÂþ; Â×jM; ι; z; H0; q0; σAÞ

× PðSjÂþ; Â×; σAÞ

¼ 1 −
1

π

Z
ϕmax

0

dϕfexp½−r2minðϕÞ=2� − exp½−r2maxðϕÞ=2�g;

ð21Þ
where ϕmax ¼ min½arcsinðρ=ρ�Þ; π�,

FIG. 2. Constraints on the distance D and inclination ι for three representative BNS mergers from the GW data only, using the
simplified model described in Sec. IV. The purple and mauve areas indicate the 68% and 95% highest posterior density credible regions
and the dashed lines show the input parameters.

FIG. 3. Constraints on the Hubble constantH0 and the cosine of
the system inclination cosðιÞ from a BNS merger designed to
mimic GW 170817. These distributions are hence directly
comparable to Figs. 1 and 2 of Ref. [45]. The purple and mauve
areas indicate the 68% and 95% highest posterior density credible
regions.
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rminðϕÞ ¼ max f0; ρ cosðϕÞ − ½ρ2� − ρ2sin2ðϕÞ�1=2g;
rmaxðϕÞ ¼ ρ cosðϕÞ þ ½ρ2� − ρ2sin2ðϕÞ�1=2; ð22Þ

and

ρ ¼ Gð1þ zÞM=c2

Dðz;H0; q0Þ
½cos4ðιÞ þ 6 cos2ðιÞ þ 1�1=2

2

1

σA
ð23Þ

is, from Eq. (16), the mean SNR (cf. Ref. [71]). The
combination of additive noise and the inverse distance
dependence of the signal strength effectively defines a
maximum distance out to which a survey can detect
sources. For the simple model defined by Eq. (16), and
assuming redshifts of z ≪ 1, this is given by

D� ≃
GM
c2ρ�σA

; ð24Þ

but in many cases (e.g., Sec. II) it is most useful to think of
D� itself as a characteristic of a survey.
In reality, the selection of a sample of BNSmerger events

with confirmed hosts also depends on whether it is possible
to confirm a host galaxy from EM follow-up observations
(e.g., Refs. [48]). For the moment all GW events are going
to be the subject of intense follow-up observing campaigns,
and so it is assumed here both that every BNS merger that
occurs in a galaxy will have its host identified and, further,
that a spectroscopic redshift measurement will sub-
sequently be made. While some fraction of events might
be hostless (e.g., Refs. [80,81]), this will just reduce the
useful sample size produced by any given survey; the
inference of H0 should not be affected.

E. Expected number of events

Assuming BNS mergers are independent of each other,
and the parent population of BNS systems is large, it is
reasonable to model the sample size N as a draw from a
Poisson distribution. This is characterized purely by the
expected number of events, which (as described further in
Appendix A 3 b) is given by integrating over the BNS
parameters and the observing period T to obtain

N̄ðΓ;M̄; σM; H0; q0; σA; ρ�; TÞ

¼ T
Z

∞

0

dz
Γ

1þ z
dV
dz

ðH0; q0Þ
Z

∞

0

dM
Z

π

0

dιPðM; ιjM̄; σMÞPðSjM; ι; z; H0; q0; σA; ρ�Þ;

ð25Þ

where PðM; ιjM̄; σMÞ is given in Eq. (14) and
PðSjM; ι; z; H0; q0; σA; ρ�Þ is given in Eq. (21). In general,
these integrals must be evaluated numerically, e.g., using a

Monte Carlo approach such as that described below in
Sec. IV F.
Particular care needs to be taken here as the Gaussian

GW noise model defined in Sec. IV C results in a nonzero
selection probability even for sources at an infinite distance
with a true SNR of ρ ¼ 0. Given that the volume element as
specified in Sec. IV B potentially increases to infinite
redshifts, the combination is a non-normalizable distribu-
tion with an infinite number of expected sources. This is not
a problem in practice as the integration in Eq. (25) can be
truncated at a finite redshift beyond the detection horizon;
hence, this model is best understood as a numerical
approximation.
Another important aspect of Eq. (25) is that N̄ is nearly

independent of H0, and can hence potentially be ignored in
the data analysis step. For low redshifts the comoving
volume element scales as H0

−3, but the effective maximum
redshift of the survey is z� ≃H0D�=c ∝ H0, so the implied
volume in redshift space scales as H0

3; the two effects
cancel out to leading order (cf. Refs. [45,62]). This result
can also be understood from a purely physical point of
view: the detectability of a GW event is not significantly
affected by its recession velocity; only its (luminosity)
distance is important, and so changing the radial integration
variable to D would (largely) remove H0 from the calcu-
lation of N̄.

F. Simulation algorithm

The algorithm used here to generate a self-consistently
selected sample of low-redshift BNS merger events (as
used in Sec. VI) is as follows:
(1) Choose values of the cosmological model parame-

ters H0 and q0 (Sec. IVA) and BNS population
properties Γ, M̄, and σM (Sec. IV B), along with the
observational characteristics of the GW and EM
observations T, σA, ρ�, σz, and σv (Sec. IV C).

(2) Identify a maximum redshift (or, equivalently, dis-
tance) such that there is a negligible probability of
any merger beyond this being detected in the survey.
If a fully realistic population model were used this
redshift could be arbitrarily large, as evolution
would ensure a finite sample size; but, for the simple
nonevolving model used here, care needs to be taken
to avoid including the spurious secondary peak
discussed in Sec. IV E. Less fundamentally, using
a more carefully chosen maximum redshift is also
important for computational efficiency, to avoid the
need for simulating large numbers of undetectable
sources. The approach used for setting zmax here is to
calculate the distance at which a merger with a chirp
mass three standard deviations above the population
mean would require a 3σA positive noise deviation
to be detected. Further adopting a linear redshift-
distance relationship, this gives
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zmax ¼
GH0

c3
M̄þ 3σM
ðρ� − 3ÞσA

: ð26Þ

In the simulations shown in Fig. 4, zmax corresponds
to a maximum distance of Dmax ≃ 900 Mpc,
which is clearly more than sufficient to include all
detectable sources.

