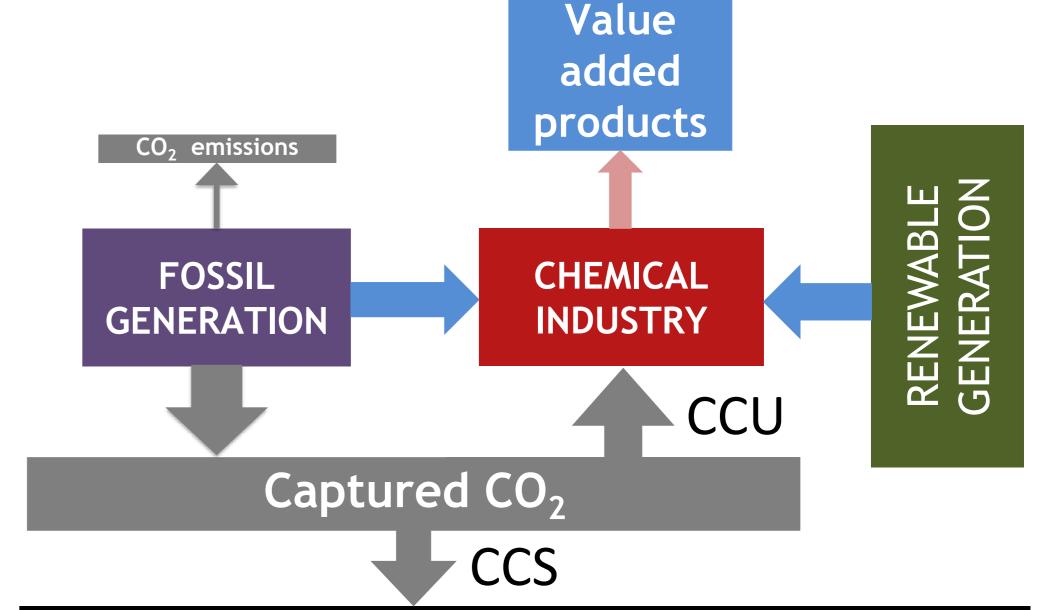
Opportunities from Carbon Capture and Usage


Paul E. Dodds¹, Isabela Butnar¹, Ruben Aldaco²

¹ UCL Energy Institute, University College London, London, UK; ² University of Cantabria, Spain

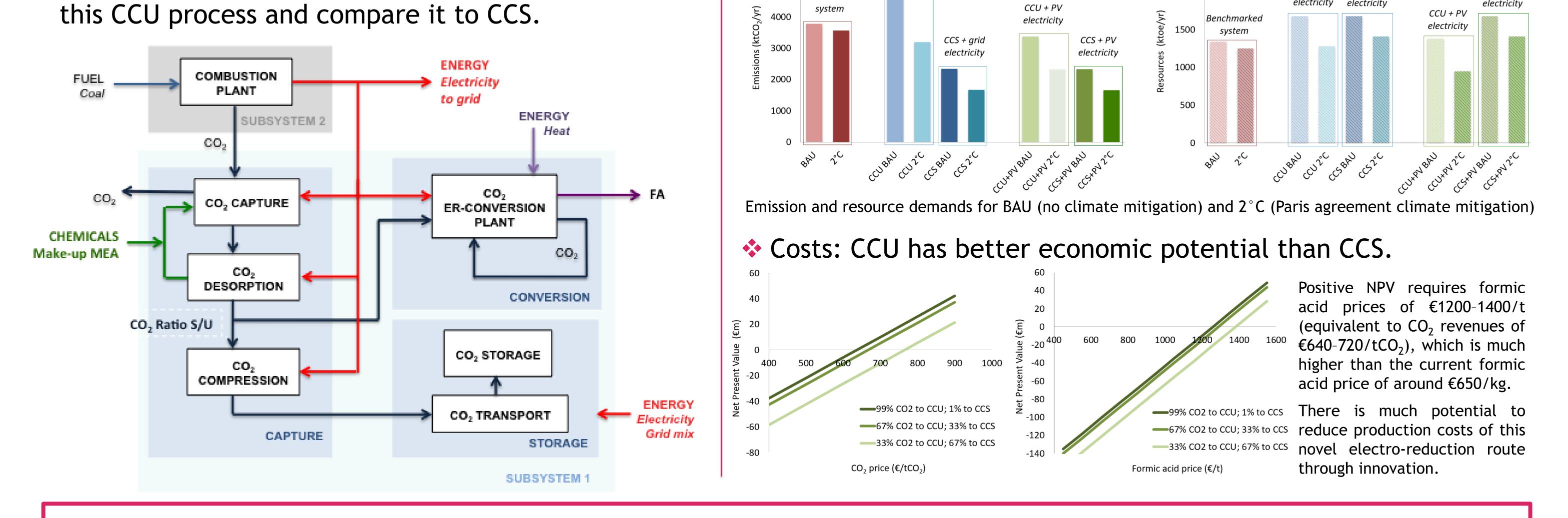
Could CO₂ be a resource rather than an environmental hazard?

Treating CO₂ as an environmental hazard by sequestering it underground has received a lot of attention. CCU is an alternative approach in which captured CO_2 is used as a feedstock to decarbonise industrial processes (CCU).

CCU is an example of a circular economy, as resource consumption and CO₂ waste streams are reduced to deliver existing products using new processes. It is necessary to take a different perspective on the

energy system to understand the possibilities of CCU.

GEOLOGICAL STORAGE


2000

electricity

CCS + PV

CCU	CCS
\circ Uses captured CO ₂ to produce new value-added produ	Icts. \circ Stores captured CO ₂ in permanent geological storage.
 Reduces resource use in and emissions from electricit generation and heavy industry. 	 Substantial emission reduction for power and heavy industry, but industry is a net source of CO₂.
 Not considered in most long-term modelled scenarios 	. \circ A key component in most long-term modelled scenarios.
CCU case study: formic acid produ	ction
Framework	Results
350 kT of formic acid is produced in Europe each year by hydrolysis of methyl formate. It could instead be produced from captured CO_2 using a novel electro-reduction process. In this case study, we examined the environmental and cost implications of	Environmental trade-offs between CO ₂ emissions reduction and resource consumption: CCU is less resource intensive, while CCS has lower overall CO ₂ emissions.

Benchmarked

Could CCU underpin a transition to CCS?

The Clean Growth Strategy identifies CCUS as a potentially large economic opportunity for the UK in the long term, but the high costs of building CCS infrastructure are an impediment.

 \diamond CCU offers a market for CO₂ that does not require large investments in CO₂ transport and storage infrastructure.

- * Innovation, through learning-by-doing, is required to reduce capture costs. By creating a market for CO₂, CCU could facilitate innovation and drive down capture costs.
- This means that CCU offers an opportunity to underpin the early stages of a transition to CCS.
- * A broader view of industrial processes and energy generation is required to fully understand the potential of CCU.

For more information: p.dodds@ucl.ac.uk

This work was funded by the NERC "Comparative assessment and region-specific optimisation of GGR" project (NE/P019900/1) and the Madariaga Programa (PRX18/00027).