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Mechanical qubit-light entanglers in hybrid nonlinear qubit optomechanics
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Interfacing between matter qubits and light is a crucial provision for numerous quantum technological
applications. However, a generic qubit may not directly interact with a relevant optical field mode, and hence, one
could necessitate adjusting frequencies to match resonance conditions between parties. In this work, we show
how a parametric coupling of the qubit with a mechanical oscillator, in conjunction with the trilinear radiation
pressure coupling of the same object with light, can induce maximal qubit-light entanglement at an optimal
time. Furthermore, we show how our method enables conditional (dynamical) nonclassical state preparation of
the optical field via qubit measurement in the weak (moderate-to-strong) optomechanical coupling regime. Our
scheme benefits from not requiring any cooling of the mechanical component and not needing an adjusting of
the detunings and transition frequencies to have resonance between any pairs of quantum systems.
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I. INTRODUCTION

Recent works on multipartite hybrid quantum systems at-
test to be a promising avenue to control and manipulate quan-
tum systems of different nature [1–3]. Mostly, such hybrid
platforms serve as multitasking modular architectures; hence,
each building block (commonly with different frequencies)
of the assembled unit plays a different role in encoding,
processing, distributing, and reading out the quantum infor-
mation. One appropriate example to observe the benefits of
hybrid schemes is to consider nodes allocated in a quantum
network (for light-mediated qubit-oscillator systems we refer
the interested reader to Refs. [2,4], for example). There, the
link between distant nodes is via photonic qubits (or propa-
gating phonons in extended phonon waveguides [5]), while
the encoding (or storing) can employ the node itself, utilizing
matter qubits or mechanical oscillators for this purpose [6].

On the other hand, the interplay between matter-light
parties typically demands resonant (or quasiresonant) inter-
actions between a qubit and a cavity field [6]—this is the
case, for example, for trapped single or collective two-level
atoms inside a cavity [2,7]. The qubit-cavity direct coupling
could be used to either map the qubit state to a cavity field
so that it was carried and fed into a distant cavity via the
light [8–10], or to entangle a qubit maximally with the field
in a cavity. Subsequent joint detections of the light fields from
two separate cavities could be used to entangle the qubits
maximally in a heralded manner [11].

In recent years a plethora of other qubits has surfaced
which have frequencies in the microwave and radio-frequency
range [12–16]. For these, an alternative strategy has been sug-
gested where the qubit and the optics interact with a mechan-
ical mediator, i.e., a hybrid quantum scheme with no direct
coupling between the qubit and the cavity field. These systems
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have shown the successful linking of distant qubits through
optomechanics [5,17–19]. However, these schemes rely on an
exchange of excitations between systems: Jaynes-Cummings
(beam-splitter) interaction between the qubit and the mechan-
ics (mechanics and light). In the case of Jaynes-Cummings
combined with beam-splitter interaction, it is intuitive that the
former and latter Hamiltonians swap quantum states from the
qubit to mechanics and mechanics to light, respectively [1].
Consequently, schemes relying on the exchange of excitations
are only ensured at the cost of an appropriate adjustment
of detunings of the fields, hence driving the qubit and the
optical field from their respective transitions by precisely the
mechanical frequency.

In this work, we wonder whether we can relax the above
resonance conditions between parties and thus to combine
distinct elements into an off-resonant hybrid system. In other
words: is it possible to entangle two nonresonant and non-
interacting (directly) qubit-light subsystems mediated by a
mechanical object? To address this question, we make use of
parametric Hamiltonians—which are not of a state swapping
type by nature. It is, therefore, relevant to explore whether
parametric interactions of qubits with mechanics and the para-
metric trilinear optomechanical interaction can be fruitfully
used to entangle a qubit with light.

Specifically, we study a system, as shown in Fig. 1, where
a generic qubit becomes entangled to a cavity mode me-
diated through a mechanical object. Here we consider the
qubit directly coupled to the mechanical oscillator position.
Such qubit-oscillator Hamiltonians are synthesized in a va-
riety of ways, notably through magnetic field gradients [20]
or through capacitive couplings [21]. Additionally, for the
oscillator-cavity subsystem, we exploit the nonlinear radia-
tion pressure interaction. Very recently, related hybrid qubit-
optomechanics systems are of interest fundamentally in giving
rise to attractive polaritonic states involving mechanics [7]
and tripartite entanglement [22]. Through these Hamiltonians,
the most sensible task perhaps is to look for entanglement
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FIG. 1. A qubit interacts with a mechanical oscillator [with
boson operator (b̂)], while the latter object couples to a quantized
light field (â). There is no direct qubit-light interaction but that
which is mediated through the mechanical subsystem. We wonder
in this hybrid tripartite quantum system whether one could reach,
dynamically and under Hamiltonian parametric interactions, a high
degree of qubit-light quantum entanglement.

between the qubit and the optical fields. Even for this task,
whether the entanglement will be “transitive” in nature is
a priori unclear. We show here that it is indeed possible
to achieve indirect oscillator-mediated qubit-cavity entangle-
ment under parametric Hamiltonians without the necessity for
adjusting resonances.