(3) Calculate the expected number of BNS mergers with
z ≤ zmax during the observing period T as

N̄max ¼ T
Z

zmax

0

dz
Γ

1þ z
dV
dz

ðH0; q0Þ: ð27Þ

(4) Draw the actual number of mergers in this volume
Nmax from a Poisson distribution of mean N̄max.

(5) For each of these Nmax BNS mergers:
(a) Draw a redshift from the distribution

Pðzjzmax; H0; q0Þ

∝ ΘðzÞΘðzmax − zÞ 1

1þ z
dV
dz

ðH0; q0Þ; ð28Þ

and both a chirp mass and inclination from
PðM; ιjM̄; σMÞ as given in Eq. (14).

(b) Draw measured amplitudes Âþ and Â× (and,
optionally, a measured chirp mass M̂z) from
Eq. (16), and hence calculate the observed SNR,
ρ̂ ¼ ρðÂþ; Â×; σAÞ, according to Eq. (19).

(c) Select the merger into the sample of detected
events if ρ̂ ≥ ρ�.

(d) If the merger is selected then draw a host
peculiar velocity v from Eq. (15), a measured
redshift ẑ from Eq. (17) and, optionally, a
measured peculiar velocity v̂ from Eq. (18).

The output of the above algorithm is a sample of N
detected BNS mergers along with their redshifted chirp
masses M̂z ¼ ðM̂z;1;M̂z;2;…;M̂z;NÞ, measured GW
amplitudes Â ¼ ðÂþ;1; Â×;1; Âþ;2; Â×;2;…; Âþ;N; Â×;NÞ,
their hosts’ spectroscopic redshifts ẑ ¼ ðẑ1; ẑ2;…; ẑNÞ,

and (possibly) their estimated peculiar velocities
v̂ ¼ ðv̂1; v̂2;…; v̂NÞ, alongwith the associatedmeasurement
uncertainties. The algorithm also produces the true redshifts
z ¼ ðz1; z2;…; zNÞ, chirp masses M ¼ ðM1;M2;…;
MNÞ, inclinations ι ¼ ðι1; ι2;…; ιNÞ, and host peculiar
velocities, v ¼ ðv1; v2;…; vNÞ for these selected mergers,
although these quantities are not actually part of a simulated
catalog, and cannot be used in the parameter inference
described in Sec. V.
One important feature of the above approach is that,

while N is a draw from the appropriate Poisson distribution
of mean N̄, the integral in Eq. (25) is never actually
evaluated explicitly. This is not particularly important for
the fairly simple model used here, but it is potentially

FIG. 4. Distributions of the measured SNR ρ̂ and distance (left) and inclination (right) for a simulated sample of 100 selected BNS
merger events (purple) with ρ ≥ ρ� ¼ 12. The much larger number of mergers that were not selected are also shown in orange.

FIG. 5. Comparison of the fiducial best-fit distance D̂ and the
true distance D for both selected (purple) and rejected (orange)
sources. The overabundance of sources close to the maximum
survey distance with D̂ < D would potentially give a biased
estimate of H0, as described in Sec. III.
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critical in the more general cosmological case described in
Appendix A 1. An example of a sample generated in this
way is shown in Fig. 4, in particular illustrating that the
most distant detected sources in the sample are those for
which the noise has conspired to increase the SNR. These
are also typically face-on or face-off sources, despite these
configurations having a low prior probability [Eq. (14)]. If
such data were treated naively, it would produce systematic
underestimates for the distances to mergers close to the
maximum survey distance. For the sample shown in Fig. 5
this would induce a bias of∼2 km s−1Mpc−1 in the inferred
value of H0 (cf. Sec. III).

V. BAYESIAN PARAMETER INFERENCE

A sample of BNS mergers with measured GW data,
spectroscopic host redshifts, and (possibly) estimated

peculiar velocities places constraints on the cosmological
model, the BNS population, and the properties of the
mergers. This is encoded in the joint posterior distribution
of all the parameters. For the population and data model
described above in Sec. IV this has the form PðM; ι;
z; v;Γ;M̄; σM; H0; q0jN;M̂z; Â; ẑ; v̂; σA; σz; σv; ρ�; T; IÞ,
where I represents the prior information assumed about
the cosmological and BNS population parameters.
A derivation from first principles of the general form of
this posterior distribution, valid for arbitrary cosmologies
and BNS population models, is given in Appendix A 4.
This has the same structure and dependencies as the
simpler model described in Sec. IV, so the above posterior
can be obtained from Eq. (A9) by making the identifica-
tions θ → M, β → ðΓ;M̄; σMÞ, Ω → ðH0; q0Þ and
O → ðσA; σz; σv; ρ�; TÞ. This gives

PðM; ι; z; v;Γ;M̄; σM; H0; q0jN;M̂z; Â; ẑ; v̂; σA; σz; σv; ρ�; T; IÞ
∝ PðΓ;M̄; σMjIÞPðH0; q0jIÞ exp½−N̄ðΓ;M̄; σM; H0; q0; σA; ρ�; TÞ�

×
YN
i¼1

Γ
1þ zi

dV
dz

ðH0; q0ÞPðMi; ιi;M̄; σMÞPðM̂z;i; Âþ;i; Â×;ijMi; ιi; zi; H0; q0; σAÞPðvijσjjÞPðẑijzi; vi; σzÞPðv̂ijvi; σvÞ;

ð29Þ

where the expected number of detected mergers
N̄ðΓ;M̄; σM; H0; q0; σA; ρ�; TÞ is defined in Eq. (25),
the volume element dV=dzðH0; q0Þ is given in Eq. (13),
the BNS demographic PðM; ι;M̄; σMÞ is given in
Eq. (14), the GW likelihood PðM̂z; Âþ; Â×jM; ι; z; H0;
q0; σAÞ is given in Eq. (16), the peculiar velocity prior
PðvjσjjÞ is given in Eq. (15), the redshift likelihood
Pðẑjz; v; σzÞ is given in Eq. (17), and the peculiar velocity
likelihood Pðv̂jv; σvÞ is given in Eq. (18).
The prior in the cosmological parameters is taken to be

