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Abstract
Systems neuroscience seeks explanations for how the brain implements a wide variety of 
perceptual, cognitive and motor tasks. Conversely, artificial intelligence attempts to design 
computational systems based on the tasks they will have to solve. In the case of artificial neural 
networks, the three components specified by design are the objective functions, the learning 
rules, and architectures. With the growing success of deep learning, which utilizes brain-inspired
architectures, these three designed components have increasingly become central to how we 
model, engineer and optimize complex artificial learning systems. Here we argue that a greater 
focus on these components would also benefit systems neuroscience. We give examples of 
how this optimization-based framework can drive theoretical and experimental progress in 
neuroscience. We contend that this principled perspective on systems neuroscience will help to 
generate more rapid progress. 
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Introduction
Major technical advances are revolutionizing our ability to observe and manipulate brains at a 
large-scale and quantify complex behaviors1,2. How should we use this data to develop models 
of the brain? When the classical framework for systems neuroscience was developed, we could 
only record from small sets of neurons. In this framework, a researcher observes neural activity,
develops a theory of what individual neurons compute, then assembles a circuit-level theory of 
how the neurons combine their operations. This approach has worked well for simple 
computations. For example, we know how central pattern generators control rhythmic 
movements3, how the vestibulo-ocular reflex promotes gaze stabilization4, and how the retina 
computes motion5. But, can this classical framework scale up to recordings of thousands of 
neurons and all of the behaviors that we may wish to account for? Arguably, we have not had as
much success with the classical approach in large neural circuits that perform a multitude of 
functions, like the neocortex or hippocampus. In such circuits, researchers often find neurons 
with response properties that are difficult to summarize in a succinct manner6,7. 

The limitations of the classical framework suggest that new approaches are needed to 
take advantage of experimental advances. A promising framework is emerging from the 
interactions between neuroscience and Artificial Intelligence (AI)8–10. The rise of deep learning 
as a leading machine learning method invites us to revisit Artificial Neural Networks (ANNs). At 
their core, ANNs model neural computation using simplified units that loosely mimic the 
integration and activation properties of real neurons11. Units are implemented with varying 
degrees of abstraction, ranging from highly simplified linear operations to relatively complex 
models with multiple compartments, spikes, etc.11–14. Importantly, the specific computations 
performed by ANNs are not designed, but learned15. 

However, human design still plays a role in determining three essential components in 
ANNs: the learning goal, expressed as an objective function (or loss function) to be maximized 
or minimized; a set of learning rules, expressed as synaptic weight updates; and the network 
architecture, expressed as the pathways and connections for information flow (Fig. 1)15. Within 
this framework, we do not seek to summarize how a computation is performed, but we do 
summarize what objective functions, learning rules and architectures would enable learning of 
that computation.

Deep learning can be seen as a rebranding of long-standing ANN ideas11. Deep ANNs 
possess multiple layers, either feedforward, or recurrent over time. The “layers” are best thought
of as being analogous to brain regions, rather than as specific laminae in biological brains16,17. 
“Deep” learning specifically refers to training hierarchical ANNs in an end-to-end manner, such 
that plasticity in each layer of the hierarchy contributes to the learning goals15, which requires a 
solution to the “credit assignment problem” (Box 1)18,19. In recent years, progress in deep 
learning has come from the use of bigger ANNs, trained with bigger datasets using Graphics 
Processing Units (GPUs) that can efficiently handle the required computations. Such 
developments have produced solutions for many new problems, including image20 and speech21 
classification and generation, language processing and translation22, haptics and grasping23, 
navigation24, sensory prediction25, game playing26 and reasoning27. 

Many recent findings suggest that deep learning can inform our theories of the brain. 
First, it has been shown that deep ANNs can, in some cases closely, mimic the representational
transformations in primate perceptual systems17,28, and thereby can be leveraged to manipulate 
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neural activity29. Second, many well-known behavioral and neurophysiological phenomena, 
including grid cells24, shape tuning30, temporal receptive fields31, visual illusions32, and apparent 
model-based reasoning33, have been shown to emerge in deep ANNs trained on tasks similar to
those solved by animals. Third, many modeling studies have demonstrated that the apparent 
biological implausibility of end-to-end learning rules, e.g. learning algorithms that can mimic the 
power of the canonical backpropagation-of-error algorithm (backprop) (Fig. 2; see also Box 1), 
is overstated. Relatively simple assumptions about cellular and subcellular electrophysiology, 
inhibitory microcircuits, patterns of spike timing, short term plasticity, and feedback connections 
can enable biological systems to approximate backprop-like learning in deep ANNs12,14,34–39. 
Hence, ANN-based models of the brain may not be as unrealistic as previously thought, and 
simultaneously, they appear to explain a lot of neurobiological data. 