The rest of the article reads as follows: In Sec. II, we focus
our attention on the entanglement dynamics for three relevant
initial states. For the initial pure states considered by us, we
give a closed form for the entanglement dynamics [23], which
allows us to tune the interaction couplings to reach maximal
qubit-cavity entanglement at a specific time. In Sec. III we
devote the qubit-light entanglement analysis in the presence
of decoherence. For this study, we solved the master equa-
tion [24] in a dressed picture, as the single-photon radiation
strength operates in the moderate-to-strong optomechanical
regime. In Sec. IV, we investigate the conditional preparation
of nonclassical states of the optical field by (i) its dynamics
alone and (ii) via measurements on the qubit subsystem.
Finally, in Sec. V, we conclude and outline the main results
of our work.

II. TRIPARTITE HYBRID DYNAMICS

We study a hybrid tripartite qubit-optomechanical system
as sketched in Fig. 1. In particular, we consider a generic qubit
coupled dispersively (and nonresonantly) to a mechanical
object, while a single cavity mode interacts with the latter one
via trilinear radiation pressure interaction. The Hamiltonian in
the interaction picture of the free energy of the light field and
the qubit is (h̄ = 1):

Ĥint = ωmb̂†b̂ − (g0â†â + λ0σ̂z )(b̂ + b̂†), (1)

where ωm stands for the mechanical frequency, g0 is the
cavity-oscillator radiation pressure coupling, and λ0 is the
qubit-oscillator coupling strength; â (b̂) is the boson operator
for the cavity (oscillator), respectively, and σ̂z is the Pauli
z matrix for the qubit. Here, we would like to stress that,
from Eq. (1), one may notice that the individual Hamiltonians
do indeed entangle a qubit-mechanical oscillator pair and an
optical field-mechanical oscillator pair, but whether also a
qubit-optical field entanglement will result from this is hard
to guess.

To solve the quantum dynamics, we proceed to derive the
evolution operator for the Hamiltonian in Eq. (1) as done

previously in Refs. [25–27]:

Û (t ) = ei(gâ†â+λσ̂z )2(t−sin t )e(gâ†â+λσ̂z )(ηb̂†−η∗b̂)e−it b̂† b̂, (2)

where η ≡ η(t ) = 1 − e−it , and {g = g0/ωm, λ = λ0/ωm} are
the scaled coupling parameters.

Motivated for the indirect generation of qubit-cavity quan-
tum entanglement, a simple inspection of Eq. (2) suggests
some directions regarding the initial states for the qubit and
the cavity field. Those indications are due to the dispersive
interaction, i.e., a Hamiltonian conserving both the qubit
and optical excitations. Hence, to attempt qubit-light entan-
glement generation, one is required to initialize the qubit
(cavity) different from an eigenstate of σ̂z (Fock number state).
Otherwise, no entanglement between the qubit (or the cavity)
can be generated with the rest of the subsystems, as they
persist in disentangling during the evolution. For the sake of
simplicity, we will consider throughout this work an initial
qubit superposition 1/

√
2(|↑〉 + |↓〉), where some relevant

initial states for the cavity state and the mechanical object will
be studied.

A. Optical qubit and mechanical oscillator in coherent state

Let us evolve the system from an initial superposition of
Fock number states 1/

√
2(|0〉 − |1〉) for the cavity field [28]

(optical qubit). This state finds fertile ground for quantum
information applications. Although easy to formulate math-
ematically, this state remains difficult to prepare experimen-
tally. Preparation techniques of the optical mode in a state
∼|0〉 − |n〉 have been reported previously [29–32], n = 1
being the most simple state to generate in the laboratory.

On the other hand, we initialize the mechanical object
in a coherent state with an amplitude of β > 0. With these
initial conditions, we intend to unravel the tripartite dynamics
from states with low Hilbert spaces. By evoking the unitary
operator from Eq. (2), we obtain the following wave function:

|ψ (t )〉 = 1
2 [eiλ2(t−sin t )eiλβ sin t |↑〉|0〉|βe−it + λη〉
− ei(g+λ)2 (t−sin t )ei(g+λ)β sin t |↑〉|1〉|βe−it + (g + λ)η〉
+ eiλ2(t−sin t )e−iλβ sin t |↓〉|0〉|βe−it − λη〉
− ei(g−λ)2 (t−sin t )ei(g−λ)β sin t |↓〉|1〉|βe−it

+ (g − λ)η〉]. (3)

To investigate the quantum correlations of the qubit-
optomechanical wave function in Eq. (3), we proceed to cal-
culate the quantum entanglement between bipartite systems.
In general, throughout this work, the entanglement will be
mainly computed using the negativity [N (t )] [33], a quantity
defined as

2N (t ) =
∑

|εi| − εi, (4)

where εi are the eigenvalues of the partially transposed re-
duced density matrix at fixed time t .