PðH0; q0jIÞ
∝ NðH0; Ĥ0; σ2HÞΘðq0 þ 2ÞΘð1 − q0ÞNðq0;−0.5; 0.52Þ;

ð30Þ

where the H0 prior is centred on Ĥ0 ¼ 70 km s−1Mpc−1

and has a width of σH ¼ 20 km s−1Mpc−1. The trunca-
tion in q0 avoids the region of parameter space
(q0 > 1=2zmax − 1 ≃ 1.1) in which dV=dz drops to zero
inside the simulation volume described in Sec. IV F. For
samples of more than a few BNS mergers these priors have
a minimal effect on the inference of H0 (Sec. VI).
The BNS population parameters M̄, σM, and Γ could be

fit along with the cosmological parameters, but doing so is
numerically prohibitive (as explained below), given the
large number of simulations needed for the tests described

in Sec. VI. The prior in the population parameters is hence
taken to be

PðΓ;M̄; σMÞ ¼ δðΓ − Γ̂ÞδðM̄ − ˆ̄MÞδðσM − σ̂MÞ; ð31Þ

where the assumed values are Γ̂0 ¼ 1540 Gpc−3 yr−1,
ˆ̄M ¼ 1.2 M⊙, and σ̂M ¼ 0.12 M⊙.
Evaluating the posterior [Eq. (29)] requires calculating

the expected number of detectable events N̄ for different
values of the unspecified model parameters, in this case H0

and (if relevant) q0. Rather than evaluate Eq. (25) at every
location in parameter space, it is more efficient to estimate
this integral using a Monte Carlo approach for a grid of
models and then fit a smooth function to capture its
parameter dependence. A 25-point grid of H0 (and q0)
values and a fourth-order polynomial were used, although
the results are insensitive to these specific choices.
With this fit in hand, the 402-parameter4 joint posterior

for a given catalog was explored using Hamiltonian
Monte Carlo [82] as implemented in Stan [83,84]. This
yields ∼700 independent samples from each marginal H0

posterior (from 2000 total samples) in 25 seconds on four
Intel Xeon (2.4 GHz) CPUs, which is sufficient to analyze

4The parameters are H0, q0, and a true redshift, peculiar
velocity, chirp mass, and inclination for each of the 100 BNS
mergers.
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large numbers of simulations. The Stan model code and
Python driver used in this analysis are publicly available at
https://github.com/sfeeney/hh0.

VI. RESULTS

The inference formalism described in Sec. V can be
tested on simulated BNS merger samples generated
self-consistently as described in Sec. IV F. The data sets
were generated with these parameter values: H0 ¼
70 km s−1Mpc−1, q0 ¼ −0.5 or a linear Hubble relation-
ship, Γ ¼ 1540 Gpc−3 yr−1, M̄ ¼ 1.2 M⊙, and σM ¼
0.12 M⊙. The observations are defined by σA¼2×10−23,
ρ� ¼ 12, σjj ¼ 500 km s−1, σv ¼ 200 km s−1, and σz ¼
0.001. This setup gives a maximum survey distance of
D� ≃ 250 Mpc and typical Hubble-flow velocity uncer-
tainties of ∼360 km s−1.
One thousand independent merger catalogs of N ¼ 100

selected events were generated for each of two cosmologi-
cal scenarios: a linear Hubble relationship described by H0

alone, and the quadratic relationship described by H0 and

q0, as set out in Sec. IVA. The resultant posterior
distributions inH0 are shown for 25 independent simulated
samples of N ¼ 100mergers in the left panels of Fig. 6 (for
the linear Hubble relation) and Fig. 7 (for the quadratic
Hubble relation). Samples of this size are clearly approach-
ing the asymptotic Gaussian regime, with the quadratic
Hubble relation posteriors being slightly broader (and more
skewed) than in the linear setting due to the degeneracy
between H0 and q0. The right panels of Figs. 6 and 7 show
the distributions of posterior widths for the full sets of 1000
catalogs. These distributions, whose characteristics are
summarized in Table I, show that posteriors formed from
samples of 100 BNS mergers have similar uncertainties
(with ∼33% variations in width), indicating that there is
minimal intersample variance. However, the peaks of the
H0 posterior from individual samples can be scattered
significantly high or low (as was the case for the single
sample used in Ref. [63]).
The distribution of maximum-posterior (Ĥ0;MAP) values

from samples of N ¼ 100 events are shown in the center
panels of Figs. 6 and 7. For both Hubble relations, the

FIG. 6. Left: H0 posteriors for 25 independent 100-BNS samples, generated assuming a linear Hubble relation. The posteriors are
colored dark purple to light orange by their MAP H0 values. Center/right: Distribution of MAP H0 values and posterior standard
deviations for the full set of 1000 100-BNS samples.

FIG. 7. As in Fig. 6, but generated assuming a quadratic Hubble relation. From left to right: Example H0 posteriors (colored from low
to high MAP value) and distributions of MAP H0 values and posterior standard deviations for 1000 100-BNS samples.
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distribution of Ĥ0;MAP values is centered on the true
underlying value, indicating that the method is unbiased
in the presence of selection effects. The average bias for the
two Hubble relations, defined as the difference between
Ĥ0;MAP and H0, is listed in Table I and is within a standard
deviation of zero in both cases.
The robustness of this approach, and particularly the

sensitivity of the H0 constraints to the misspecification of
M̄ and σM, can be assessed by conditioning the inference
on values for these parameters that are different from those
used in the simulations. Figure 8 shows posteriors on H0

and q0 inferred using three different BNS population priors
for a single 100-event sample with chirp masses generated
from the fiducial model [Eq. (14)]. The joint posteriors

obtained for an offset prior with ˆ̄M ¼ M̄þ σM and σ̂M ¼
σM are shown by the pink dashed curves; results for a

broadened prior with ˆ̄M ¼ M̄ and σ̂M ¼ 4σM are shown
by the orange dot-dashed curves. The constraints on the
cosmological parameters in both cases differ insignificantly

from those obtained using the correct model ( ˆ̄M ¼ M̄ and
σ̂M ¼ σM), as shown by the solid purple curves.