With these developments, it is the right time to consider a deep-learning-inspired 
framework for systems neuroscience8,19,40.  We have a growing understanding of the key 
principles that underlie ANNs, and there are theoretical reasons to believe that these insights  
apply generally41,42. Concomitantly, our ability to monitor and manipulate large neural 
populations opens the door to new ways of testing hypotheses derived from the deep learning 
literature. Here we sketch the scaffolding of a deep learning framework for modern systems 
neuroscience.

Constraining learning in artificial neural networks and the brain with “task sets”
The “No Free Lunch Theorems” demonstrated broadly that no learning algorithm can perform 
well on all possible problems43. ANN researchers in the first decade of the 21st century thus 
argued that AI should be primarily concerned with the set of tasks that “...most animals can 
perform effortlessly, such as perception and control, as well as ... long-term prediction, 
reasoning, planning, and [communication]”44. This set of tasks has been termed the “AI Set”, 
and the focus on building computers with capabilities that are similar to those of humans and 
animals is what distinguishes AI tasks from other tasks in computer science44 (note that the 
word “tasks” here refers broadly to any computation, including those that are unsupervised.)
Much of the success of deep learning can be attributed to the consideration given to learning in 
the AI Set15,44. Designing ANNs that are well-suited to learn specific tasks is an example of 
incorporating “inductive biases” (Box 2): assumptions that one makes about the nature of the 
solutions to a given optimization problem. Deep learning works so well, in part, because it uses 
appropriate inductive biases for the AI Set15,45, particularly hierarchical architectures. For 
example, images can be well described by composing them into a hierarchical set of 
increasingly complex features: from edges, to simple combinations of these, to larger 
configurations that form objects. Language too can be considered a hierarchical construction, 
with phonemes assembled into words, words into sentences, sentences into narratives. 
However, deep learning also eschews hand-engineering, allowing the function computed by the 
system to emerge during learning15. Thus, despite the common belief that deep learning relies 
solely on increases in computational power, or that it represents a “blank slate” approach to 
intelligence, many of the successes of deep learning have grown out of a balance between 
useful inductive biases and emergent computation, echoing the blend of nature and nurture 
which underpins the adult brain.
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Box 1: Learning and the “credit assignment problem”
A natural definition of learning is that it is a change to a system that improves its performance.
Suppose we have an objective function, F(W), which measures how well a system is currently
performing, given the N-dimensional vector of its current synaptic weights, W. If the synaptic 
weights change from W to W + ΔW, then the change in performance is ΔF = F(W + ΔW)W, then the change in performance is ΔW, then the change in performance is ΔF = F(W + ΔW)F = F(W + ΔW, then the change in performance is ΔF = F(W + ΔW)W)
−F(W). If we make small changes to W, and F is locally smooth, then ΔW, then the change in performance is ΔF = F(W + ΔW)F is given 
approximately by

ΔW, then the change in performance is ΔF = F(W + ΔW)F ≈ ΔW, then the change in performance is ΔF = F(W + ΔW)W T  ⋅ ∇ ∇W F

where ∇W F is the gradient of F with respect to W41. Suppose we want to guarantee improved  
performance, i.e. we want to ensure ΔW, then the change in performance is ΔF = F(W + ΔW)F > 0. We know that there is an N-1 dimensional 
manifold of local changes in W that all lead to the same improvement. Which one should we 
choose? Gradient-based algorithms derive from the intuition that we want to take the smallest 
step that gets us a specific level of improvement. If we choose a small step size, η, times the 
gradient ∇W F, then we will improve as much as possible for that step size. Thus, we have:

ΔW, then the change in performance is ΔF = F(W + ΔW)F ≈ η ∇W F T  ⋅ ∇ ∇W F  > 0

In other words, the objective function value increases with every step (when η is small) 
according to the length of the gradient vector. 

The concept of “credit assignment” refers to the problem of determining how much “credit” or 
“blame” a given neuron or synapse should get for a given outcome. More specifically, it is a 
way of determining how each parameter in the system (e.g., each synaptic weight) should 
change to ensure that ΔW, then the change in performance is ΔF = F(W + ΔW)F > 0. In its simplest form, the “credit assignment problem” refers to 
the difficulty of assigning credit in complex networks. Updating weights using the gradient of 
the objective function, ∇W F, has proven to be an excellent means of solving the credit 
assignment problem in ANNs. A question that systems neuroscience faces is whether the 
brain also approximates something like gradient-based methods.