In Fig. 2 we illustrate the dynamics of quantum entangle-
ment for a set of qubit-optomechanical coupling values {g, λ}.
Concretely, we have computed the qubit-cavity [N (t )q,c], the
qubit-oscillator [N (t )q,o], and the oscillator-cavity negativ-
ity [N (t )c,o]. In Fig. 2(a), we chose g = 0.1 and λ = 0.4

052310-2



MECHANICAL QUBIT-LIGHT ENTANGLERS IN HYBRID … PHYSICAL REVIEW A 100, 052310 (2019)

(a)

(b)

FIG. 2. Negativity dynamics [N (t )] for different reduced density
matrices. We plot the qubit-cavity [N (t )q,c, solid line], the qubit-
oscillator [N (t )q,o, dashed line], and the oscillator-cavity negativity
[N (t )o,c, dotted line] for different qubit-optomechanical coupling
values. Top (bottom) panel considers g = 0.2 and λ = 0.25 (g = 0.2
and λ = 0.625); β = 1.

(for β = 1). Notice that the mechanical oscillator disentan-
gles from the rest of the subsystems at each cycle, i.e., at
times 2π/ωm × l (l being an integer), the qubit-oscillator
(and cavity-oscillator) negativity vanishes to zero—this can
be seen as η(t = 2π ) = 0, and therefore, |βe−2π i ± λη〉 =
|βe−2π i + (g ± λ)η〉 = |β〉. This is crucial. The qubit-light en-
tanglement at multiples of 2π is independent of the coherent-
state preparation for the mechanical oscillator, reaching its
first maximum of N (t )q,c = 0.5 at t = 4π . Thus, the initially
disentangled qubit-cavity subsystems have been indirectly
(and maximally) entangled through a mechanical object.

Furthermore, one may require possession of highly en-
tangled states at the earliest in the quantum dynamics, for
instance, to avoid detrimental effects due to decoherence
or for quantum computing/processing purposes. To reach
the maximum qubit-cavity negativity at t = 2π , we need to
optimize the set of qubit-optomechanical parameters {g, λ}
in the negativity function. However, albeit quite manageable
to compute numerically, a closed analytical form is usually
challenging to obtain. To overcome this obstacle, we proceed
to derivate a simple form encompassing several partitions of
the tripartite system. This simple, yet rich procedure [23]
shows that an appropriate addition (subtraction) of individual
entropies should be capable of quantifying the degree of
entanglement within each of the subsystems. The intrinsic
qubit-cavity entanglement is defined as follows:

Eq,c(t ) = S (t )q + S (t )c − S (t )o. (5)

In the above, S (t )i = 1 − Tr[ρ̂2
i (t )] is the linear entropy,

and ρ̂i(t ) = Tr j,k ρ̂i, j,k is the corresponding reduced density
matrix. With the above definition, the intrinsic qubit-cavity

entanglement reduces to

Eq,c(t ) = 1
8 (e2(g+2λ)2(cos t−1) + e2(g−2λ)2 (cos t−1) + 2

− 2[e2g2(cos t−1) + e8λ2(cos t−1)] cos[4gλ(t − sin t )]),

(6)

which, for the special case of t = 2π , simplifies to

Eq,c(t = 2π ) = sin2(4gλπ ). (7)

From the above equation, we can readily notice that
Eq,c(t = 2π ) reaches its first maximum at any coupling com-
binations given by gλ = 1/8. In Fig. 2(b) we model this
case, where we have considered g = 1/5 = 0.2 and λ =
5/8 = 0.625. Any tuple gλ = 1/8 would deliver maximal
entanglement. Nevertheless, as g decreases to the weak-to-
moderate radiation pressure regime, one needs λ to increase
to the strong spin-mechanical regime. On this matter, notice
that both values {g, λ} = {0.2, 0.625} are within the current
experimental feasibility. Vast efforts to increase the single-
photon radiation pressure coupling have been pursued during
the last years. For example, the above moderate optome-
chanical operational regime of g = g0/ωm � 0.2 has been
reported in quantum cavity pulsed optomechanics [34] and
other setups [35–39].

As seen from this section, we have fully accomplished
the indirect qubit-cavity entanglement mediated through a
mechanical object. However, even though an initial optical
qubit gives us insight into the qubit-optomechanical evolution
and the entanglement dynamics, this particular preparation for
the light field is hard to access experimentally. For that reason,
in the next section we will study the merits and demerits of a
more feasible preparation for the optics: a coherent state.