VII. CONCLUSIONS

Using a rigorous Bayesian procedure to analyze realistic
samples of BNS mergers gives estimates of the Hubble
constant that are unbiased in the presence of selection effects,
and robust to the misspecification of the other cosmological
parameters or the BNS population model. The resultant
uncertainties match expectations, confirming that this
method is both accurate and precise. Applying suchmethods
to the sample of∼50BNSmergers that could be produced by
LIGOþ Virgo in the next∼5 years should yield a robustH0

estimate accurate to less than2 km s−1 Mpc−1. Thiswouldbe
sufficient to resolve the current tension between local and
cosmological measurements of H0.
While the formalism derived and implemented here is very

general and applicable in an arbitrary cosmological setting,
the primary focus of the simulations was on self-consistency,
in particular with the same selection rule(s) used both in the
sample generation and the posterior calculations. In order to
take such an approach for sufficiently large numbers of
simulations, it was necessary to adopt a simplified model of
the GWwaveform and fix some population-level parameters.
One obvious extension of this work would be to use full
numerical simulations of BNS and NS-BH inspirals and their
resultant time series, using a simplified GW waveform and
likelihood analysis such as BAYESTAR [85] or, more ambi-
tiously, full inference using LALInference [73], BILBY [74], or
PyCBC [75]. A single simulated sample of 51 BNS mergers
was analyzed using LALInference in Ref. [63], suggesting that
even with realistic individual object constraints the regime of
asymptotic normality has been reached, but this remains to
be demonstrated fully.
While the near-complete decoupling of the BNS mass

distribution from the cosmological parameters due to the
tight chirp mass constraints is central to this entire method
of measuring the Hubble constant [40], it would also be
preferable to extend the Bayesian inference formalism to
include the population parameters as well, something
which will be more important for NS-BH merger samples
for which there is less prior knowledge. A related extension
would be to include a more realistic model of the EM
counterpart detection process, in particular the correlation
between GW selection and counterpart identification due to
viewing angle dependencies. This will become particularly
important in the context of GW-based constraints on H0

and other cosmological parameters from potential com-
bined samples of hundreds to thousands of BNS, NS-BH,
and BBH mergers expected in the next decade with
upgraded and new GW detectors (e.g., Refs. [86,87]).
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APPENDIX A: BAYESIAN INFERENCE OF
COSMOLOGICAL PARAMETERS

FROM BNS MERGERS

The task of inferring the Hubble constant from BNS
merger events can be thought of as a special case of the more
general problem of cosmological parameter inference from
such data (e.g., Refs. [46,72,88,89]). Combined with the fact
that a Euclidean approximation is insufficient even for

current low-redshift BNS merger samples, taking a fully
general approach and then making low-redshift approxima-
tions ensures that any such simplifications are done rigor-
ously. The BNS merger population model (Appendix A 1),
data (Appendix A 2), and sample selection (Appendix A 3)
have the same structure as the more specific simulation
described in Sec. IV. These ingredients are then combined
self-consistently to obtain both the full posterior distribution
and the marginalized posterior in the cosmological param-
eters (Appendix A 4).

1. Physical model

A necessary ingredient for any Bayesian inference
formalism is a generative model which could be used to
simulate a mock data set. For the case of BNS mergers this
includes both a cosmological model (Appendix A 1 a) and
the BNS population (Appendix A 1 b), although it is
primarily the dependence structure of the model—rather
than specific functional forms—that is required at this
stage. This physical model includes neither measurements
(Appendix A 2) nor sample selection (Appendix A 3 a),
which are kept distinct as they play different roles in the
simulation and inference. The overall structure of the model
is summarized in Fig. 9.

FIG. 9. Network diagram for the hierarchical model describing the BNS population and data. Quantities in single circles are model
parameters, while quantities in double circles are measured values. These quantities are linked by the probability distributions in orange
rectangles: the top row are parameter priors, the middle row describes the population model, and the bottom row defines the (object-
level) likelihood. The arrows linking the quantities and distributions define the forward/generative model that could be used to simulate
samples and measurements. The quantities inside the red rectangular plate are specific to a single BNS merger event, and the detected
events are indexed by i ∈ f1; 2;…Ng.

UNBIASED HUBBLE CONSTANT ESTIMATION FROM BINARY … PHYS. REV. D 100, 103523 (2019)

103523-13



a. Cosmology

GW signals from BNS events can, in principle, be seen to
cosmological distances and so must in general be analyzed
in the context of a full cosmologicalmodel. This is described
by a set of parameters Ω ¼ ðH0;Ωm;ΩΛ;ω;…Þ which
between them specify the contents of the universe and its
expansion history. None of the results presented here depend
strongly on the particular type of cosmological model
adopted, so Ω is used in order to preserve generality,
although it is implicit thatH0 is always included in this list.
The radial coordinate used to specify position along the

line of sight is the (cosmological) redshift z, defined strictly
in terms of the ratio of the cosmological scale factor to the
current value. This is distinct from the observable redshift
z̃, which in general differs from z due to the source’s
peculiar velocity relative to the Hubble-Lemaître flow.
Assuming that this motion is nonrelativistic, the observable
redshift is given in terms of the line-of-sight component of
the source’s peculiar velocity v as

z̃ ¼ ð1þ zÞ
�
1þ v

c

�
− 1 ¼ zþ ð1þ zÞ v

c
; ðA1Þ

where positive v hence corresponds to motion away from
the observer.
The redshift and cosmological model combine to specify

both the luminosity distance Dðz;ΩÞ and the comoving
volume element dV=dzðΩÞ. Expressions for Dðz;ΩÞ and
dV=dzðΩÞ are available for standard cosmological models
[90,91], although the model is kept general here. The
numerical marginalization scheme described in Sec. IVA
requires the function zðD;ΩÞ, defined such that
z½Dðz;ΩÞ;Ω� ¼ D½zðD;ΩÞ;Ω� ¼ 1 for any cosmological
model (and any non-negative value of z or D). These
inverses exist in standard cosmological models as the
luminosity distance increases monotonically with z [76].