The most common method for calculating gradients in deep ANNs is backprop15.  It uses the 
chain rule to recursively calculate gradients backwards from the output11. But backprop rests 
on biologically implausible assumptions, such as symmetric feedback weights and distinct 
forward and backward passes of information14. Many different learning algorithms, not just 
backprop, can provide estimates of a gradient, and some of these do not suffer from 
backprop’s biological implausibility12,14,34–38,91-93. However, algorithms differ in their variance and
bias properties (Fig. 2)36,94. Algorithms such as weight/node perturbation, which reinforce 
random changes in synaptic weights through rewards, have high variance in their path along 
the gradient94. Algorithms that use random feedback weights to communicate gradient 
information have high bias36,95. Various proposals have been made to minimize bias and 
variance in algorithms while maintaining their biological realism37,38. 

Similarly, neuroscientists focus on the behaviors/tasks that a species evolved to perform.
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This set of tasks overlaps with the AI Set, though possibly not completely, since different 
species have evolved strong inductive biases for their ecological niches. By considering this 
“Brain Set” for specific species—the tasks that are important for survival and reproduction for 
that species—researchers can focus on the features most likely to be key to learning. Just as 
departing from a pure blank slate was the key to the success of modern ANNs—e.g. by focusing
on ANN designs with inductive biases that are useful for the AI Set—so we suspect that it will 
also be crucial to the development of a deep learning framework for systems neuroscience to 
focus on how a given animal might solve tasks in its appropriate Brain Set.

Box 2: What are inductive biases?
Learning is easier when we have prior knowledge about the kind of problems that we will have
to solve43. Inductive biases are a means of embedding such prior knowledge into an 
optimization system. Such inductive biases may be generic, such as hierarchy, or specific, 
such as convolutions. Importantly, the inductive biases that exist in the brain will have been 
shaped by evolution to increase an animal’s fitness in both the broad context of life on Earth 
(e.g. life in a three-dimensional world where one needs to obtain food, water, shelter, etc.), 
and in specific ecological niches. Examples of inductive biases are:

Simple explanations: When attempting to make sense of the world, simple explanations may
be preferred, as articulated by Occam’s Razor96. We can build this into ANNs using either 
Bayesian frameworks or by other mechanisms, such as sparse representations59. 

Object permanence: The world is organized into objects, which are spatiotemporally 
constant. We can build this into ANNs by learning representations that assume consistent 
movement in sensory space97.

Visual translation invariance: A visual feature tends to have the same meaning regardless 
of its location. We can build this into ANNs using convolution operations98.

Focused attention: Some aspects of the information coming into a system are more 
important than others. We can build this into ANNs through attention mechanisms99.

Recognizing the importance of inductive biases in deep learning also helps address some 
existing misconceptions. Deep networks are often considered different from brains because 
they depend on large amounts of data. However, it is worth noting that (1) many species, 
especially humans, develop slowly with large quantities of experiential data and (2) that deep 
networks can work well in low data regimes if they have good inductive biases46.  For example, 
deep networks can learn how to learn quickly47. In the case of brains, evolution could be one 
means by which such inductive biases are acquired48,49.

The three core components of a deep learning framework for the brain
Deep learning combines human design with automatic learning to solve a task. What is 
designed are not the computations (i.e. the specific input/output functions of the ANNs), but 
three components: (1) objective functions, (2) learning rules, and (3) architectures (Fig. 1). 
Objective functions describe the goals of the learning system. They are functions of the 
synaptic weights of a neural network and the data it receives, but they can be defined without 
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making reference to a specific task or dataset. For example, the cross-entropy objective 
function, which is common in machine learning, specificies a means of calculating performance 
on any categorization task, from distinguishing different breeds of dog in the ImageNet dataset 
to classifying the sentiment behind a tweet. We will return to some of the specific objective 
functions proposed for the brain below50–53. Learning rules describe how the parameters in a 
model are updated. In ANNs, these rules are generally used to improve on the objective 
function. Notably, this is true not only for supervised learning (where an agent receives an 
explicit target to mimic), but also for unsupervised learning (where an agent must learn without 
any instruction) and reinforcement learning systems (where an agent must learn using only 
rewards/punishments). Finally, architectures describe how the units in an ANN are arranged 
and what operations they can perform. For example, convolutional networks impose a 
connectivity pattern whereby the same receptive fields are applied repeatedly over the spatial 
extent of an input.