B. Coherent states for the light and the mechanical oscillator

Assume that initially both the mechanics and the optics
fields are in a coherent-state preparation, |β〉 and |α〉, respec-
tively. On the one hand, to generate such a state for the light,
one can notice that once the cavity has no intracavity photons,
we can drive the vacuum state towards a displaced vacuum
state |α〉 by using an external laser. This process acts on a
timescale which is much shorter than the timescale of the
oscillator’s motion and hence does not have a significant per-
turbation in the mechanical dynamics—a similar strategy gen-
erates a coherent state for the mechanical oscillator. Several
theoretical and experimental techniques have been proposed
to reach the ground-state cooling for mechanical oscillators
and even recently demonstrated cooling of mechanical vibra-
tional modes close to the quantum ground state [40].

The initial quantum state |ψ (0)〉 = 1/
√

2(|↑〉 + |↓〉)|α〉|β〉
then evolves according to

|ψ (t )〉 =
∞∑

n=0

(C+
n (t )|↑〉|φ+

n (t )〉 + C−
n (t )|↓〉|φ−

n (t )〉)|n〉, (8)

where

C±
n (t ) = αn

√
2n!

e−|α|2/2ei(gn±λ)2 (t−sin t )ei(gn±λ)Im(ηβ ), (9)
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and |φ±
n (t )〉 = |βe−it + (gn ± λ)η〉 is a coherent state for the

mechanical oscillator.
In contrast to our previous section, where the optics were

restricted to a two-level system—being zero and one photon,
here the explicit optomechanical Kerr-like term ei(gn±λ)2 (t−sin t )

in C±
n (t ) plays a significant role in the dynamics. We expect

that with the aid of the explicit number of photons n in the
Kerr phase, we can reach the maximum entanglement for
weaker values of g. On the other hand, each qubit eigenstate
dynamically couples to different coherent amplitudes |φ±

n (t )〉,
as each qubit component effectively shifts the mechanical
potential proportional to λ0—a shift also found in the previ-
ous section. Moreover, the optomechanical interaction from
coherent amplitudes indicates a dynamic squeezing of the
mechanical quadratures of the reduced density matrix of the
mechanical oscillator.

To further explore the bipartite dynamics, we proceed to
derive the reduced density matrices as follows:

ρ̂o,c(t ) =
∞∑

n, m = 0
j = {+, −}

C j
n (t )C j∗

m (t )
∣∣n, φ j

n

〉〈
m, φ j

m

∣∣, (10)

ρ̂q,o(t ) =
∞∑

n=0

C+
n (t )C+∗

n (t )|↑, φ+
n 〉〈↑, φ+

n | + C+
n (t )

×C−∗
n (t )|↑, φ+

n 〉〈↓, φ−
n | + C−

n (t )C+∗
n (t )|↓, φ−

n 〉
× 〈↑, φ+

n | + C−
n (t )C−∗

n (t )|↓, φ−
n 〉〈↓, φ−

n |, (11)

being the oscillator-cavity (o, c) and the qubit-oscillator (q, o)
bipartite subsystems, respectively. And

ρ̂q,c(t ) =
∞∑

n,m=0

(C+
n (t )C+∗

m (t )φ++
mn |↑〉〈↑| + C+

n (t )

×C−∗
m (t )φ−+

mn |↑〉〈↓| + C−
n (t )C+∗

m (t )φ+−
mn |↓〉〈↑|

+C−
n (t )C−∗

m (t )φ−−
mn |↓〉〈↓|) ⊗ |n〉〈m| (12)

stands for the qubit-cavity (q, c) reduced system; we defined
φ

i j
mn = 〈φi

m|φ j
n〉 as the inner product between coherent states.

In analogy with the previous section, it is straightforward to
notice that for each cycle of the mechanical object (t = 2π →
η = 0), the oscillator disentangles from the cavity as well as
the qubit state. It is worth expressing the wave function at such
particular times:

|ψ (t = 2π )〉q,c = e−|α|2/2
∞∑

n=0

αn

√
2n!

[ei(gn+λ)22π |↑〉

+ ei(gn−λ)22π |↓〉]|n〉. (13)

We investigate the entanglement dynamics of each bipar-
tite system in Fig. 3. When compared to the previous case,
two clear advantages arise: (i) the qubit-cavity entanglement
reaches its maximum faster than in the optical qubit scenario,
and (ii) the qubit-cavity entanglement does not heavily de-
crease (nor drop to zero) for a larger time window. Other
values are β = 2, α = 2, g = 0.2, λ = 0.25.

To find a suitable set of qubit-optomechanical couplings
such as would maximize the qubit-cavity entanglement, we
follow the same procedure as in the previous section. The

(a)

FIG. 3. (a) Different bipartite entanglement dynamics for an
initial cavity and mechanical oscillator in coherent states. In (b) and
(c) we plot the intrinsic entanglement at t = 2π for the current optics
in the coherent case [see Eq. (14)] and the previous optical qubit
scenario [see Eq. (7)], respectively. Other values are β = 2, α =
2, g = 0.2, λ = 0.25.

linear entropies can be obtained directly from the reduced
density matrices already expressed in Eqs. (10)–(12). The
intrinsic qubit-cavity entanglement at t = 2π for the coherent
case reads as

Eq,c(t = 2π ) = 1 −
∞∑

n=0
m=0

e−2α2
α2(m+n) cos[8πgλ(m − n)]

m!n!

