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Inhibition and Cognitive Load in Fractions and Decimals 

 

Abstract: 

Background. Prior research with adults and children suggests that inhibitory control may have a role 

to play in learning counterintuitive fractions and decimals that are inconsistent with whole number 

knowledge. However, there is little research to date with primary-school aged children at the early 

stages of fraction and decimal instruction that addresses this relationship. Understanding this 

association has the potential to inform instructional practices concerning the learning of 

counterintuitive maths concepts. 

Aims. This study examined the relationship between inhibitory control and counterintuitive fractions 

and decimals in the presence of varying cognitive load in 8-10 year-old children.  

Method. Children aged 8 to 10 years (N = 95) completed a fraction and decimal magnitude 

comparison task with pairs that were either consistent (controls) or inconsistent (counterintuitive) 

with whole number magnitudes. Cognitive load was manipulated by presenting trials with simple 

integrated  text (no additional load), with integrated text accompanied by supportive illustrations (low 

load) or with illustrations containing information that needed to be integrated  to arrive at an answer 

(high load). Participants also completed measures of response and semantic inhibition. 

Results. Inhibitory control uniquely contributed to performance in counterintuitive fractions and 

decimals only under conditions of high cognitive load, where low semantic inhibition predicted longer 

response times.  

Conclusion. Our results indicate a more nuanced relation between inhibitory control and 

counterintuitive fractions and decimals than presumed by previous research. They suggest that the 

role of inhibitory control when reasoning about counterintuitive fractions and decimals is not 

constant, and it is only drawn on at high levels of cognitive load.  
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Research has highlighted the role of inhibition in learning counterintuitive concepts in mathematics 

and science (Mareschal, 2016; Vosniadou, 2014), but no study has investigated if performance on 

semantic and response inhibition measures predicts counterintuitive reasoning in the specific context 

of fractions and decimals. Inhibitory control is not a constant, however– as part of the executive 

function system, the level of ability necessary to apply it varies as function of cognitive load 

(Basanovic, Notebaert, Clarke, MacLeod, Jawinski, & Chen, 2018; Berggren, Richards, Taylor, & 

Derakshan, 2013). In maths learning, one common reason for variation in cognitive load is the use and 

layout of illustrations accompanying problems. The twin goals of this study are therefore to examine 

the impact of inhibitory control on reasoning about fractions and decimals, and to do so under 

realistic conditions of varying cognitive load.  

 

Counterintuitive Reasoning in Fractions and Decimals 

Thinking in whole numbers serves children well during the early school years, but may hinder their 

understanding of rational numbers (Vosniadou, 2014). This is particularly true in the case of fractions 

and decimals, where the two whole numbers separated either by a line, in a fraction, or a point, in a 

decimal, prompt a child to treat them as separate quantities rather than a unified whole (Roell, 

Viarouge, Houde, & Borst, 2017; Vosniadou, 2014; Vosniadou, Ioannides, Dimitrakopoulou, & 

Papademetriou, 2001; Vosniadou & Verschaffel, 2004). For example, children commonly reason that 

2/7 is greater than 2/5 because 7 is greater than 5, or that 1.25 is greater than 1.3 because 25 is 

greater than 3.  

 

Children’s attempts to assimilate these apparent inconsistencies in their understanding of numbers 

lead to systematic errors in performance (Resnick, Nesher, Leonard, Magone, Omanson, & Peled, 

1989; Vamvakoussi & Vosniadou, 2010; Vosniadou & Verschaffel, 2004). These errors, known as 

‘whole number bias’ (Ni & Zhou, 2005), are resistant to change. They may remain even after the new 
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concept has been securely understood (Dunbar, Fugelsang, & Stein, 2007; Mareschal, 2016; Masson, 

Potvin, Riopel, & Foisy, 2014; McNeil & Alibali, 2005), and have been documented not only in school 

children and adults (Durkin & Rittle-Johnson, 2015; Lai & Wong, 2017; Meert, Gregoire, & Noel, 2010; 

Stafylidou & Vosniadou, 2004; Vamvakoussi & Vosniadou, 2010) but also in skilled mathematicians 

(Obersteiner, Van Dooren, Van Hoof, & Verschaffel, 2013). In contrast, fractions and decimals that are 

consistent with the way children have learnt to reason about whole numbers (e.g. 4/5 > 3/5 because 

4 > 3) do not elicit similar errors (Nunes & Bryant, 2008; Stafylidou & Vosniadou, 2004). The ability to 

manage these counterintuitive concepts and perform proficiently in operations involving rational 

numbers predicts later achievement in mathematics (Bailey, Hoard, Nugent, & Geary, 2012; Siegler, 

Duncan, Davis-Kean, Duckworth, Claessens, Engel et al., 2012) and occupational success (Lortie-

Forgues, Tian, & Siegler, 2015). 