Why do so many AI researchers now focus on objective functions, learning rules and 
architectures instead of designing specific computations? The short answer is that this appears 
to be the most tractable way to solve real-world problems. Originally, AI practitioners believed 
that intelligent systems could be hand-designed by piecing together elementary computations54. 
But results on the AI Set were underwhelming11. It now seems clear that solving complex 
problems with pre-designed computations (e.g. such as handcrafted features) is usually too 
difficult and practically unworkable. In contrast, specifying objective functions, architectures, and
learning rules works well. 

There is, though, a drawback: the computations that emerge in large-scale ANNs trained
on high-dimensional datasets can be difficult to interpret. We can construct a neural network in 
a few lines of code, and for each unit in an ANN we can specify the equations that determine 
their responses to stimuli or relationships to behavior. However, after training, a network is 
characterized by millions of weights that collectively encode what the network has learned, and 
it is hard to imagine how we could describe such a system with only a small number of 
parameters, let alone in words55.

Such considerations of complexity are informative for neuroscience. For small circuits 
comprising only tens of neurons it may be possible to build compact models of individual neural 
responses and computations (i.e. to develop models that can be communicated using a small 
number of free parameters or words)3–5. But, considering that animals are solving many AI Set 
problems, it is likely that the brain uses solutions that are as complex as the solutions used by 
ANNs. This suggests that a normative framework that explains why neural responses are as 
they are, might be best obtained by viewing neural responses as an emergent consequence of 
the interplay between objective functions, learning rules, and architecture. With such a 
framework in hand, one could then train ANN models that do, in fact, predict neural responses 
well29. Of course, those ANN models would likely be non-compact, involving millions, billions or 
even trillions of free parameters, and being nigh indescribable with words. Hence, our claim is 
not that we could ever hope to predict neural responses with a compact model, but rather, that 
we could explain the emergence of neural responses within a compact framework. 

A question that naturally arises is whether the environment, or data, that an animal 
encounters should be a fourth essential component for neuroscience. Determining the “Brain 
Set” for an animal necessarily involves consideration of its evolutionary and ontogenic milieu. 

7



Efforts to efficiently describe naturalistic stimuli and identify ethologically-relevant behaviors are 
crucial to neuroscience, and have shaped many aspects of nervous systems. However, the core
issue we are addressing in this perspective piece is how to develop models of complex, 
hierarchical brain circuits, so we view the environment as a crucial consideration to anchor the 
core components, but not as one of the components itself.

Once the appropriate Brain Set has been identified, the first question is: what is the 
architecture of the circuits? This involves descriptions of the cell types and their connectivity 
(micro, meso and macroscopic). Thus, uncontroversially, we propose that circuit-level 
descriptions of the brain are a crucial topic for systems neuroscientists. Thanks to modern 
techniques for circuit tracing and genetic lineage determination, rapid progress is being 
made56,57. But, to reiterate, we would argue that understanding the architecture is not sufficient 
for understanding the circuit; rather, it should be complemented by knowledge of learning rules 
and objective functions. 

Many neuroscientists recognize the importance of learning rules and architecture. But 
identifying the objective functions that have shaped the brain, either during learning or evolution,
is less common. Unlike architectures and learning rules, objective functions may not be directly 
observable in the brain (Fig. 3). Nonetheless, we can define them mathematically and without 
making reference to a specific environment or task. For example, predictive coding models 
minimize an objective function known as the description length, which measures how much 
information is required to encode sensory data using the neural representations. Several other 
objective functions have been proposed for the brain (Box 3). In this perspective piece, we are 
not advocating for any of these specific objective functions in the brain, as we are articulating a 
framework, not a model. One of our key claims is that even though we must infer them, 
objective functions are an attainable part of a complete theory of how the architectures or 
learning rules help to achieve a computational goal.

This optimization framework has an added benefit: as with ANNs, the architectures, 
learning rules and objective functions of the brain are likely relatively simple and compact, at 
least in comparison to the list of computations performed by individual neurons58. The reason is 
that these three components must presumably be conveyed to offspring through a limited 
information bottleneck, i.e. the genome (which may not have sufficient capacity to fully specify 
the wiring of large vertebrate brains48). In contrast, the environment in which we live can convey 
vast amounts of complex and changing information that dwarf the capacity of the genome.
Since the responses of individual neurons are shaped by the environment, their computations 
should reflect this massive information source. We can see evidence of this in the ubiquity of 
neurons in the brain that have high entropy in their activity and that do not exhibit easy-to-
describe correlations with the multitude of stimuli and behaviors that experimentalists have 
explored to date6,7. To clarify our claim, we are suggesting that identifying a normative 
explanation using the three components may be a fruitful way to go on to develop better, non-
compact models of the response properties of neurons in a circuit, as shown by recent studies 
that use task-optimized deep ANNs to determine the optimal stimuli for activating specific 
neurons29. As an analogy, the theory of evolution by natural selection provides a compact 
explanation for why species emerge as they do, one which can be stated in relatively few words.
This compact explanation of the emergence of species can then be used to develop more 
complex, non-compact models of the phylogeny of specific species. Our suggestion is that 