= 1 − e−4α2 sin2[4gλπ]. (14)

Notice from the above Eq. (14) that sin(4gλπ ) appears
as in the previous section. However, while for an initial
optical qubit the condition 4gλπ = π/2 gives rise directly
to maximal entanglement, for the coherent case, the same
condition drives asymptotically the intrinsic entanglement
towards unity. Moreover, as a direct consequence from the
optomechanical evolution in the presence of coherent light,
we stress that the number of photons [α2 in Eq. (14)] also as-
sists the maximal value of the entanglement, as we previously
suggested. We compare both situations in the bottom panels
of Fig. 3.

We have shown that to accomplish a high indirect qubit-
cavity entanglement one needs to operate in the regime when
both {g, λ} are comparable. Within these values, we can
reach a higher qubit-cavity quantum entanglement at faster
mechanical cycles in the dynamics. Let us now comment
on the entanglement dynamics for two relevant operational
regimes.

First, let us consider the case when the single-photon ra-
diation pressure coupling dominates over the spin-mechanical
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coupling, i.e., scaled frequencies g  λ. In this regime, where
the optomechanical coupling dominates, one can observe (for
a large number of mechanical cycles t  1) that the tripartite
system evolves mainly as a coherent evolution between the
light and the mechanics. In the opposite case, when the
spin-mechanics interaction dominates, g � λ, we find that
the qubit entangles the mechanical object. In both cases, it
is also possible to achieve coherent dynamics between the
qubit-cavity systems; however, high entanglement between
those are generated only at t  1.

C. Coherent state for the cavity field and a thermalized
mechanical oscillator

A step forward to study the bipartite entanglement under
different initial preparations is to consider an initial coherent
state for the light field and a mechanical oscillator at temper-
ature T . In principle, as we intend to utilize the mechanical
object solely as a mediator, it is more precise to consider
an initial thermal state representation for the mechanical
subsystem. Thus, let us consider in this section a cavity state
prepared in a coherent state, while the mechanical object is in
a thermal state at temperature T :

ρ̂th(0) = 1

π n̄

∫
|β〉〈β|e− |β|2

n̄ d2β, (15)

where n̄ = [exp(h̄ωm/kBT ) − 1]−1 stands for the thermal oc-
cupancy number and kB is the Boltzmann constant. By solving
the Schrödinger equation, we can readily get the tripartite
normalized density matrix as follows:

ρ̂(t ) =
∞∑

n,m=0

|n〉〈m| ⊗ [|↑〉〈↑| ⊗ ρ̂th
++ + |↓〉〈↓| ⊗ ρ̂th

−−

+ |↑〉〈↓| ⊗ ρ̂th
+− + |↓〉〈↑| ⊗ ρ̂th

−+], (16)

where we have simplified the notation as ρ̂th
ab ≡ ρ̂th

ab(n, m, t ) =
1/(π n̄) × ∫

Ca
n (t )C∗b

m (t )|φn
a (t )〉〈φm

b (t )|e−|β|2/n̄d2β, where
{a, b} might be + or −.

To observe the impact of the temperature of the mechanical
oscillator in the qubit-cavity dynamics, we proceed to com-
pute the reduced density matrix between the qubit and the
cavity. Tracing out the mechanical degrees of freedom leads
to an analytical result of the qubit-cavity subsystems:

ρ̂(t )q,c =
∞∑

n,m=0

|n〉〈m| ⊗ [|↑〉〈↑|I++ + |↓〉〈↓|I−−

+ |↑〉〈↓|I+− + |↓〉〈↑|I−+]. (17)

In the above, the terms

Iab = 1

π n̄

∫
Ca

n (t )C∗b
m (t )

〈
φm

b (t )
∣∣φn

a (t )
〉
e− |β|2

n̄ d2β, (18)

where {a, b} might be + or -, are Gaussian integrals. Thus,
it is convenient to compute the integral considering Cartesian
coordinates d2β = dRe[β]dIm[β].

In Fig. 4, we present the qubit-cavity entanglement in the
presence of several phonon numbers on average (n̄). From the
figure, we readily notice two features: (i) the qubit-cavity en-
tanglement suffers a decrement when in the presence of higher

FIG. 4. Qubit-cavity entanglement dynamics N (t )q,c mediated
by a thermalized mechanical oscillator with n̄ phonons on average.

phonon occupancy number, with an important reduction of
entanglement specifically in regions where t is a multiple of π .
This dynamics can be understood as the mechanical oscillator
remains mostly static as n̄ increases, i.e., both g and λ have
a little effect on the mechanical oscillator between cycles.
Furthermore, notice that for megahertz mechanical oscillators
at milliKelvin temperatures, the phonon occupancy is n̄ ∼
10, meaning that for current experimental technologies one
can expect to have qubit-cavity entanglement above zero for
several mechanical cycles. (ii) The qubit-cavity entanglement
is independent of n̄ at each t multiples of 2π . This fact
is a consequence of the complete disentanglement of the
mechanical object from both parties.