 

The role of inhibitory control in fraction and decimal reasoning 

Inhibitory control (IC), the ability to stop or override a dominant mental or motor response  

(MacLeod, 2007), belongs to a set of core skills known as executive functions (EF) (Miyake, Friedman, 

Emerson, Witzki, Howerter, & Wager, 2000). Response inhibition is the suppression of a dominant 

motor response that has been previously reinforced, whereas semantic inhibition is the stopping of 

an automatic mental response when faced with a stimulus that elicits competing reactions (Nigg, 

2000). There is evidence that EF correlate with mathematical achievement in school-age children and 

pre-schoolers (Bull & Scerif, 2001; Espy, McDiarmid, Cwik, Stalets, Hamby, & Senn, 2004), and it has 

been suggested that IC may be specifically involved in accurate performance with fractions and 

decimals (Gómez, Jiménez, Bobadilla, Reyes, & Dartnell, 2015; Lai & Wong, 2017; Meert et al., 2010; 

Roell et al., 2017; Vosniadou, 2014).  
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Meert et al. (2010) reported that 10-12 year-olds were faster at comparing fractions with common 

denominators (e.g. 2/7 v 5/7) in which the numerators were consistent with whole number ordering 

(2< 5) compared to fractions with different denominators (e.g. 2/3 v 2/5) where the greater fraction 

(2/3) was made up of the smaller denominator (3). Roell et al. (2017) found that French 7th Graders 

(average age 12.5 years) took longer to compare two decimal numbers (e.g. 1.25 v 1.3) in which the 

smaller number had the greatest number of digits after the decimal point compared to decimal 

numbers that were consistent with the whole number principle that numbers with more digits are 

larger (e.g. 2.15 v 2.1). Research with adults point to similar findings (M. DeWolf, Grounds, Bassok, & 

Holyoak, 2014; Vamvakoussi, Van Dooren, & Verschaffel, 2012). Although not all studies report this 

pattern (Ninaus, Kiili, McMullen, & Moeller, 2017), it has been proposed that the whole number bias 

happens because the brain automatically processes whole numbers, and consequently the digits that 

make up a fraction or decimal (Kallai & Tzelgov, 2011). Vamvakoussi et al. (2012) and Melissa DeWolf 

and Vosniadou (2011) suggest that comparing counterintuitive fraction and decimal pairs takes longer 

and is less accurate than comparing intuitive pairs because the former involve significant IC demands 

to suppress interference from prior number knowledge and apply correct but counterintuitive 

principles. Those with better IC should therefore exhibit less pronounced effects. 

 

The only study to our knowledge that has investigated this possibility, with Chilean 5th to 7th graders 

(ages 10-12) using fractions (Gómez et al., 2015), found no unique role of semantic inhibition in 

counterintuitive fraction reasoning after controlling for general math achievement. However, it is 

possible that the children who took part in this study might have had sufficient practice to have 

automated inhibition of the processing biases involved in reasoning about counterintuitive fractions. 

A repetition with younger children at the early stages of learning about the counterintuitive 

operations involved in both fractions and decimals is therefore needed to establish whether or not 

there is evidence of an effect.  
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The role of Cognitive Load (CL) 

The use and layout of illustrations in mathematical problems has been linked to increased CL and 

poorer performance (Berends & Lieshout, 2009; Elia, Gagatsis, & Demetriou, 2007). One explanation 

for this, the redundancy effect, suggests that processing illustrations that are irrelevant or 

unnecessary increases CL because it wastes limited cognitive resources (Mayer, Heiser, & Lonn, 2001). 