8



normative explanations based on the three components could provide similar high-level theories
for generating our lower-level models of neural responses, and that this would bring us one step
closer to the form of “understanding” that many scientists seek.

Box 3: Are there objective functions for brains?
Animals clearly have some baseline objective functions. For example, homeostasis minimizes
an objective function corresponding to the difference between a physiological variable (like 
blood oxygen levels) and a set-point for that variable. Given the centrality of homeostasis to 
physiology, objective functions are arguably something that the brain must be concerned with.

But, some readers may doubt whether the sort of objective functions used in machine learning
are relevant to the brain. For example, the cross-entropy objective function used in ANNs 
trained on categorization tasks is unlikely to be used in the brain, since it requires 
specification of the correct category for each sensory input. Other objective functions are 
more ecologically plausible, though. Examples include the description length objective 
function used in predictive coding models50, the log-probability of action sequences scaled by 
the reward they have produced (which is used in reinforcement learning to maximize 
rewards)51, increases in mutual information with the environment100, and empowerment52,53, 
which measures the degree of control an agent has in their environment. These objective 
functions can all be specified mathematically for the brain without worrying about specific 
datasets, tasks or environments.

There are, however, real challenges in tying objective functions to empirical and theoretical 
models in neuroscience. Many potential plasticity rules may not follow the gradient of any 
objective function at all, or only follow it partially (Fig. 3). This apparently complicates our 
problems, and makes it impossible to guarantee that objective functions are always involved 
in neural plasticity. As well, the brain likely optimizes multiple objective functions40, some of 
which we may in fact learn (i.e. we may “learn-to-learn”; for example, humans learn how to 
learn new board games), and some of which may have been optimized over the course of 
evolution rather than in an individual animal (i.e. reflexes or reproductive behavior). 

Despite these complexities, we believe that consideration of objective functions is critical for 
systems neuroscience. After all, we know that biological variables, such as dopamine release,
meaningfully relate to objective functions from reinforcement learning64. In addition, although 
many potential learning rules may not directly follow the gradient of the objective function, 
they would still lead to an improvement in that objective function. Here, identifying an objective
function allows us to establish whether a change in the phenotype of a neural circuit should 
be considered a form of learning. If things don’t “get better” according to some metric, how 
can we refer to any phenotypic plasticity as “learning”as opposed to just “changes”?

It is worth recognizing that researchers have long postulated objective functions and 
plasticity rules to explain the function of neural circuits59–62. Many of them, however, have 
sidestepped the question of hierarchical credit assignment, which is key to deep learning15. 
There are clear experimental success stories too, including work on predictive coding31,63, 
reinforcement learning64,65, and hierarchical sensory processing17,28. Thus, the optimization-
based framework that we articulate here can, and has, operated alongside studies of individual 
neuron response properties. But, we believe that we will see even greater success if a 
framework focused on the three core components is adopted more widely.
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Architectures, learning rules, and objective functions in the wet lab
How can the framework articulated here engage with experimental work? One way to make 
progress is to build working models using the three core components, then compare the models
with the brain. Such models should ideally check out on all levels: (1) They should solve the 
complex tasks from the Brain Set under consideration. (2) They should be informed by our 
knowledge of anatomy and plasticity. And, (3) they should reproduce the representations, and 
changes in representation, we observe in brains (Fig. 4). Of course, checking each of these 
criteria will be non-trivial. It may require many new experimental paradigms. Checking that a 
model can solve a given task is relatively straightforward, but representational and anatomical 
matches are not straightforward to establish, and this is an area of active research66,67.  Luckily, 
the modularity of the optimization framework allows researchers to attempt to study each of the 
three components in isolation.

Empirical studies of architecture in the brain
To be able to identify the architecture that defines the inductive biases of the brain, we need to 
continue performing experiments that explore neuroanatomy at the circuit level. To really frame 
neuroanatomy within an optimization framework, we must also be able to identify what 
information is available to a circuit, including where signals about action outcomes may come 
from. Ultimately, we want to be able to relate these aspects of anatomy to concrete biological 
markers that guide the developmental processes responsible for learning.