To prove the second feature, we can notice from Eq. (16)
that the mechanical object disentangles at each mechanical
cycle. Nonetheless, when compared to previous cases where
the tripartite state remains pure throughout the dynamics,
here it is not a direct consequence. The qubit-cavity reduced
bipartite undergoes a change from the initially mixed state to
a pure state at each oscillator cycle. Moreover, it coincides
with the previous wave function derived before [see Eq. (13)],
being independent also from the thermal occupancy number
n̄:

|ψ (t = 2π )〉q,c = e−|α|2/2
∞∑

n=0

αn

√
2n!

[ei(gn+λ)22π |↑〉

+ ei(gn−λ)22π |↓〉]|n〉. (19)

Despite the coinciding wave functions in Eqs. (13)
and (19), the scenario involving an evolved thermal mechani-
cal oscillator diverges from the coherent state in the transient
intervals. For instance, for a time interval 2π < t < 10π and
n̄ = |β|2 = 4, the oscillator always becomes disentangled at
time multiples of t = 2π . However, quantum entanglement
oscillating near its maximum value [as in Fig. 3(a)] was
not reported for any set of qubit-optomechanical coupling
strengths in the domain 0 < {g, λ} � 1 in the case of an initial
thermal mechanical oscillator.

III. DYNAMICS IN THE PRESENCE OF LOSSES

Quantum correlations, or ultimately, quantum coherence,
generally suffer from a decrement when the relevant system
of interest evolves in contact with their surroundings. In the
absence of an engineered reservoir or suitable dissipative
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mechanism, quantum correlations are a frail resource in the
presence of noise. In this section, we will study the effects of
the impact of energy losses on the quantum dynamics, mainly
centering our attention on the qubit-cavity subsystems. The
resulting detrimental effects on the unitary evolution stems
from several decoherence channels, where for our particular
qubit-optomechanical scheme we will consider energy losses
arising from each element.

As explained in a previous section, to achieve maximal
qubit-cavity entanglement at time multiples of 2π , we need to
attain moderate-to-strong optomechanical radiation pressure
interaction. Within the single-photon strong or ultrastrong op-
tomechanical coupling regime, photons and electronic states
have been found to have been strongly dressed by phonon
excitations of the mechanical mode. Therefore, when g and
λ operate in this limit, one needs to consider that the single-
photon optomechanical coupling modifies the eigenstates of
the system [41]. The corresponding master equation in the
optomechanical dressed picture (DME), together with the
dressed Lindbladian for the qubit element, is

d

dt
ρ̂(t ) = −i[Ĥ , ρ̂(t )] + γm(nth + 1)L[b̂ − gâ†â]ρ̂(t )

+ κL[â]ρ̂(t ) + γmnthL[b̂† − gâ†â]ρ̂(t )

+�(1 + nq)L[σ̂−]ρ̂(t ) + �nqL[σ̂+]ρ̂(t )

+ γφ

2
L[σ̂z]ρ̂(t ) + 4γmg2

ln
( 1+nth

nth

)L[â†â]ρ̂(t ), (20)

where Ĥ corresponds to the Hamiltonian in Eq. (1), and the
Lindblad superoperator term

L[Ô]ρ̂ = 2Ôρ̂Ô† − ρ̂Ô†Ô − Ô†Ôρ̂ (21)

takes into account the dissipative mechanisms to a thermal
reservoir with occupation number nth; κ (γm) is the scaled
(by the mechanical frequency) photon (phonon) decay. No-
tice that as we are operating in optical frequencies we have
neglected its corresponding occupation number nc � 1, i.e.,
only downwards transitions will take place κL[â]ρ̂(t ) in the
optical energy ladder. We consider qubit decoherence chan-
nels described by the qubit relaxation � and the dressed qubit
dephasing γφ = �φ + 4γmλ2/ ln[ 1+nth

nth
], where �φ is the qubit

pure dephasing rate. Finally, we assume a common thermal
reservoir for the composite system, i.e., each element of our
qubit-optomechanical setup is in contact with the same envi-
ronment at the same temperature; thus as λ ∼ 1, we consider
that nq = nth.

The DME found in Ref. [41] stands as a more general case
when compared to the standard master equation (SME). One
can transition between DME towards SME by simply con-
sidering g � 1, and consequently, the joint optomechanical
decoherence channel L[b̂ − gâ†â] can be effectively approxi-
mated to L[b̂].

