Genetic Programming With Gene Dominance

Kanta Vekaria and Chris Clack
Department of Computer Science
University College London
Gower Street
London WCIE 6BT
United Kingdom
Email: K.Vekaria@cs.ucl.ac.uk, C.Clack@cs.ucl.ac.uk

ABSTRACT
This paper proposes the use of haploid
gene dominance in genetic
programming.

1. Introduction

Dawkins’s model of evolution is based on the gene. He
presents his theory of the gene as the fundamental unit of
natural selection [Dawk89]. Genetic material in complex
organisms is represented using a diploid chromosome. In
the diploid form a genotype carries one or more pairs of
chromosomes, each containing information for the same
functions. The genes contained in one set can be regarded
as a direct alternative to the genes in the other set. When
building the body the genes from one set compete with
those in the other set. Genes which are expressed in the
phenotype of an organism are dominant and those that
don’t are recessive. Some genes that have been known to
be dominant have become recessive in successive
generations and vice versa. These dominance
characteristics have evolved over generations.

Genetic programming [Koza92] traditionally uses a
haploid chromosome. The haploid form contains all the
information relevant to the problem. The genes do not have
associated dominance values.

2. GP with Dominance and Haploidy

Assuming a correlation between program fitness and
subtree fitness, we propose an alternative method of
crossover which uses a dominance operator.

The parse tree contains the normal defined function and
terminal sets. Each use of a function or terminal will have
an associated dominance value. This dominance value will
reflect how good each one is with respect to the fitness of
the entire program.

During crossover two parent trees are selected and the
position for crossover is selected at random. Once the
subtrees are chosen, the nodes from each subtree are
compared, from top to bottom and left to right. The node
with greater dominance is used to create a new subtree.
This is a recursive process. In the case where one tree is
greater than the other the remaining component in the
larger tree is simply copied to the new subtree. This new
subtree is then attached to the trees of the parent where

crossover occurred. Figure 1 shows an example of
Crossover.
Parent 1 Parent 2 Child 1 Child 2
a z a z
7\ /\ 7\ 7\
b ¢ y X by y X
/\ JANVAN /\ JANVAN
d e wvut d e de ut
/\ /\ /\ /\
fg S r s T S r

(c) and (y) are chosen for crossover

(y) has a greater dominance value than (c)
(d) has a greater dominance than (w)

(e) has a greater dominance than (v)

(s), (r) are dominant over (f), (g)

Figure 1 Crossover using dominance

The fitness is then evaluated and the dominance value
of the new subtree that was attached is increased
proportionately to the increase in fitness.

On initialisation of the population, random dominance
values are assigned.

Preliminary experiments will use simple crossover not
the merge crossover shown in figure 1. Here dominance is
compared only at the top nodes of the chosen subtree. The
node which is recessive is replaced by the dominant one.

3. Prospects

We will investigate whether, as in nature, this method
enhances the GP evolutionary process. We will further
investigate:
- the best way to increase dominance values relative
to program fitness.
- implications for evolutionary convergence.
- the application of dominance to ADFs and other
modular techniques.

Bibliography

[Dawk89] Dawkins, R. (1989). The Selfish Gene - New Ed.
Oxford University Press, Great Britain.

[Koza92] Koza, J.R. (1992). Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. Cambridge, MA:MIT Press.