CL may also be increased by high element interactivity, when a learner is required to process and 

integrate physically separated sources of information (e.g. text and illustration) (Ayres & Sweller, 

2005). These pieces of information must be first processed in isolation and subsequently integrated, a 

process that is cognitively demanding and slows down processing (Sweller & Chandler, 1994).  

 

Applying this to counterintuitive fraction or decimal comparisons, we expected working memory to 

already be taxed by the cognitive effort required to solve the task. We therefore anticipated that 

where illustrations are used as vehicle to display information that must be integrated, there will be 

fewer resources available to inhibit prior number knowledge. This would lead to slower processing 

and lower accuracy, perhaps especially among those with lower levels of IC, compared to items 

consisting of integrated text with supporting illustration or integrated text only. To test this, we 

created three sets of problems of varying CL. In the first set, termed ‘high load’ (HL), illustrations are 

used as a vehicle to naturally decompose elements of numerical information which then must be 

integrated in order to reach an answer. This set was designed to induce high element interactivity. In 

the second set, termed ‘low load’ (LL), information is presented in integrated text statements with a 

supportive illustration which does not itself need to be processed to arrive at an answer. This set was 

designed to induce redundancy effects. In the third set, termed ‘no additional load’ (NAL) information 

is presented in simple integrated text without illustration, to provide a baseline measure.   
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Current Study 

This study therefore aims to examine the influence of inhibitory control on processing 

counterintuitive fractions/decimals in children aged 8 to 10, under conditions of varying cognitive 

load. We test the following hypotheses: 

1. Responses will be slower and less accurate in trials where the fraction/decimal magnitude 

comparisons are inconsistent with whole number magnitude (counterintuitive) compared to trials 

where these are consistent (control).  

2. Responses will be slower and less accurate in trials where illustrations are used to create effects 

of redundancy (LL) and high element interactivity (HL), with these effects being more pronounced 

for HL than LL trials.  

3. There will be an association between IC measures and performance in the counterintuitive trials 

after controlling for age and performance in control trials, those with better IC exhibiting better 

performance. We expected this association to be stronger where CL is greater because fewer 

resources will be available to activate IC.  

 

Method 

 

Design 

A combined experimental/correlational design was employed, focused on a fraction/decimal 

magnitude comparison task with comparison pairs that were either consistent (control) or 

inconsistent with whole number magnitudes (counterintuitive). Items of both types were further 

subdivided into pairs that presented information in simple integrated text (NAL condition), pairs with 

a supportive illustration that did not need processing to arrive at an answer (LL condition), and pairs 

that used illustrations as a vehicle to naturally decompose elements of information that needed to be 

integrated in order to reach an answer (HL condition). Semantic inhibition was measured using a non-
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numerical version of the Stroop task. Response inhibition was measured using the Whack-A-Mole 

version of the Go/No Go task. 

 

Participants 

A total of 95 school children in Year 4 (Y4) (N=38, 33 girls) and Year 5 (Y5) (N=57, 38 girls) from a 

selective private school for girls and a mixed state school in high socio-economic areas of London took 

part in this study. These year groups correspond approximately to children aged 8-9 and 9-10 (overall 

mean age = 9.7 years, SD = 0.6). Written parental permission and child assent was obtained for all 

participants. Procedures were approved by the authors’ institutional research ethics committee.  

 

Measures  

Fraction/decimal magnitude comparison task 

This task was designed using Open Sesame 3 software. It consisted of 24 fraction pairs (12 control and 

12 counterintuitive) and 24 decimal pairs (10 control and 14 counterintuitive; due to an initial 

classification error, two decimal counterintuitive items were labelled as controls, one NAL and one 

LL). On each trial, participants read a statement on-screen about which of two numbers was smaller 

or larger and pressed one of two keys to indicate whether they thought this was correct/incorrect. 

For fractions, control trials consisted of pairs with common denominators but different numerators, 

counterintuitive of pairs with common numerators where the greater denominator belonged to the 

smaller fraction (e.g. 3/9 < 3/4). For decimals, control pairs consisted of numbers in which the larger 

one had more digits and greater magnitude after the decimal point (e.g. 7.59 v 7.3), counterintuitive 

of numbers where this was reversed (e.g. 8.39 v 8.6). Control and counterintuitive trials across 

fraction/decimal pairs were matched in terms of statement length, positive versus negative wording, 

numerical distances of the whole numbers, and for decimals, the number of digits after the point. 