In current optomechanical systems, the primary decoher-
ence channel is related to photon leakage from the cavity.
Meanwhile, oscillator energy losses can be second-placed
in the decoherence hierarchy. For this reason, we consider
a mechanical oscillator with high mechanical quality factor
Q = 105 (according to our scaled definitions this translates
into γ = 10−5). On the other hand, we will fix the photon

(a)

(b)

FIG. 5. Qubit-cavity entanglement at t = 2π for different spin
relaxation rates � as a function of the spin dephasing rate γφ . We
fixed γm = 10−5, κ = 10−2, and other values as in Fig. 3.

decay rate equal to κ = 0.01 [42]. We vary the rest of the
parameters in Fig. 5, for which we intend to illustrate up
to which values of {γφ, �} the negativity at t = 2π can be
accommodated.

The particular case considered by us is the lossless scenario
depicted in Fig. 3, where both the optics and the mechanics
are initially in coherent states. In Fig. 5, we arbitrarily set a
20% attenuation of the maximal value of the entanglement
achieved in the lossless case as the acceptable detrimental
tolerance (negativity up to 0.4 in the black dashed line).
Notice that although no cooling of the mechanical oscillator
is truly obliged for our scheme to work, the thermal reservoir
impacts on the qubit coherence. The parametric Hamiltonian,
due to its qubit and photonic dispersive nature, demands a
qubit coherence to reach nonzero entanglement between these
parties. In other words, no fully mixed state or a σ̂z eigenstate
will entangle dynamically with the light field. Under the
assumption of a common reservoir, nth = 100 [nth = 10] will
require dephasing rates of 10−2 and qubit relaxing rates as low
as � = 10−4 [� = 10−3].

IV. OPTICAL NONCLASSICAL STATES GENERATION

We present how nonclassical states of the light field can
be generated due to their dynamics alone and by performing
measurements on the qubit state. The purpose of this section
intends to be primarily illustrative, and thus we believe that
some other optical nonclassical states can be attained and not
readily covered in the following.

Notice that, in optomechanics it is already known that
measurements on the mechanical object can conditionally
project the cavity field into nonclassical states [26]. However,
in practice, a qubit (being a digital measurement of 0 or 1)
may be measured much more faithfully in comparison to a
continuous position degree of freedom. Thus it is relevant to
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find whether nonclassical states of a cavity field can be pre-
pared even when a qubit and the field are interfaced indirectly
through the mechanical element. Here we show that this is
indeed the case.

We distinguish two cases, namely, (i) the generation of the
nonclassical state by evolution alone and (ii) by measuring the
qubit subsystem. We obtain the first case from the reduced
density matrix of the cavity field [see Eq. (13)]. At the
particular time of 2lπ (l being an integer), the corresponding
mixed state reads

ρ̂c(t = 2lπ ) = e−|α|2
∞∑

n,m=0

αn+m

√
n!m!

e2ig2lπ (n2−m2 )

× cos[4πglλ(m − n)]|n〉〈m|. (22)

For a particular set of values of the scaled coupling pa-
rameters g and λ, we can generate nonclassical states for
the cavity mode, the so-called multicomponent Schrödinger
cat states. The appropriate choice of {g, λ} (when each party
becomes disentangled from the rest) can be obtained from
the intrinsic entanglement expression derived previously in
Eq. (14), being 4gλl = k ({k, l} integers). The multicom-
ponent Schrödinger cat states are achieved for g

√
2l p = 1,

where p � 2 gives the p-mode Schrödinger cat state gen-
erated. Without loss of generality, let us fix {l, k} = 1, as
different values of those will involve only rotations in the
phase space of the light field. In Figs. 6(a) and 6(b) we
show the Wigner quasiprobability distributions [defined as
W (x, y) = ∫ ∞

−∞ 〈x + x′|ρ̂c|x − x′〉e−2iyx′/h̄dx′] for the prepara-
tion of two- and five-component Schrödinger cat states, re-
spectively. Notice that if we would like to dynamically gener-
ate the lower p-component Schrödinger cat states (p = 2), the
qubit-optomechanical couplings are as strong as g = λ = 0.5.
In this sense, the strong-to-moderate single-photon coupling
strength g ∼ 0.5 might undermine the nonclassical optical
production, as it remains challenging from an experimental
point of view.

Furthermore, as 2plg2 = 1, it implies that g is lower
bounded by g � 1/

√
4l , and thus reducing g to 10−2 (a more

experimentally available optomechanical strength) will neces-
sarily entail letting the system evolve for l ∼ 103 oscillator’s
round trips; however, intracavity light photons for such l may
have leaked from the cavity at that time. One way to overcome
this obstacle is to steer the light field into a nonclassical state,
i.e., by projecting the qubit such that we can generate a two-
component Schrödinger cat in the weak single-photon regime.
To observe this mechanism, let us write the normalized optical
field projected on

√
2|+〉 = |↑〉 + |↓〉 as follows:

ρ̂c(t = 2lπ ) = 1

P

∞∑
n,m=0

αn+m

√
n!m!

e2ig2lπ (n2−m2 )

