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Abstract—In dual-modality systems, using anatomical priors
has been shown to improve image quality and quantification in
emission tomography. However, alignment between the functional
and anatomical images is crucial. In this study, we propose
two algorithms for solving misalignment issues. Both approaches
are based on a recently published joint motion estimation and
image reconstruction method. The first approach deforms the
anatomical image to align it with the functional one while
the second approach deforms both images to align them with
the measured data. Our current implementation uses alternates
between image reconstruction and alignment estimation. To
evaluate the potential of these approaches, we have chosen
Parallel Level Sets (PLS) as a representative anatomical penalty
since it has shown promising results in literature, incorporating
a spatially-variant penalty strength to achieve uniform local
contrast and fast convergence rate. The performance evaluation
was achieved by using simulated non-TOF data generated with
an XCAT phantom in the thorax region. We used the attenuation
image in the anatomical prior. The results demonstrated that both
methods are able to estimate the misalignment and deform the
anatomical image accordingly when a proper workflow for the
alternating optimization is applied. However, the performance
of the first approach depends highly on the workflow of the
alternating process. In contrast, the second approach shows the
ability to converge to the correct alignment faster than the first
approach does, independent of the workflow. Our results indicate
that it is possible to align functional and anatomical information,
enabling the use of anatomical priors in practice.
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I. INTRODUCTION

Penalized positron emission tomography (PET) image re-
construction using penalties derived from anatomical images,
such as computed tomography (CT) or magnetic resonance
(MR) images, has been shown to be effective in improving ob-
ject delineation and reducing quantitative error in many studies
[1]. However, to utilize the structural information without
incurring artifacts, a good alignment between the anatomical
and the functional images is essential. This is challenging in
practice in the thorax because scanners obtain these images
separately or sequentially. Even with a multimodality scanner
that performs simultaneous functional and anatomical image
acquisition such as in PET/MR, alignment can be difficult
to achieve due to the different time scales of the PET and
MR scans. According to the results in [2], wrong spatial
information from the misaligned anatomical image can lead
to ghost artifacts and low quantitative accuracy. To be able
to use anatomical penalties in clinical practice, we propose
two approaches that estimate the misalignment and deform
the anatomical image accordingly during the reconstruction.

II. METHOD

A. Objective function without misalignment

Penalized image reconstruction optimizes a function Φ
consisting of the likelihood L and the penalty function R,
with a constant parameter β which controls the strength of
the penalty. As Parallel Level Sets (PLS) has shown promising
results in the literature [3], it was chosen as a representative
anatomical penalty function in this study. In addition to using
β to regulate the global weight of the penalty term, a spatially-
variant penalization map κ was also incorporated into the
penalty function for achieving uniform local contrast across
the field-of-view (FOV). Benefits of applying κ with PLS
were demonstrated in our previous work [4]. Given the PET
image x, the anatomical image v and the measured data y,
the objective function is:

Φ(x) = −L(x,µ) + βR(x|v), (1)
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where x0 is the initial image, n is the expected background
and A is the system matrix where every element Aij denotes
the probability that an emission from voxel j is detected by
bin i. A depends on the estimated attenuation µ. The strength
of the edge preserving property of the penalty function is
modulated by the set of parameters [α, η]. The notation D
and ∇ represent diagonal and gradient operators, respectively.

B. Objective function with misalignment

In this study, we propose two approaches that account
for the misalignment between the functional and anatomical
images by incorporating a warp matrix W into the penalized
objective function Φ in (1). Both approaches are based on
a joint motion estimation and image reconstruction method
proposed recently for dealing with the mismatch between
the attenuation map and the PET image in respiratory gated
PET/CT [5]. The main difference between them is that the first
approach Φ1 warps the anatomical image to align it with the
functional image, while the second approach Φ2 warps both
images to align them with the measured data. The deformation
of the images is described by a cubic B-spline function with
a collection of coefficients θ in this study. Assume the atten-
uation map µ is used for providing anatomical information as
well, the approaches can be described as follows:

Φ1(x,W )=−L(x,Wµ)+βR(x|Wµ)+γQ(θ) (2)
Φ2(x,W )=−L(Wx,Wµ)+βR(x|µ)+γQ(θ)+δB(Wx),

B=
∑
j

∑
m

min(0,
∑
l

wl(zm)xjl)
2 (3)

where Q(θ) represents a quadratic penalty on the B-spline co-
efficients for reducing the influence of noise and γ is a constant
that controls its strength. We used a non-negativity constraint
for the pixel values. In the first approach, this is done using
constrained optimization. For the second approach, we are op-
timizing the B-spline coefficients not pixel values. Therefore,
we introduced a barrier function B to penalize negative values
[6] x after warping. Given z = {zm|m = 1, . . . ,M} a vector
containing a finite number of uniformly spaced locations in
each interknot interval, the function computes the spline value
(i.e., the image value) at each location and penalizes the square
of any negatives. Although the warped µ might have negative
values as well, we have ignored this as small negative values
in µ would become attenuation factors very close to one. The
strength of B is determined by the parameter δ and M = 4
in this study. The notation wl represents the `th basis weight
of the B-spine function. The optimization of both approaches
is achieved by an alternating process between the deformation
estimation and the penalized image reconstruction.