There were two types of statement: those in which the intuitive response is to say that the statement 
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is correct, but for counterintuitive items it is really incorrect; and vice versa. There were also four 

types of response, balanced across control and counterintuitive trials: greater false, greater true, 

smaller false, smaller true.  

 

Illustrations consisted of a set of clip art characters designed for classroom lessons 

(www.mycutegraphics.com). The condition of CL varied systematically, so that fraction and decimal 

pairs were presented without illustrations (NAL, N=16), with supportive illustrations (LL, N=16) or with 

illustrations in which relevant information needed integrating (HL, N=16) (Figures 1a, 1b, 1c). The task 

started with four practice trials (no criterion for progression was set), followed by two trial blocks 

separated by a self-timed break. For half the participants in each age group, Block 1 consisted of all 

the fraction pairs (Fractions First) and block 2 of all the decimal pairs, each presenting 24 trials in 

randomised sequence; the other half completed the blocks in the reverse order (Decimals First). Each 

trial was preceded by a fixation cross of 500 milliseconds (ms) duration and stimuli stayed on the 

screen until a keypress response (x = correct, m = incorrect) was made. Feedback was not provided. 

Accuracy and response times (RT) were recorded and averages were computed for each trial type. 

 

Semantic inhibition: Animal Size Stroop Task 

In order to avoid confounding with numerical ability, an animal-size Stroop task based on Merkley, 

Thompson, and Scerif (2015) was used to assess participants’ ability to ignore pre-potent irrelevant 

information. Participants saw a large (105x70mm) and a small (45x30mm) animal image on the 

computer screen and had to press a key to indicate which animal was larger in real life. On congruent 

trials the largest animal in real life was also the larger image on the screen. On incongruent trials the 

largest animal in real life was the smaller image on the screen. The task consisted of two experimental 

blocks, each containing 36 pseudo-randomised trials with an equal number of left and right keypress 

responses and congruent and incongruent trials. The stimuli stayed on the screen for a maximum of 
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3000 milliseconds and were separated by an inter-trial gap of 500 milliseconds. Differences in mean 

accuracy (accuracy cost) and response times (RT cost) between congruent and incongruent trials were 

used as measures of IC performance. Higher values indicate lower levels of semantic inhibition.  

 

Response inhibition: Whack-A-Mole (W-A-M) task 

The W-A-M task, based on Casey, Trainor, Orendi, Schubert, Nystrom, Giedd et al. (1997)  was used to 

assess participants’ ability to withhold a dominant motor response. Children were instructed to press 

the space bar on the keyboard as quickly as possible when a cartoon mole appeared on the screen 

(Go trial), but not to press it when a cartoon vegetable appeared (No Go trial). The task consisted of 

75 Go trials and 25 No Go trials, which were randomised and distributed into two blocks. The stimuli 

stayed on the screen for 1.8 seconds. Mean RT for Go trials and mean accuracy for Go and No Go 

trials were used as measures. 

 

Procedure 

Participants were tested individually in a quiet room during school hours. They were asked to read the 

instructions on a 15.6 in. laptop screen before starting each task. The fraction/decimal magnitude task 

was performed first, followed by the Stroop task, and then the W-A-M task. The sessions took on 

average 20 minutes. 

 

Results 

The first set of analyses considers data from the magnitude task. It examines if responses differ across 

number format and analyses the data for fractions and decimals separately using a Repeated 

Measures (RM) ANOVA. The second reports the results from the IC measures. The third assesses the 

results from multiple regressions examining predictors of magnitude task performance.  
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In line with convention, mean RTs are reported for correct trials in the Stroop task and Go trials in the 

W-A-M task; and for all trials in the magnitude comparison task. Participants whose mean accuracy or 

RT was further than ± 3.29 standard deviations away from the overall group mean in the specific tasks 

were excluded from the analysis (Field, 2013), leaving a total of 90 participants for the RM analyses 

and 89 for the regressions (because of exclusions in the W-A-M task). 