b. The BNS merger population

The BNS population is defined primarily by the rate of
mergers per unit proper time per unit comoving volume,
Γðz; βÞ, where β are the parameters which describe the
population model. The expected number of events in the
redshift range z to zþ dz that would be registered by a
perfect all-sky detector in a time interval dt is hence

dN̄ ¼ Γðz; βÞ
1þ z

dV
dz

ðΩÞdzdt; ðA2Þ

where the reduction by a factor of (1þ z) comes about due
to time dilation from the source frame, and dV=dzðΩÞ is the
comoving volume element defined in Appendix A 1 a.
The properties of a single BNS merger are separated into

intrinsic system parameters θ (the NS masses, spins, etc.),
and observer-dependent quantities, taken here to be the
inclination of the system with respect to the line of sight ι,

and the line-of-sight peculiar velocity of the host galaxy v
(and z, although this is already incorporated in the overall
rate). For a given redshift, the population model is a
(normalized) probability distribution of the form

Pðθ; v; ιjz; β;ΩÞ ¼ Pðθjz; βÞPðvjz;ΩÞΘðιÞΘðπ − ιÞ sinðιÞ
2

:

ðA3Þ

This encodes the assumption that BNS systems are oriented
randomly, leading to the sinusoidal distribution in ι.
Some care is required in treating the peculiar velocity of

the BNS merger, as it has two distinct contributions: the
motion of the host galaxy relative to the Hubble-Lemaître
flow, and the orbital motion of the merger system within the
host galaxy. (Only BNS mergers with counterparts are
considered here, cf. Ref. [77], and all such systems have, by
definition, a host galaxy.) Both of these motions are
expected to have typical speeds of ∼102 km s−1, although
they enter the inference formalism in distinct ways. In
physical terms the peculiar velocity of the host galaxy v is
determined by the local distribution of matter, but even in
the absence of source-specific data (Appendix A 2 c)
knowledge of cosmological structure formation implies a
distribution of the form Pðvjz;ΩÞ. While there is a formal
link between the peculiar velocity and the cosmological
parameters, this is negligible compared to the link through
the GW data, and so the dependence of Pðvjz;ΩÞ on Ω can
be ignored. This reflects the status of the host’s peculiar
velocity as a nuisance parameter in this context.

2. BNS merger data

Three distinct types of measurement provide information
about the properties of a BNS merger event: GW strain
time-series data (Appendix A 2 a), a spectroscopic redshift
for the host galaxy (Appendix A 2 b), and, potentially, an
estimated (line-of-sight) peculiar velocity for the host
galaxy (Appendix A 2 c). All of these measured quantities
have associated uncertainties (and other details associated
with the measurement process); for brevity, all such
quantities are combined into a single parameter O that
characterizes the observations.

a. GW data

The GW signal from a merger event comprises
two orthogonal polarizations, hpðt; θ; ι; v; z;ΩÞ, with
p ∈ fþ;×g, where the form of the t dependence is
determined by the intrinsic merger properties θ, the
observer-dependent quantities ι, v, and z, and the cosmo-
logical parameters Ω. The full waveforms depend on the
complicated nonlinear physics of the merger, but the
dependence on v and z is determined purely by the physics
of GW propagation in an expanding universe. The GW
signal in the far-field regime is subject to a time dilation by
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a factor of ð1þ zÞð1þ v=cÞ and the amplitude scales
as 1=DPðz;ΩÞ, where DPðz;ΩÞ is the proper distance
to redshift z, so the expression DPðz;ΩÞhp½ðt − t0Þ=
ð1þ zÞð1þ v=cÞ; θ; ι; v; z;Ω� is independent of redshift
and peculiar velocity. The dependence of the strain on the
peculiar velocity is sufficiently small that it can be ignored
(Appendix B), so hpðt; θ; ι; v; z;ΩÞ → hpðt; θ; ι; z;ΩÞ is
assumed.
The GW data for a merger comprise a discretized time

series of measured strains, denoted by ĥ for simplicity,
along with associated uncertainties, implicitly included in
O. The likelihood for the strain data hence has the form
Pðĥjθ; ι; z;Ω; OÞ, which is kept general in this derivation;
the specific form used in the simulations described in
Sec. IV is detailed in Appendix B.

b. Redshift measurement

The measured spectroscopic redshift of a BNS host ẑ is
linked to both its cosmological redshift z and its line-of-
sight peculiar velocity v, leading to a likelihood of the form
Pðẑjz; v;OÞ, with the observable redshift given in Eq. (A1).

c. Peculiar velocity estimates

It is possible that the (line-of-sight) peculiar velocity of a
BNS host can be estimated from the positions and/or
motions of nearby galaxies, yielding an estimate v̂. In
the absence of further information, this contribution to the
likelihood has the form Pðv̂jv;OÞ, where the information
on the positions and/or velocities of nearby galaxies is left
implicit. It is unrealistic to consider the case that the
uncertainty is small or negligible, as there is no credible
way to get precise peculiar velocity information; however,
it is useful to consider the limit that the uncertainty is
infinite, which is equivalent to there being no useful
peculiar velocity data at all for a given system. This
situation could also be recovered by removing v̂ and the
associated likelihood from the calculation altogether.
It is also possible in principle that the line-of-sight

component of the orbital motion of the merger relative
to its host galaxy could be estimated (e.g., through the
combination of a precise location and rotation curve),
although the impact of this on the GW data is minor
anyway (Appendix B) so this is not explored further here.