There is considerable experimental effort already underway towards describing the 
anatomy of the nervous system. We are using a range of imaging techniques to quantify the 
anatomy and development of circuits57,68. Extensive work is also conducted in mapping out the 
projections of neural circuits with cell-type specificity56. Research attempting to map out the 
hierarchy of the brain has long existed69, but several groups are now probing which parts of 
deep ANN hierarchies may best reflect which brain areas17,70. For example, the representations 
in striate cortex (as measured, for example, by dissimilarity matrices) better match early layers 
of a deep ANN, while those in inferotemporal cortex better match later layers8,71. This strain of 
work also involves optimization of the architecture of deep ANNs so that they provide a closer fit
to representation dynamics in the brain, e.g. by exploring different recurrent connectivity 
motifs66. Confronted with a bewildering set of anatomical observations that have been and will 
be made, theories and frameworks that place anatomy in a framework alongside objective 
functions and learning rules offer a way to zero in on those features with the most explanatory 
power.

Empirical studies of learning rules in the brain
There is a long tradition in neuroscience of studying synaptic plasticity rules. Yet, these studies 
have rarely explored how credit assignment may occur. However, as we discussed above (Box 
1), credit assignment is key to learning in ANNs, and may be in the brain as well. Thankfully, 
top-down feedback and neuromodulatory systems have become the focus of recent studies of 
synaptic plasticity72–76. This has allowed some concrete proposals, e.g. as to how apical 
dendrites may be involved in credit assignment12,14, or how top-down attention mechanisms 
combined with neuromodulators may solve the credit assignment problem37,38 (Fig. 5). We may 
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also be able to look at changes in representations and infer the plasticity rules from those 
observations77. It is important for experimentalists to measure neural responses both during and
after an animal has reached stable performance, so as to capture how representations evolve 
during learning. Work on learning rules with an eye to credit assignment is producing a finer-
grained understanding of the myriad of factors that affect plasticity78.

In the future, we should be better placed to study learning rules with optimization in 
mind. As optical technologies improve, and potentially give us a means of estimating synaptic 
changes in vivo79, we may be able to directly relate synaptic changes to things like behavioral 
errors. We could also directly test hypothesized biological models of learning rules that can 
solve the credit assignment problem, such as those that use attention37,38  or those that use 
dendritic signals for credit assignment12,14 (Fig. 5). 

Empirical studies of objective functions in the brain
In some cases, the objective functions being optimized by the brain may be represented directly
in neural signals that we can monitor and record. In other cases, objective functions may only    
exist implicitly with respect to the plasticity rules that govern synaptic updates. Normative 
concepts, such as optimal control, are applicable80, and evolutionary ideas can inform our 
thinking. More specifically, ethology may provide guidance81 as to which functions would be 
useful for animals to optimize, giving us a meaningful intuitive space in which to think about 
objective functions. 

There is a long-standing literature trying to relate experimental data to objective 
functions. This starts with theoretical work relating known plasticity rules to potential objective 
functions. For example, there are studies that attempt to estimate objective functions by 
comparing neural activity observed experimentally with the neural activity of ANNs trained on 
natural scenes59,82. There are also approaches that use inverse reinforcement learning to 
identify what a system optimizes83. Moreover, one could argue that we can get a handle on 
objective functions by looking for correlations between representational geometries optimized 
for a given objective and real neural representational geometries28,84. Another newly emerging 
approach asks what an animal’s circuits can optimize when controlling a Brain Computer 
Interface (BCI) device85. Thus, a growing literature, which builds on previous work80, helps us 
explore objective functions in the brain.

Caveats and concerns 
One may argue that a focus on architectures, learning rules, and objective functions, and a 
move away from studying the coding properties of neurons, loses much of what we have 
learned so far, e.g. orientation selectivity, frequency tuning, spatial-tuning (place cells, grid 
cells). However, our proposed framework is heavily informed by this knowledge. Convolutional 
ANNs directly emerged from the observation of complex cells in the visual system86. Moreover, 
tuning curves are often measured in the context of learning experiments, and changes in tuning 
inform us about learning rules and objective functions. 

In a similar vein, a lot of computational neuroscience has emphasized models of the 
dynamics of neural activity87, and that has not been a major theme in our discussion. As such, 
one might worry that our framework fails to connect with this past literature. However, the 
framework we articulate here does not preclude consideration of dynamics. A focus on 
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dynamics may equally be repurposed for making inferences about architectures, learning rules 
and objective functions, which have long been a feature of models of neural dynamics49,88. 