 

Magnitude Task 

Accuracy and RT scores (Table 1) indicated sufficient differences between fraction and decimal 

performance to necessitate analysing them separately. These differences were explored with a two-

way RM ANOVA on accuracy and RT with trial type (2 levels: counterintuitive, control) and number 

format (2 levels: fractions, decimals) as within-subjects factors. There was a main effect of congruency 

on accuracy, F (1,89) = 64.59, p<.001, partial ηp² = .42, and RT, F (1,89) = 53.06, p<.001, partial ηp² = 

.37, with more accurate and faster responses to control trials compared to counterintuitive. There 

was also a main effect of number format on accuracy, F (1,89) = 7.43, p = .008, partial ηp² = .08, and 

an interaction, F (1,89) = 15.16, p<.001, partial ηp² = .14, which was due to counterintuitive trials, but 

not control, attracting significantly more accurate responses in fractions than decimals. There was 

also an interaction on RTs, F (1,89) = 42.36, p <.001, partial ηp² = .32, which was due to performance 

in counterintuitive trials, but not control, being slower in fractions compared to decimals. There was 

no main effect of number format on RT.    

 

Fractions  

Alpha for accuracy on control fractions was .616 and for counterintuitive was .680. A two-way RM 

ANOVA with trial type (2 levels: counterintuitive, control) and CL (3 levels: NAL, LL, HL) as within-
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subjects factors was performed on accuracy and RTs separately. Mauchly’s test indicated that the 

assumption of sphericity for the main effect of illustration had been violated, therefore Greenhouse-

Geiser corrected tests are reported. Pairwise comparisons for main effects of illustration are 

corrected using a Bonferroni adjustment, corrected p = .05/3 = .017 

 

There was a significant main effect of trial type, with higher accuracy F (1, 89) = 14.8, p <.001, partial 

ηp² = .14, and shorter RTs, F (1,89) =  69.99, p <.001, partial ηp² =. .44 for control compared to 

counterintuitive trials (Figures 2 and 3). There was a main effect of CL on RTs, with the fastest RTs in 

NAL, followed by LL, followed by HL trials, F  (1.87, 166.41) =  50.54, p<.001, partial ηp² = .36 . Pairwise 

differences were significant between HL and LL trials and between the HL and NAL trials only.. There 

was a significant main effect of CL on accuracy, F (1.80, 160.26) = 5.21, p = .008, partial ηp² = .05, 

revealing more accurate responses in HL (M=.88, SE = .015) compared to LL trials (M=.83, SE=.019) 

across both control and counterintuitive fractions. There was no significant difference between LL and 

NAL and no interaction.  

 

Decimals  

Alpha for accuracy on control trials was .445 (due in part to the smaller number of items, and 

generally weak inter-item correlations, for two items in particular) and for counterintuitive was .92. 

There was a significant main effect of trial type with higher accuracy, F (1,89) = 49.57, p <.001, partial 

ηp² = .36 and shorter RTs, F (1,89)= 8.25, p =.005, partial ηp²= .09 for control compared to 

counterintuitive trials (Figures 4 and 5). There was also a main effect of CL on RTs, F (1.95,173.91) = 

35.81, p <.001, partial ηp²= .29, with highest RTs for HL trials, followed by LL, followed by NAL trials. All 

pairwise differences were significant.  
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In summary, in the magnitude task, children took longer and were less accurate in comparing the 

magnitude of both fraction and decimal pairs in counterintuitive compared to control trials. As 

expected, children were also significantly faster in magnitude comparison in the NAL trials compared 

to LL and HL trials across both fraction and decimal pairs. Contrary to expectations, performance in HL 

fraction pairs were more accurate than LL pairs (the differences in decimals were non-significant). 

There was no evidence that CL interacted with the increased demands of counterintuitive items in 

either the fraction or the decimal trials.  

 

Inhibitory control tasks 

The results of the inhibitory control tasks are summarised in Table 2. Children responded faster, t (89) 

= -9.21, p < .001, d = 0.9, and more accurately, t (89) = 5.71, p < .001, d = 0.6, in congruent compared 

to incongruent trials in the Stroop task. Children were also significantly more accurate in Go trials  

compared to no-Go trials, t (88) = 8.08, p<.001, d = 0.86 in the W-A-M task.  