× cos(4πglλn) cos(4πglλm)|n〉〈m|, (23)

with normalization P = ∑∞
n=0

α2n

n! cos2(4πglλn). Moreover,
we require the conditions found above to be relaxed for the
case of p-component cat-state generation, as the weak regime
g ∼ 10−2 is not considered in the above description. For
the conditioned density matrix above, we can see that the
cosine’s angle should stand for 4πglλ = π/2 to generate a

(a) (b)

(d)(c)

(f)

(e)

FIG. 6. Panels (a) and (b) show the Wigner distribution for the
generation of nonclassical states for the light field due to its dynamics
alone at t = 2π . In (a) we show the two-component cat state for g =
λ = 0.5, while (b) corresponds to the five-component cat state for
g ∼ 0.32 and λ ∼ 0.8; (c) illustrates the preparation of nonclassical
states via qubit projection |+〉 at t = 10 × 2π when operating in the
weak optomechanical regime g ∼ 0.013 and qubit-mechanical cou-
pling λ = 1. In (d) we show the impossibility to obtain a nonclassical
state with the same parameters used in (c) by its dynamics alone. In
panel (e) we show the displaced Fock number state D̂(α)|1〉 via qubit
projection with its corresponding fidelity shown in (f). Other values
are α = 3, and g∗ the optimal optomechanical strenght to achieve
D̂(α)|1〉. In all panels, positive (negatives) values in the Wigner
function are blue (red) colored.

two-component cat state, i.e., g = 1/(8lλ). The proper rate
between λ and the oscillator’s cycle can give rise to g ∼ 10−2.
For instance, choosing λ = 1 and l = 10 makes g ∼ 0.012,
so we can readily obtain nonclassical states for the optics
within this regime [see Fig. 6(c)]. It is also relevant to point
out that no nonclassical states due to the tripartite dynamics
alone were reported with g ∼ 0.012 and λ = 1 at times before
t = 10 × 2π [see Fig. 6(d)]; only by measuring the qubit can
one collapse the optical field into a nonclassical state [see
Fig. 6(c)].

The hybrid quantum system, when g � λ, makes the
typical nonlinear Kerr-like dynamics to evolve very slowly.
In other words, the initial coherent amplitude of α
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requires several mechanical oscillations to exhibit nonclassi-
cal fringes in the Wigner function. This factor is relevant, as
the Schrödinger cat state shown in Fig. 6(c) suggests that in
earlier times, the coherent state for the optical field should
have been located closer in the phase space; therefore we
can generate a displaced “kitten” state (Schrödinger cat state
with low amplitude) of the optical mode. To quantify this, we
compare the actual displaced Fock number state defined in
Fock basis as

D̂(α)|n〉 = e− α2

2

∞∑
r=0

αr

r!

n∑
j=0

(−α) j

j!

√
(n − j + r)!n!

(n − j)!(n − j)!

× |n − j + r〉. (24)

V. CONCLUDING REMARKS

We show how parametric coupling can induce max-
imal qubit-cavity entanglement in an oscillator-mediated
qubit-optomechanical system. Because of the dispersive off-
resonant qubit and photonic interaction, it is not readily ev-
ident that the qubit cavity will correlate maximally at some
specific time. Here we demonstrate that the maximum value of
the indirect qubit-cavity entanglement is a consequence of the
oscillator disentanglement from the rest of the parties at each
cycle. In addition to this, we show that the maximal value of
the qubit-cavity negativity at the optimal time is independent
of the phonon occupancy number for mechanical thermal
mixtures, thus proving that the oscillator mediates between
the qubit and the optics, with no requirement for cooling the
mechanical oscillator to its ground state.

With use of the intrinsic entanglement E (t ), we show that
to attain such a maximum value one requires the system

to be evolved into the moderate-to-strong single-photon
optomechanical regime, while the qubit frequencies are
comparable to the mechanical oscillator frequency λ ∼ 1.
Because of this operational regime, we solved a general
master equation considering an optomechanical dressed pic-
ture. For feasible damping rates of the oscillator with quality
factors up to Q ∼ 105, and photon leaking rates of κ ∼ 10−2,
we computed that the qubit relaxation decay � and qubit
dephasing rate γφ can be accommodated up to {�, γφ} ∼
{10−3, 10−2} when in contact with a thermal reservoir of
nth ∼ 10 (increasing nth ∼ 102 requires to reduce � 1 order of
magnitude).

Finally, we also illustrate how the generation of non-
classical states for the cavity field can be accomplished via
evolution alone or by collapsing the cavity field through a
local measurement on the qubit state. Such a technique can be
more advantageous when compared to a purely optomechani-
cal system, as in this system we need to measure the continu-
ous degree of freedom of the mechanical oscillator [26]. Our
proposal, a potential integrated hybrid node in the absence
of the linearized optomechanical regime (see Ref. [43] for
a method to entangle distant qubits using optomechanical
transducers in the linearized optomechanical regime) and ex-
ternal driving, may open up the scope for quantum networking
schemes even when the interactions are not of the energy
exchange type.
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