Another common objection to the relevance of deep learning for neuroscience is that 
many behaviors that animals engage in appear to require relatively little learning48. However, 
such innate behavior was “learned”, only on evolutionary timescales. Hardwired behavior is, 
arguably, best described as strong inductive biases, since even pre-wired behaviors can be 
modified by learning (e.g. horses still get better at running after birth). Hence, even when a 
neural circuit engages in only moderate amounts of learning, an optimization framework can 
help us model its operations48.

The framework that we have laid out here makes the optimization of objective functions 
central to models of the brain. But a comprehensive theory of any brain likely requires attention 
to other constraints unrelated to any form of objective function optimization. For example, many 
aspects of physiology are determined by phylogenetic constraints that may be hold-overs from 
evolutionary ancestors. While these constraints are undoubtedly crucial for our models in 
neuroscience, we believe that it is the optimization of objective functions within these constraints
that produces the rich diversity of neural circuitry and behavior that we observe in the brain.

Some of us, who are inclined to a bottom-up approach to understanding the brain, worry 
that attempts to posit objective functions or learning rules for the brain may be premature, 
needing far more details of brain operation than we currently possess. Nonetheless, scientific 
questions necessarily are posed within some framework of thought. Importantly, we are not 
calling for abandoning bottom-up explanations. Instead, we hope that important new 
experimental questions will emerge from the framework suggested by ANNs (see e.g. Fig. 5).

Finally, some researchers are concerned by the large number of parameters in deep 
ANNs, seeing them as a violation of Occam’s razor and merely an overfitting to data. 
Interestingly, recent work in AI shows that the behavior of massively overparameterized learning
systems can be counterintuitive—there appear to be intrinsic mathematical properties of over-
parameterized learning systems that enable good generalization42,89. Since the brain itself 
apparently contains a massive number of potential parameters to adapt (e.g. synaptic 
connections, dendritic ion channel densities, etc.), one might argue that the large number of 
parameters in deep ANNs actually makes them even more appropriate models of the brain.

Conclusion
Much of systems neuroscience has attempted to formulate succinct statements about the 
function of individual neurons in the brain. This approach has been successful at explaining 
some (relatively small) circuits and certain hard-wired behaviors. However, there is reason to 
believe that this approach will need to be complemented by other insights if we are to develop 
good models of plastic circuits with thousands, millions or billions of neurons. There is, 
unfortunately, no guarantee that the function of individual neurons in the central nervous system
can be compressed down to a human-interpretable, verbally articulable form. Given that we 
currently have no good means of distilling the function of individual units in deep ANNs into 
words, and given that real brains are likely more, not less, complex, we suggest that systems 
neuroscience would benefit from focusing on the kinds of models that have been successful in 
ANN research programs, i.e. models grounded in the three essential components. 

Current theories in systems neuroscience are beautiful and insightful, but we believe that
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they could benefit from a cohesive framework founded in optimization. For example, local 
plasticity rules, such as Hebbian mechanisms, explain a great deal of biological data. But, to 
achieve good performance on complex tasks, Hebbian rules must be designed with objective 
functions and architectures in mind34,90. Similarly, other researchers have, for good reason, 
pointed out the benefits of the inductive biases utilized by the brain48. However, inductive biases
are not on their own sufficient to solve complex tasks, like those contained in the AI Set or 
various Brain Sets. To solve these difficult problems, inductive biases must be paired with 
learning and credit assignment. If, as we have argued, the set of tasks that an animal can solve 
are an essential consideration for neuroscience, then it is critical to build models that can 
actually solve these tasks. 

Inevitably, both bottom-up descriptive work and top-down theoretical work will be 
required to make progress in systems neuroscience. It is important, though, to start with the 
right kind of top-down theoretical framing. Given the ability of modern machine learning to solve 
problems in the AI Set and numerous Brain Sets, it will be fruitful to guide the top-down 
framework of systems neuroscience research with machine learning insights. If we consider 
research data within the framework provided by this mindset, and focus our attention on the 
three essential components identified here, we believe we can develop theories of the brain that
will reap the full benefits of the current technological revolution in neuroscience.
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Figure legends

Figure 1: The three core components of ANN design. When designing ANNs, researchers 
do not craft the specific computations performed by the network. Instead they specify these 
three components. Objective functions quantify the performance of the network on a task, and 
learning involves finding synaptic weights that maximize or minimize the objective function. 
(Often, these are referred to as “loss” or “cost” functions.) Learning rules provide a recipe for 
updating the synaptic weights. This can lead to ascent of the objective, even if the explicit 
gradient of the objective function isn’t followed. Architectures specify the arrangement of units in
the network, and determine the flow of information, as well as the computations that are or are 
not possible for the network to learn.