 

Regression Analyses 

Cronbach’s alpha values were examined for counterintuitive fractions and decimals within each level 

of CL. Although there was a slight dip for HL accuracy, the remainder indicated sufficiently good 

internal consistency at this level to justify combined analysis. Respective values for accuracy and RT 

were .737 and .690 for NAL trials, .702 and .775 for LL trials and .581 and .746 for HL trials. 

Regressions were run on accuracy and RT separately to examine if IC could account for variance in the 

counterintuitive trials within each level of CL after controlling for age and performance in the control 

trials. In block 1, the regression models included age and mean accuracy or RT in the control trials, as 

baseline performance was expected to have an influence on the outcome variable. The Stroop 

variables were entered in block 2: accuracy cost (congruent minus incongruent trials) and RT cost 
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(incongruent minus congruent trials). The W-A-M variables were entered in block 3: Go accuracy, No 

Go accuracy and Go RT. 

 

Regression on counterintuitive accuracy showed that neither semantic nor response inhibition was 

significantly associated with counterintuitive accuracy after controlling for age and accuracy in control 

trials. This pattern was the same across all levels of CL, with only Go accuracy being significantly 

positively associated with counterintuitive accuracy. The regression models for counterintuitive RT 

(Table 3) were more revealing, and explained variance was consistently higher than for accuracy – 

suggesting that accuracy is a more noisy measure, affected by a number of factors beyond those 

considered here. Regression on NAL RT indicated that only performance in NAL control trials 

predicted performance in counterintuitive NAL trials; the lack of age effect here may signal that age 

had an impact on children’s familiarity with and accuracy on both types of problem, but not on their 

basic speed of responding. Regression on LL RT indicated that Go accuracy was significantly associated 

with LL counterintuitive RT. This was a negative association, such that higher Go accuracy predicted 

shorter RTs, indicating that children who scored higher in general processing accuracy responded 

faster to the LL counterintuitive trials. Regression on HL counterintuitive RT revealed that in line with 

Hypothesis 3, Stroop accuracy cost was a significant predictor of counterintuitive RT, uniquely 

accounting for 3.4% of variance after controlling for age and performance in HL control trials. The 

final beta for this association had a probability of .019, significant at conventional levels and still 

marginally so with a Bonferroni correction for comparison across three levels of CL. The relationship 

was positive, such that higher accuracy cost (worse semantic IC) was associated with longer RTs.  

 

In summary, the regression analyses revealed a unique role for semantic inhibition only when 

cognitive load was increased during the HL trials and only for RTs. Go accuracy predicted 

counterintuitive accuracy for the NAL and LL items and counterintuitive RT for the LL items. There was 

no sign that IC was involved in these trials. But for HL items, semantic inhibition, as assessed by 
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accuracy cost, was predictive of RT alongside Go accuracy – the higher the cost (the worse the IC) the 

slower the responses. This finding suggests that in the presence of increased cognitive load, children 

with lower scores in semantic inhibition were slower to respond. In contrast, performance appeared 

to be sufficiently automated in the NAL and LL items that general processing ability (as measured by 

Go accuracy) was enough to predict performance.   

 

Discussion 

We tested three hypotheses with regard to performance on counterintuitive fractions and decimals in 

the presence of varying cognitive load in 8 to 10 year old children. Results relating to each are 

considered in turn below. 

 

The role of whole number bias in counterintuitive fractions and decimals 

In line with previous work (Melissa DeWolf & Vosniadou, 2015; Gómez et al., 2015; Stafylidou & 

Vosniadou, 2004), the first hypothesis proposed that children’s responses would be slower and less 

accurate on counterintuitive compared to control trials. The data for both fractions and decimals 

supported this hypothesis, suggesting that children’s performance was influenced by intuitive 

responses (i.e. consistent with whole number magnitudes) and that it takes longer to reach the 

correct answer, with less certain outcome, in trials that go against operations of whole numbers. 

These findings add to the increasing body of evidence proposing that the hard-won knowledge of 

whole numbers that has helped children secure basic number facts in the first years of schooling 

adversely interferes with their efforts to construct a competent understanding of fraction and decimal 

concepts.  