3. Sample of BNS events

The full BNS merger data set from a GW survey (and
follow-up observations) is a catalog of N selected merger
events, each with associated GW data ĥ ¼ ðĥ1; ĥ2;…; ĥNÞ,
redshift measurements ẑ ¼ ðẑ1; ẑ2;…; ẑNÞ, and (possibly)
host peculiar velocity information v̂ ¼ ðv̂1; v̂2;…; v̂NÞ, as
described in Appendix A 2. The additional model ingre-
dients needed to define the sample generation process is the
selection rule (Appendix A 3 a), which then determines the
number of selected events (Appendix A 3 b).

a. Selection

The selection of a BNS merger event into a sample is
assumed to be determined by the GW data alone, and to
take the form of a hard cut on some statistic calculated from
the GW data ĥ. This function is denoted ρðĥ; OÞ and can be
thought of as the observed SNR (or a proxy for this). The
form of ρðĥ; OÞ is not as important as the fact that it is
deterministic, meaning the selection probability can be
written as

PðSjĥ; OÞ ¼ Θ½ρðĥ; OÞ − ρ��: ðA4Þ

The fact that the selection is a deterministic function of the
data means that for any event in a selected sample, ρ̂ ¼
ρðĥ; OÞ ≥ ρ� and so PðSjĥ; OÞ ¼ 1, a critical fact [92]
which simplifies the parameter inference calculation
(Sec. V).

b. Number of events

Modeling the BNS merger population as a realization of
a Poisson point process [93], the number of detected events
in a sample is drawn from the Poisson distribution

PðNjΩ; β; OÞ ¼ ΘðNÞ ½N̄ðβ;Ω; OÞ�N exp½−N̄ðβ;Ω; OÞ�
N!

;

ðA5Þ

which is characterized purely by the expected number of
events N̄ðΩ; β; OÞ. This is obtained by integrating the
product of the event rate and the detection probability
(assumed to depend only on the GW data) over the BNS
merger properties, which gives

N̄ðβ;Ω; OÞ ¼ T
Z

∞

0

dz
Γðz; βÞ
1þ z

dV
dz

ðΩÞ

×
Z

dθPðθjz; βÞ
Z

π

0

dι
sinðιÞ
2

×
Z

dĥPðĥjθ; ι; z;Ω; OÞΘ½ρðĥ; OÞ − ρ��;

ðA6Þ

where the integral with respect to t yields the observing
time T, which is included in O along with ρ�. In general,
this integral must be evaluated numerically, e.g., using a
Monte Carlo approach such as that described in Sec. IV F,
although in some applications this can be avoided
(e.g., Ref. [64]).

4. Parameter inference

The general inference task here is to obtain constraints
on the full set of model parameters given all the data
on a sample of N BNS merger events, indexed by
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i ∈ f1; 2;…Ng. The model, defined in Sec. IV, is charac-
terized by the cosmological parameters Ω, the BNS
population parameters β, and the BNS mergers’ physical
properties θ ¼ ðθ1; θ2;…; θNÞ, host redshifts z ¼ ðz1;
z2;…; zNÞ, and peculiar velocities v ¼ ðv1; v2;…; vNÞ;
the data for the N events are, as described in Sec. IV C,
the GW measurements ĥ ¼ ðĥ1; ĥ2;…; ĥNÞ, redshift mea-
surements ẑ ¼ ðẑ1; ẑ2;…; ẑNÞ, and (possibly) peculiar
velocity information v̂ ¼ ðv̂1; v̂2;…; v̂NÞ. Combined with
a description of the sample selection (Appendix A 3), this is
sufficient to calculate the joint posterior distribution in all
of the parameters (Appendix A 4 a) and the marginalized
distribution in the parameters of interest (Appendix A 4 b).

a. Joint posterior distribution

The constraints on the cosmological parameters, BNS
population, and the individual events implied by a sample
of N detected BNS mergers are fully described by the joint
posterior distribution in all of the model parameters
Pðθ; ι; z; v; β;ΩjN; ĥ; ẑ; v̂; O; IÞ, where I is the prior infor-
mation assumed about Ω and β. The knowledge about the
cosmological model and the BNS population are assumed
to be independent, so that the prior distribution factorizes as
PðΩ; βjIÞ ¼ PðΩjIÞPðβjIÞ; the prior information on all of
the other parameters is specified by Ω and β, and so it is
conditionally independent of I. The posterior is conditioned
not only on the obvious data for each of the merger events
(i.e., ĥ, ẑ, and v̂), but also on the size of the sample (i.e., the
value of N) and hence implicitly on the fact that the GW
data from each detected event must satisfy the selection
criterion outlined in Appendix A 3 a.
The task now is to write the joint posterior distribution

in terms of the functions/distributions defined in
Appendices A 1–A 3. It is useful to explicitly introduce
the fact that each of the merger events was selected,
denoted S ¼ ðS1; S2;…; SNÞ following Appendix A 3 a.
This can be added to the list of quantities being conditioned
on because the selection process defined in Eq. (21) is
deterministic—whether S is true can be determined from
ĥ—which means that including S does not add any extra
information: Pðθ; ι; z; v; β;ΩjN; ĥ; ẑ; v̂; O; IÞ ¼ Pðθ; ι; z; v;
β;ΩjN;S; ĥ; ẑ; v̂; O; IÞ. The reason for including S is that it
gives the freedom to condition on selection alone, which
allows the un-normalized posterior to be written as

Pðθ; ι; z; v; β;ΩjN; ĥ; ẑ; v̂; O; IÞ
∝ PðΩjIÞPðβjIÞPðNjΩ; β; OÞ

×
YN
i¼1

Pðθi; ιi; zi; vi; ĥi; ẑi; v̂ijSi; β;Ω; OÞ: ðA7Þ

The first two terms are the prior distributions on the
cosmological and BNS population parameters and the third
term encodes the constraints provided by the number of
detected events (Sec. IV E), but the terms in the product still

require some manipulation to be written in terms of the
distributions which define the model. Taking any one such
term and successively applying Bayes’ theorem, the chain
rule, and the law of total probability then yields the joint
distribution in the intrinsic and observed properties of a
selected merger event as

Pðθ; ι;z;v;ĥ; ẑ; v̂jS;β;Ω;OÞ

¼ 1

N̄ðΩ;β;OÞ
Γðz;βÞ
1þz

dV
dz

ðΩÞPðθjz;βÞΘðιÞΘðπ− ιÞ

×
sinðιÞ
2

Pðvjz;ΩÞPðĥjθ; ι;z;Ω;OÞPðẑjz;v;OÞPðv̂jv;OÞ;
ðA8Þ

where the fact that PðSjĥ; OÞ ¼ 1 for selected events has
been used to omit this term, and the normalizing constant is
equal to the expected number of events in the sample, given
in Eq. (A6).
Inserting this object-level distribution and the Poisson

distribution of the number of events in Eq. (A5) into
Eq. (A7) then gives the un-normalized joint posterior
distribution in all of the model parameters as