Fig 2: Bias and variance in learning rules. Many learning rules provide an estimate of the 
gradient of an objective function, even if they are not explicitly gradient-based. However, as with
any estimator, these learning rules can exhibit different degrees of variance and bias in their 
estimates of the gradient. Here, we provide a rough illustration of how much bias and variance 
some of the proposed biologically plausible learning rules may have relative to backprop. It is 
important to note that the exact bias and variance properties of many of the learning rules are 
unknown, and this is just a sketch. As such, for some of the learning rules shown here, e.g. 
contrastive Hebbian learning, predictive coding (ref. 35), dendritic error learning (ref. 14), 
regression discontinuity design (RDD) (ref. 93), and attention-gated reinforcement learning 
(AGREL) (ref. 37), we have indicated their location with a question mark. For others, namely 
backpropagation, feedback alignment (ref. 36), and node/weight perturbation (ref. 94), we show 
their known relative positions.

Figure 3: Learning rules that don’t follow gradients. Learning should ultimately lead to some
form of improvement, which could be measured with an objective function. But, not all synaptic 
plasticity rules need to follow a gradient. Here we illustrate this idea by showing three different 
hypothetical learning rules, characterized as vector fields in synaptic weight space. The x and y 
dimensions correspond to synaptic weights, and the z dimension corresponds to an objective 
function. Any vector field can be decomposed into a gradient and the directions orthogonal to it. 
On the left is a plasticity rule that adheres to the gradient of an objective function, directly 
bringing the system up to the maximum. In the middle is a plasticity rule that is orthogonal to the
gradient, and as such, never brings the system closer to the maximum. On the right is a learning
rule that only partially follows the gradient, bringing the system towards the maximum, but 
indirectly. Theoretically, any of these situations may hold in the brain, though learning goals 
would only be met in the cases where the gradient is fully or partially followed (left and right).

Figure 4: Comparing deep ANN models and the brain. One way to assess the three 
components at once is to compare experimental data with changes in representations in deep 
ANNs that incorporate all three components. (a) For example, we could use a deep ANN with a 
hierarchical architecture, trained with an objective function for maximizing rewards that are 
delivered when it successfully discriminates grating orientations, and a gradient-based, end-to-
end learning rule. (b) When examining the orientation tuning of the populations in different 
layers of the hierarchy, such models can make predictions. For instance, the model may predict 
that the largest changes in tuning should occur higher in the cortical hierarchy (top), with smaller
changes in the middle, e.g. in V4 (middle), and the smallest changes occurring low in the 
hierarchy, e.g. in V1 (bottom). (c) This leads to experimentally testable predictions about the 
average magnitude of changes in neural activity that should be observed experimentally when 
an animal is learning.
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Figure 5: Biological models of credit assignment. (a) Attention based models of credit 
assignment (refs. 37,38) propose that the credit assignment problem is solved by the brain 
using attention and neuromodulatory signals. According to these models, sensory processing is 
largely feedforward in early stages, then feedback “tags” neurons and synapses for credit, and 
reward prediction errors (RPE) determine the direction of plastic changes. This is illustrated at 
the bottom, where circles indicate neurons, and the gray level indicates their level of activity. 
These models predict that the neurons responsible for activating a particular output unit will be 
tagged (T) by attentional feedback. Then, if a positive RPE is received, the synapses should 
potentiate. In contrast, if a negative RPE is received, the synapses should depress. This 
provides an estimate of a gradient for a category-based objective function. (b-d) Dendritic 
models of credit assignment (refs. 12,14) propose that gradient signals are carried by “dendritic 
error” (δ) signals in the apical dendrites of pyramidal neurons. (b) According to these models, ) signals in the apical dendrites of pyramidal neurons. (b) According to these models, 
feedforward weight updates are determined by a combination of feedforward inputs and δ) signals in the apical dendrites of pyramidal neurons. (b) According to these models, . In an
experiment where two different stimuli are presented, and only one is reinforced, this leads to 
specific predictions. (c) If a neuron is tuned towards a stimulus that is reinforced, then 
reinforcement should lead to an increase in apical activity. (d) In contrast, if a neuron is tuned to 
an unreinforced stimulus, its apical activity should decrease when reinforcement is received.
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