 

The role of cognitive load in counterintuitive fractions and decimals 

The second hypothesis predicted that responses would be slower and less accurate in HL compared to 

LL and NAL trials. It was anticipated that HL trials would leave fewer resources available to address the 
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cognitive effort required to control interference from whole number bias. As expected, performance 

in HL items across fractions and decimals was  slowest , followed by LL, followed by NAL. However, 

children were significantly more accurate in HL fractions across both control and counterintuitive 

trials, and for decimals there was no effect. The slower RTs for HL fractions indicate that accuracy 

levels were bought at the expense of RTs. This finding suggests that when faced with problems that 

induced greater cognitive load children tended to slow down to ensure accuracy, indicating that they 

were aware of the increase in load, and adjusted performance accordingly. This may also have been a 

factor in the increased RTs for counterintuitive trials. 

 

The role of inhibitory control in the presence of varying cognitive load 

The third hypothesis proposed that there would be an association between IC scores and 

performance in counterintuitive trials and that this association would be stronger for HL trials because 

there would be fewer resources available to activate IC. Although children’s prior knowledge of whole 

number magnitudes interfered with their reasoning in counterintuitive trials across all levels of CL, 

making their performance slower and less accurate, there was no evidence that the IC measures 

predicted performance in the NAL and LL counterintuitive trials after controlling for age and 

performance in the respective control trials. Only accuracy in Go trials was consistently associated 

with performance in these trials, such that higher Go accuracy predicted more accurate and faster 

responses. Since the effects of Go accuracy were in addition to the effects of performance on the 

corresponding control trials, and any influence general processing ability may have had on those, the 

implication is that the counterintuitive trials drew on something extra. One possibility is that this 

measure reflects confidence in responding accurately, and this has greater impact on the more 

difficult counterintuitive trials.  

 

However, when CL increased due to the demands placed by the need to integrate numerical 

information, IC contributed unique variance to children’s RT performance, alongside Go accuracy. 
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Under high CL better semantic inhibition predicted faster responses, and conversely, poorer inhibition 

led children to slow down further. This novel finding suggests a more nuanced relation between IC 

and counterintuitive fractions and decimals than presumed by recent research. In particular, it 

indicates that the role of inhibitory control when reasoning about counterintuitive fractions and 

decimals is not constant, and it is only drawn on at high levels of cognitive load, instigating increased 

care among those for whom the demands are more challenging. This is again consistent with the idea 

that children – in this sample at least – were capable of adjusting their performance when they 

perceived task demands to be higher. At lower levels of demand, this adjustment appears to be 

automatic, but at high levels to be more deliberate. 

 

Limitations 

The participants in this study came from areas with high socioeconomic status (SES), with the majority 

(N=67) attending a selective private school. Previous studies have demonstrated that IC is affected by 

variations in SES, with children from high SES backgrounds performing better on IC tasks than their 

low-SES peers (Hackman, Gallop, Evans, & Farah, 2015; Noble, McCandliss, & Farah, 2007; Spielberg, 

Galarce, Ladouceur, McMakin, Olino, Forbes et al., 2015). The data for the IC tasks showed a 

reasonable spread of scores (as indicated by their standard deviations), however, so the lack of 

association between IC measures and performance in the NAL and LL counterintuitive trials cannot be 

explained on the basis of low (and therefore unpredictive) variance. The alternative possibility, that 

the children who took part in this study had already progressed to the point where IC was well 

established for problems of this type, and it was effectively automated, is more plausible. It is unclear 

if the impact of inhibitory control on counterintuitive fractions and decimals would be limited to trials 

associated only with high CL in a low-/mixed-SES sample. Future research should investigate this. 

 

Semantic inhibition was measured using a non-numerical Stroop task, in order to avoid numerical 

ability becoming a confounding factor. However, given that children needed to ignore the whole 
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numbers in fractions and decimals in order to process them appropriately, it is possible that different 

outcomes would have been obtained if semantic inhibition had been measured using a numerical 

Stroop task in which participants were asked to report the physical size of the number and ignore its 

magnitude (Bugden & Ansari, 2011). Previous research (Gilmore, Keeble, Richardson, & Cragg, 2015) 

found that IC was related to arithmetic performance only on a numerical, but not a non-numerical 

task (Animal Stroop). 