C. Data

To evaluate the approaches, we produced 2 XCAT phantoms
representing different respiratory phases and the corresponding
µ maps. Both phantoms were a 128 × 128 × 47 matrix with
voxel size of 3.906 mm. We generated data corresponding
to that from a GE Discovery STE in 3D non-TOF acquisition
mode. The misalignment estimation for non-TOF data is much
harder than that for TOF data.

D. Reconstruction

The optimization of both approaches is an alternating
process that includes a misalignment estimation subroutine
and an image reconstruction subroutine. We applied limited-
memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) for un-
constrained optimization (misalignment estimation in both
approaches and image reconstruction in the second approach)
and L-BFGS-B [7] for the positivity constrained image recon-
struction in approach 1. To improve the convergence rate of the
penalized image reconstruction, a preconditioner proposed in
our previous study was also incorporated [8]. The workflow
is defined by the number of inner iterations for these two
subroutines and the number of outer iterations that controls the
repetition of the alternating process. The whole optimization
was initialized by one full iteration of OSEM with 14 subsets
and the µ map at end expiration was used as the initial input
of the misalignment estimation. Every time the misalignment
estimation is done, a new initial image for L-BFGS-B-PC is
recomputed using OSEM with 14 subsets, taking into account
the current estimated misalignment. The κ image, which is the
spatially variant penalty strength, is recomputed at every outer
iteration as well. In a preliminary investigation, we explored
the influence of the parameters of the algorithms. We found
that reasonable results can be obtained for both approaches by
using up to 100 outer iterations with 1 and 10 inner iterations
for the misalignment and image reconstruction subroutines,
respectively. The set of parameters that determine the strength
of each penalty function was (β, γ) = (10−1, 10−4) for
Φ1 and (β, γ, δ) = (10−1, 10−4, 10−1) for Φ2. To illustrate
the performance dependence of each approach on different
workflows, we also show the reconstructed images with 15
inner iterations for the misalignment estimation, keeping all
other workflow and parameter settings unchanged.

E. Evaluation

Both approaches should be able to find a warped attenuation
map similar to that used for data generation (i.e., µ at end
inspiration). In this study, we use the difference image between
the warped and target µ maps to evaluate the performance
of the misalignment subroutine. The reconstructed functional
images at 100 outer iterations are also provided.

III. RESULTS

Fig. 1 shows the difference images and the corresponding
reconstructed activity images for both approaches at 100
outer iterations. The applied workflow was 1 inner iteration
for the misalignment estimation and 10 inner iterations for
the penalized image reconstruction. As demonstrated in the
difference images, both approaches are able to estimate the
misalignment and warp the input attenuation map accordingly.
The reconstructed activity images are visually similar to the
target one, but they are somewhat smoother due to the implied
interpolation of image warping using a B-spline function. The
corresponding results for the workflow with 15 inner iterations
for the misalignment estimation are shown in Fig. 2. As
observed in the difference image, the first approach still suffers
from the misalignment issue at 100 outer iterations leading
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Fig. 1: The difference image between the target and input µ maps
and the true activity image (first row). The difference images between
the target and Wµ maps and the corresponding activity images at
100 outer iterations are also provided (second row for approach 1 and
bottom row for approach 2). The applied workflow was 1 and 10 inner
iterations for the misalignment estimation and image reconstruction.

Fig. 2: The difference images between the target and Wµ maps and
the corresponding activity images for both approaches (top row for
approach 1 and bottom row for approach 2) at 100 outer iterations for
the workflow with 15 inner iterations for the misalignment estimation.

to a banana artifact in the reconstructed activity image (top
row). In contrast, the second approach is insensitive to the
change of workflow as both its difference and the reconstructed
functional images (bottom row) look similar to those in Fig. 1.

IV. DISCUSSION

We have demonstrated that the proposed approaches are
able to estimate the misalignment and warp the anatomical
image accordingly. When a proper workflow is applied, sat-
isfactory results with no apparent artifacts can be obtained in
100 outer iterations for both approaches. By comparing the
results to those reconstructed without using PLS, the use of
the additional anatomical information showed the ability to
improve the convergence rate of the misalignment estimation
for approach 2 but slow it down for approach 1 (not shown).
As illustrated in Fig. 2, the performance of approach 1 depends
highly on the workflow while approach 2 is able to converge to
the correct alignment, independent of the workflow. Although
not shown, we also observed that the second approach requires
less outer iterations to converge to a reasonable result than
the first approach. Future work includes further evaluation of
performance dependence on other factors, such as the initial
condition and strength of each penalty.
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