Pðθ; ι; z; v; β;ΩjN; ĥ; ẑ; v̂; O; IÞ
∝ PðΩjIÞPðβjIÞ exp½−N̄ðβ;Ω; OÞ�

×
YN
i¼1

Γðzi; βÞ
1þ zi

dV
dzi

ðΩÞΘðιiÞΘðπ − ιiÞ

× sinðιiÞPðθijzi; βÞPðĥijθi; ιi; zi;Ω; OÞ
× Pðvijzi;ΩÞPðẑijzi; vi; OÞPðv̂ijvi; OÞ; ðA9Þ

where the selection indicators S have been omitted because
(as argued above) they do not contain any extra information
beyond that already encoded in ĥ. This has the standard
structure for the full likelihood of a Poisson point process
[93], in particular with the expected number of detected
sources appearing only in the exponential term, although
the number of different component distributions in the
product somewhat obscures the link to this standard
statistical model. This posterior has the characteristic
Poisson point process structure that also appeared in
e.g., Refs. [64,69].
Equation (A9) represents the main result of the above

model formulation as it encodes all of the links between the
measured data and the quantities of interest. Other than the
assumption of random orientations encoded in the sinus-
oidal inclination distribution, it is deliberately kept com-
pletely general, with only the structure of the conditional
dependencies from Fig. 9 enforced. Importantly, this result
is valid in a fully cosmological context, which means that it
also provides a rigorous route to obtaining low-redshift
approximations without the need for any heuristic argu-
ments about the relationship between distance, redshift, and
line-of-sight velocity.
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b. Marginalization over nuisance parameters

Themain scientific aim here is the inference of the cosmo-
logical parameters, and specificallyH0, which casts all of the
individual and population-level BNS quantities as nuisance
parameters to be integrated out. For the simple model de-
scribed in Sec. IV this is done by sampling the joint posterior
distribution, as described in Sec. V, and so there is no need to
explicitly calculate the marginalized posterior distribution.
The alternative approach [45,62,63], which will likely be
needed when analyzing real data, is to separately margin-
alize over the redshift parameters constrained by theEMdata
and then use samples from the individual merger posteriors
to marginalize over those parameters. Equation (A9) can
be used as the basis for this approach, with the only
potential difference coming from how the prefactor of
exp½−N̄ðβ;Ω; OÞ� is handled. Fortunately, this term has
only a weak dependence on H0 for low-redshift samples
(Refs. [45,62] and Sec. IV E), so such choices should not
strongly affect the final marginal posterior distribution inΩ.

APPENDIX B: LIKELIHOOD
FOR THE MERGER INSPIRAL

A BNS merger is controlled by nonlinear physics in
dynamical and strongly curved spacetime, and is described
by a large number of parameters. Within the frequency
band of the current GW detectors, however, the emission
relevant for distance constraints arises primarily from the
comparatively simple inspiral phase preceding the merger,
which can be modeled using the post-Newtonian approxi-
mation to general relativity (e.g., Ref. [94]). For the type of
system under consideration here several additional sim-
plifications can be made. Most importantly, it is assumed
that an EM counterpart has been identified, meaning that
the sky position is known. As the known Galactic BNSs
that would merge within a Hubble time have low dimen-
sionless spin parameters of ≲0.04 [41], the spins of the
merging NSs are ignored and set to zero. Adopting these
simplifications, the GW signal from a merger event takes
the form of two orthogonal strain waveforms that, to
leading order in the post-Newtonian expansion parameter,
can be written as (e.g., Ref. [95])

hþðtÞ¼
GM=c2

DPðz;ΩÞ
1þ cos2ðιÞ

2

×ϕþ

�
t;
5GM
c3

ð1þ zÞ
�
1þu

c
þv
c

�
; tc;Φc

�
;

h×ðtÞ¼
GM=c2

DPðz;ΩÞ
½−cosðιÞ�

×ϕ×

�
t;
5GM
c3

ð1þ zÞ
�
1þu

c
þv
c

�
; tc;Φc

�
; ðB1Þ

with the detector-frame time dependence encoded in the
functions

ϕþðt; τ; tc;ΦcÞ ¼
�
tc − t
τ

�
−1=4

cos

�
2

�
Φc −

�
tc − t
τ

�
5=8

��
;

ϕ×ðt; tc; τ;ΦcÞ ¼
�
tc − t
τ

�
−1=4

sin

�
2

�
Φc −

�
tc − t
τ

�
5=8

��
;

ðB2Þ

where, where M1 and M2 are the masses of the two NSs,
M ¼ ðM1M2Þ3=5=ðM1 þM2Þ1=5 is the chirp mass, tc is the
detector-frame time of coalescence, Φc is the orbital phase
at this time, ι is the inclination of the system relative to the
line of sight, z is the (cosmological) redshift of the system,
v is the (line-of-sight) peculiar velocity of the host galaxy, u
is the (line-of-sight) velocity of the merger relative to the
host, and DPðz;ΩÞ is the proper distance to redshift z given
the cosmological parameters Ω. The detector-frame coa-
lescence time scale τ is equal to the source-frame value of
5GM=c3 dilated by a factor of ð1þ zÞð1þ u=cþ v=cÞ.
The GW data from a single detector is a time series of