 

Conclusion 

In order to understand how children learn new concepts in mathematics it is important to grasp the 

role of processing biases where these go against established understandings of number magnitudes. 

This study contributed to this by exploring the influence of whole number bias and the role of IC and 

CL in counterintuitive fractions and decimals. To our knowledge, this is the first attempt directly to 

examine the association between response and semantic inhibition and counterintuitive fractions and 

decimals in children who are at the early stage of fraction and decimal instruction. The data are in line 

with previous findings that fractions and decimals that go against conceptions of whole number 

magnitude are associated with poorer performance. The present work revealed a more complicated 

relationship between inhibition and performance than suggested by previous research, indicating that 

the role of IC varies as a function of CL, and that children are capable of managing load deliberately by 

slowing down where necessary, and even of automating such adjustments, so that individual variation 

in tasks measuring IC skills is not predictive. Future research looking at the role of IC in 

counterintuitive learning must develop a sufficiently nuanced approach to allow for these kinds of 

complex effects. 
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Table 1. Mean accuracy, RTs and t-tests for the fraction and decimal magnitude comparison trials.  

  Control Counterintuitive 

Accuracy (%) RT (ms) Accuracy (%) RT (ms) 

Fractions 89 (.13) 7172 (2857) 81 (.18) 9165 (3324) 

Decimals 90 (.11) 7713 (2601) 68 (.32) 7980 (2766) 

Note. Standard deviations in parentheses. 
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Table 2. Accuracy and mean RTs for the Stroop and W-A-M tasks  

Trial type Accuracy % RT (ms) 

Congruent 98 (2.5) 843 (138) 

Incongruent 95 (4.9) 912 (136) 

Go 95 (5.3) 208 (27) 

No Go 85 (10.8) n/a 

Note. Standard Deviations in parentheses. 
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Table 3.Hierarchical regression analyses with fraction and decimal counterintuitive RT across NAL, LL 

and HL as dependent variable, N= 89 

  Model M1 M2 M3 

No Additional 

Load 

Predictor β 

Age in months -.010 -.026 -.004 

Control trials .682***  .687**  .654***  

Stroop accuracy cost  -.109 -.090 

Stroop RT cost  .044 .020 

Go Accuracy 

No Go accuracy  

  -.117 

  .073 

Go RT   .049 

AdjRsquare =  .458; ΔR2 = . .469*** for M1; . .011 for M2; . .021 for M3 

Low Load 

Age in months -.133 -.127 -.106 

Control trials .671** * .674***  .619***  

Stroop accuracy cost  -.001 .003 

Stroop RT cost  .035 .002 

Go Accuracy 

No Go accuracy  

  -.195* 

  .061 

Go RT   .003 

AdjRsquare = .477; ΔR2 = .485*** for M1; .001 for M2; .032 for M3 
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High Load 

Age in months -.031 -.006 .026 

Control trials .641***  .662***  .635***  

Stroop accuracy 

cost 
 .184* .202* 

Stroop RT cost  -.105 -.147  

Go Accuracy 

No Go accuracy 

  -.188* 

  .060 

Go RT   .093 

 AdjRsquare = .462; ɝR2 = .415*** for M1; .034 for M2; .055* for M3 

Note. Significant predictors in bold; *p <.05. **p<.01. ***p<.001. 
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Figure 1a. Example of No Additional Load trial   

 

Figure 1b. Example of Low Load trial 

 

Figure 1c. Example of High Load trial   
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Figure  2. Mean accuracy in Fractions by trial type and cognitive load level. NAL=no additional load, 

LL = low load, HL = high load. Dotted line represents Mean. 

 

 

Figure 3. Mean Response times (RT) in Fractions by trial type and cognitive load level. Response 

types are expressed in seconds. NAL=no additional load, LL = low load, HL = high load. Dotted line 

represents Mean. 
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Figure 4. Mean accuracy in decimals by trial type and cognitive load level. NAL=no additional load, LL 

= low load, HL = high load.  Dotted line represents Mean. 

 

 

Figure 5. Mean Response times (RT) in decimals by trial type and cognitive load level. Response 

types are expressed in seconds. NAL=no additional load, LL = low load, HL = high load. Dotted line 

represents Mean. 

 