measurements given by a linear combination of the
orthogonal polarization waveforms given in Eq. (B1),
where the weightings depend on the merger’s sky position
and the detector’s orientation and geometry, to which
detector noise is added. If a single merger is observed
by multiple detectors then the joint data set can be used to
extract information about both polarizations (e.g.,
Ref. [95]). Taking the full GW data on a merger to be
d, the likelihood has the form PðdjM; tc;Φc; ι; z;
u; v;Ω; OÞ, where the merger and cosmological parameters
are defined above, and O encodes all of the relevant
information about the observations, such as detector
geometries and noise properties. The sky position of the
merger is not included in the list of parameters here as they
are taken to be determined precisely by the identification of
a host galaxy from EM data. The general expression for the
GW likelihood is complicated, but for a well-measured
event, such as GW170807, a comparatively simple form
can be adopted. The oscillatory nature of the several
thousand cycles of the inspiral signal allows precise
constraints to be placed on the parameters τ, tc, and Φc
that determine the time dependence of the waveform
according to Eq. (B2). The measured amplitude(s) then
places more uncertain constraints on the prefactors of the
two strain waveforms given in Eq. (B1). The parameter
dependence of the likelihood can hence be well captured by
calculating a few (nearly) sufficient statistics (e.g.,
Refs. [44,71]): the precisely measured detector-frame
coalescence time scale τ̂ðdÞ, the precisely measured detec-
tor-frame coalescence time t̂cðdÞ, the precisely measured
coalescence phase Φ̂cðdÞ, and estimates of the two orthogo-
nal amplitudes ÂþðdÞ and Â×ðdÞ. The uncertainties on
these amplitudes, σAþðOÞ and σA×

ðOÞ, are determined by a
combination of the sky position of the source (assumed to
be known) and the detector’s geometry and noise properties
(encoded in O). These two uncertainties cannot be ignored,
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as they are the dominant contributions to whether a merger
is detected in the first place and, for those which pass the
selection criteria, the distance uncertainty. Assuming no
uncertainty on the temporal parameters, and that the noise
on the amplitudes is Gaussian and uncorrelated, the GW
likelihood can be written in the form [cf. Eq. (B1)]

PðdjM; tc;Φc; ι; z; u; v;Ω; OÞ
¼ δ½t̂cðdÞ − tc�δ½Φ̂cðdÞ −Φc�

× δ

�
τ̂ðdÞ − 5G

c3
ð1þ zÞ

�
1þ u

c
þ v

c

�
M

�

× N

�
ÂþðdÞ;

GM=c2

DPðz;ΩÞ
1þ cos2ðιÞ

2
; σ2AþðOÞ

�

× N

�
Â×ðdÞ;−

GM=c2

DPðz;ΩÞ
cosðιÞ; σ2A×

ðOÞ
�
: ðB3Þ

Calculating these statistics from real data is a challenging
numerical task, although a number of approaches have been
demonstrated that can achieve this (e.g., Refs. [44,71]).
Fortunately, for the purposes of the bias analysis pre-

sented here, there is no need to actually simulate full time
streams and go through this complicated procedure to
calculate these statistics; instead, it is sufficient to include τ̂,
t̂c, Φ̂c, Âþ, and Â× in the formalism as if these quantities
were measured directly. It is hence possible to replace d
with the above statistics and similarly give the noise
amplitudes in place of O, meaning that the likelihood is
given entirely in terms of explicitly defined quantities. Also
defining the (accurately) measured redshifted chirp mass as
M̂z ¼ τ̂=ð5G=c2Þ, Eq. (B3) can be rewritten as

Pðt̂c; Φ̂c;M̂z; Âþ; Â×jM; tc;Φc; ι; z; u; v;Ω; σAþ ; σA×
Þ

¼ δðt̂c − tcÞδðΦ̂c −ΦcÞ

× δ

�
M̂z − ð1þ zÞ

�
1þ u

c
þ v

c

�
M

�

× N

�
Âþ;

GM=c2

DPðz;ΩÞ
1þ cos2ðιÞ

2
; σ2Aþ

�

× N

�
Â×;−

GM=c2

DPðz;ΩÞ
cosðιÞ; σ2A×

�
: ðB4Þ

This could be used either as the sampling distribution for a
merger with specified properties to generate the effective
data (i.e., t̂c, Φ̂c, M̂z, Âþ, and Â×) or as the basis for
simulating parameter constraints, in either case without any
reference to a full time stream.

In the context of cosmological parameter estimation
several further simplifications can usefully be made:
(1) Given that both the galactic motions relative to the

Hubble flow and the orbital speeds within galaxies
are typically a few hundred km=s, the peculiar
velocity terms u=c and v=c produce negligible
relative offsets of ≲0.1%. As such, in the analysis
of the GW data it is reasonable to ignore the peculiar
velocities completely (i.e., setting u ¼ v ¼ 0). [The
peculiar velocity of the host galaxy cannot be
ignored as its relative contribution to the spectro-
scopic redshift is given by the ratio jvj=ðczÞ, which
can be ≳10% at z≲ 0.01. It is, however, the host
galaxy’s peculiar velocity that is relevant here, as it is
assumed that no redshift is obtained for the merger/
burst itself. Hence, it is only v that affects the
measured redshift; u can be ignored in the analysis
of the EM data as well as the GW data.]

(2) The coalescence time tc and coalescence phase Φc
are both nuisance parameters that do not provide any
useful information about the properties of the
merger. They would hence be marginalized over
in any cosmological or population analysis, poten-
tially increasing the uncertainty on other parameters.
However, under the approximation that they are
constrained perfectly by the time evolution of the
GW signal, tc andΦc can simply be omitted from the
likelihood completely.

Applying these simplifications leaves the significant part
of Eq. (B4) as

PðM̂z; Âþ; Â×jM; ι; z;Ω; σA×
; σAþÞ

≃ δ½M̂z − ð1þ zÞM�

× N

�
Âþ;

Gð1þ zÞM=c2

Dðz;ΩÞ
1þ cos2ðιÞ

2
; σ2Aþ

�

× N

�
Â×;−

Gð1þ zÞM=c2

Dðz;ΩÞ cosðιÞ; σ2A×

�
; ðB5Þ

where Dðz;ΩÞ ¼ ð1þ zÞDPðz;ΩÞ is the luminosity dis-
tance to redshift z. This change is made so that it is the
tightly constrained redshifted chirp mass ð1þ zÞM that
appears in all three terms; in an inference context the
substitution ð1þ zÞM → M̂z could be made, leaving only
Dðz;ΩÞ and ι to be constrained by the measured amplitudes
Âþ and Â×. Equation (B5) is the form of the likelihood used
in Sec. IV C and hence is the basis for all of the simulations
in this paper.
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